CEUR-WS.org/Vol-2343/paper8.pdf

Trustless Blockchain-based Access Control In

Dynamic Collaboration

Mouhamad Almakhour Layth Sliman
Lebanese University, Faculty of EFREI Engineering
Engineering-CRSl, Univ. Campus, School-Paris

Hadath, Lebanon
mohammadmakhour@gmail.com

Villejuif, France
layth.sliman@efrei.fr

Lebanese University, Faculty of
Engineering-CRSl, Univ.Campus,

Abed Ellatif Samhat Walid Gaaloul
Telecom SudParis
Evry, France
Hadath, Lebanon

samhat@ul.edu.lb

Abstract—AC (Access Control) is the process of ensuring this authorization process via smart contractsvdlimate our

that an authenticated user accesses only what he she is
authorized to do with respect to certain models andecurity
policies. In business collaboration systems, seceis are
designed to conduct actions requested by a customeusing
service provider's infrastructure. In such context, the
agreement on a conventional access management Systés
difficult because it will depend on different infrastructures and
security policies implemented by each involved payt In this
paper, we investigate the authorization process tlhamanages
permissions and rights of access to shared services a
federation of enterprises and we propose a solutiohased on
the Ethereum Blockchain platform and the Attribute Based
Access Control Model (ABAC) to define this authoriation
process.

Access collaboration,

Keywords— Control,

BlockChain, ABAC

. INTRODUCTION

Trust is a major factor in business collaboration.

Managing trust involves complex and costly processed
brings its own risks to companies’ information sys$
because relying on trust often involves the preseoic a

“trusted” third party and may compromise the sdguri
However, the lack of trust may lead to major buséne

opportunities lose, for instance in “on the fly’llaboration.

In such scenarios companies collaborate by conuycti

actions on each other's’ system in order to achithe
common objective. One of the most interesting tetdgies
that may resolve this dilemma
Blockchain provides trust without a trusted thirarty.
Blockchain is a technology that provides a decénéd
“database” on a network that is scalable, secuaepeér-
proof, and accessible by each peer on the netwidriss,
using Blockchain allows coping with both trust addta
integrity issues. However, managing identity andeas
control in Blockchain based collaboration brings dwn
issues. Conventional methods to manage acces®kmdch
their limitations in such a context taking into sateration
the constraints related to the Blockchain infradtice on

Trust,

is Blockchain. The

proposal, we implement cross-organizations authtiom
process as a smart contract, which is deployetheT &stnet
BlockChain of Ethereum.

The rest of the paper is organized as follows:eictisen I,
we present the related works, mainly the differgieintity
management models as well as the existent modetedss
management. In section 1, we discuss the propssédion
and the motivation of
implementation of the proposed solution is presknte
section IV where different scenarios are given .afection
V concludes this paper.

Il. RELATED WORKS

The concept of virtual team or virtual compawvgs born
in the 1990s to describe the new forms of manageaneh
digital exchanges between teams or between congpadrtie
virtual organization is defined as "a temporaryaalte of
independent, connected, geographically
organizations, institutions, industries, entergjseetc.,
including a high level of trust, who collaboratedashare
their resources and skills in order to respond ustamer
requests "[2]. The difficulty lies in the differeee in
infrastructure and security policies implemented dgch
partner. Each of them must interconnect with othemd
share resources while maintaining the securityheirtown
organization. All must provide a means of commutiice
that ensures the integrity and confidentiality b€ tdata.
Similarly, they must have a way to verify the idgnof the
people and systems involved in the collaboratioherr
Access management should guarantee to each apeloplle
involved in the organization's projects, at all ésn all the
means necessary to carry out the mission entristédtem,
with respect to the permissions and security pediaf the
different involved organizations. That these medmes at
every moment limited to the just necessary. Belove,
briefly describe the different identity managememtdels as
well as the different access management models.

one side and the heterogeneous access controliegolicA Identity Management Models

implemented by each involved party, on the othde.si

In this paper, we consider the authorization prectmt
manages permissions and rights of access to skareites

1) Isolated identity
In this model, each service provider uses its odeniity

in a federation of enterprises. To do so, we prepas domain, that is, its own identity provider. A useust use a

solution based on the Ethereum Blockchain platfar the
Attribute Based Access Control Model (ABAC) to ahefi

different ID and credential to authenticate witlcledomain.
From the point of view of each identity providedentity

walid.gaaloul@mines-telecom.fr

the adopted models. The

dispersed

27

management is simpler. In addition, in case of tithen computer markets, with Microsoft Windows for exampl
corruption in an identity domain, the other seryiceviders and servers with UNIX and Linux systems. This moidel
are not impacted. This model also allows to dedimifferent based on a matrix composed of a finite set of iegfitarget
level of security for credentials (length of thesgpaord, resources and rules. It leads to the establishnoéna
number of credentials to be presented, etc. .dgdd, the comprehensive list of access rights i.e. AccesstrGbhist
latter must repeat the steps of authentication an@CL). This implies that any unauthorized access is
identification with each of the identity domaindaghed to prohibited. Thus, the rights are assigned diretttliyhe user
the service providers. Therefore, he must managg araccounts (each right is assigned by name). Onehef t
remember as many identifiers and information usébul implementations of the IBAC model is Discretiondwgcess
authentication as services he must access. Thisases the Control (DAC) [4], which is based on the concepttioé
risk of forgetting or losing this information, egaly for owner of the resource. The latter has total cordxar the
services that are rarely accessed. In additios, ghuation resource he or she has created and for which teheris
can be a source of weak adherence to the orgamizmti responsible. It determines which entity has perimisgo
security policy, which will be deemed too restreti conduct what type of action on its resource. Thapexity

2) Federated identity of ACLs increases according_ to th_e number of idlieustiand

the number of resources since it is necessary stothie

Identity federation is defined as a set of agreeasjen authorizations for each Identity-Resource combamatiln
standards, and technologies that allow a groupeofice fact, when a new resource is available or whenva unger
providers to recognize credentials from other servi arrives, the list of authorizations must be updated

providers that belong to the federation [1][3]. Tederation 2 Mandatory Access Control (MAC)
gives users the illusion of using only one unigdentifier y
while continuing to present a different one to eaefvice In the case where the owner of an information syste

provider. In federated identity architecture, easdrvice should not be responsible for managing the undeglyi
provider uses its own identity provider, but iseal accept security, MAC-type models can limit access basedthmn
identities from other providers. Access to a senpeoovider sensitivity of the data. For this purpose, thedtentities are
can then be through an identity of an identity jmew other hierarchized in different levels of security callethels. Bell
than his own. and Level [1] developed a model where a minimunellef
3) Centralized identity security is req_u_ired to access the resource. Ek_risl Uefin(_es
the level of privilege of the user. Similarly, acagty level is
In this model, only an identifier and a credentied used assigned to the resource. This level determinedetia of

by the service providers. Three examples of imptaat®n classification of the resource. The user then lsasss to the

of this type of identity management [3]: resource only if his level of authorization is gegathan or
, equal to the classification level of the resoultoeaddition,
3.1 Common Identity for an application, an execution level, called therent

In this model, a single entity acts as the idgmtiovider ~ level, is also defined. The current Igvgl of anlmppion is
for all service providers. The mode of operatioagfway always less than or equal to the privilege levethwf user
between the isolated identity model and the federat responsible for running the application. The "nadreip”
identity model. With this type of implementatioretisingle ~ condition implies that an application can read ascéo
identity provider is a central and sensitive pofat all information only if the current level of the applton is
service providers. Indeed, in the event of a failor greater than or equal to the classification levél the
modification at the level of the identity domainl] ¢the resource that manages the data. Similarly, the Wmite

dependent entities are impacted. down" condition assumes that an application canstrat
)) information to a resource only if its current leigless than
3.2 Meta identity or equal to the classification level of the tangetource. This
The implementation of a meta-identity domain allows&ccess control model is also called Rule Based gscce
service providers to share information about idisti Control (RUBAC) because access is governed by.rules
3.3 Single Sign-On (SSO) 3 Role Based Access Control (RBAC)
The Single Sign-On approach is similar to an idgnti Unlike the IBAC model where entitiements granted

federation, but no identity match is required beeathere is directly to the user, in the RBAC model developedtine
only one identity provider. In this architectureuger needs National Institute of Standards and Technology (IS

to authenticate only once (single sign-on) with eavige Permissions are assigned to roles. The management o
provider. It is then authenticated de facto withestservice ~authorizations is then simplified. In addition, Nlfroposes
providers. The Single Sign-On model can be assatiaith several variants of the RBAC [5], for instance,ngsithe

the identity federation model, allowing single-doménter- ~ notion of inheritance between roles. In RBAC, thfialilty
domain authentication. lies in the completeness and the granularity ofrdies. In

fact, too broad roles admit too many rights and $omall

B. Access Management Models roles will increase the difficulty of administratio

For access management, the following model eafotind 4 Attribute Based Access Control (ABAC)
in the literature and used in exciting systems. The model ABAC, defined in [6], proposes to have th
1 Identity based access control (IBAC) access rights according to the characteristichefdentities.

o] Like the IBAC model, the access rights policy ca@ b

control and still used by operating systems in ieesonal yegyit, access rights to a resource or servicelafieed for

28

one or more attributes that identities may haveis Th
paradigm therefore offers more flexibility. In atidin, by
defining an attribute closer to the notion of roRBAC
makes it possible to simulate the behavior of anARB
model, but generalizes it by not limiting the accaghts to
the only users present in the organization. Itvasloin
particular to determine access rights with a figremularity.
In addition, defining a role as a set of attributeakes it
easier to handle conflicts. The management of acdghts
is facilitated because it does not require addition
information. However, access security is then basedhe
values assigned to the attributes and thus on uhétyand
integrity of the information related to the ideietst.

5 Organization Based Access Control (OrBAC)

With the OrBAC model [4], the organization is pevesl
from an abstract perspective as a set of activitias roles
have permission, prohibition or obligation to acki¢hrough
views. Just like in RBAC, it is possible to use tiaion of
inheritance for roles. Concretely, authorizations granted
to subjects for actions on objects through threeedisional
matrices.

I1l. PROPOSELSOLUTION

After reviewing the main identity and access
management model, we focus on the requirementsuof o
authorization process that manages permissionsigimg of
access to shared services in a federation of eigesp The
requirements include:

federation who do not know each other.

Denying any illegal access from outside the Fed®srat
unauthorized access or no access agreement.

Decentralization of authorization process that pnéy
the risk of loss of access control that allows ieew to
be stopped.

Today, one of the most important technologies used
the security field is the Blockchain. The Blockahainsures
trust without a trusted third party. Confidenceldained by:

« Validation of transactions added to blocks

* For a transaction added to BlockChain, you caedtt
or delete.

Based on such technology, smart contracts are rmagrée
between parties that are written in executable cmuehe
Blockchain instead of being written in natural laage,. The
execution is then managed automatically by the IBldain
according to the conditions described in the cattra

We propose a solution based on the smart neamexft
system contracts. The idea behind this solutido define an
authorization process that manages permissionsaacess
rights to shared services in a business federafidris
process satisfies the requirements by providingf toetween
different members using Blockchain. It also denasy
illegal access from outside the federation. WitbhdBthain,
the decentralization of authorization process cenalso
done. All steps are done automatically from Smant€acts,
S0 no needs for a manager on the process.

Our solution is based on ABAC access managemer
model explained earlier to define an authorizajwocess

Providing trust between different members of the

that manages the permissions and rights of acoesisared
services in a business federation and the impleatientis
based on the Ethereum Blockchain platform.

A. Ethereum Blockchain technologie

Blockchain technology allows a distributed compgtin
architecture where the transactions are publiclyoanced
and the participants agree on a single history hafsé
transactions (or some kind of ledger) [10] [12]. eTh
transactions are grouped into blocks, given tinmpts and
then published. The hash of each block includesh#tsgh of
the previous block to form a chain, making publéhbéocks
difficult to alter. As Bitcoin began attracting exttion,
developers have taken advantage of the features of
BlockChain technology as an infrastructure to @ethieir
own platforms (aside from the main use of Blockohi
facilitating the transfer of digital currency intBoin). On the
one hand, some platforms use the Bitcoin network as
infrastructure for notarization or proof of existenof digital
files, crowd funding, dispute mediation, and spaontiml,
among others. On the other hand, some platform® hav
emerged and took the form of “alt coins", whiche ar
alternative Blockchain-based crypto currencies tiat to
improve the capabilities of Bitcoin (or lack thefedy
implementing their own features and capabilitiedhe T
“improvements” can come in the form of a differenbof-
of-work algorithm (to shorten the verification tinod trans-
actions) or different hashing algorithm. There afet of alt
coins, but the biggest ones that have attractedlamng
and attention is Ethereum [7]. In our work andduling the
schema illustrated in figure 1, we use Ethereunit és a
public or unlicensed block chain. Anyone with a qater
and open source software can participate by listeni
trading, or exploring data, which means that altada
included in a transaction or smart contract is jgublVe
need a database to store users, attributes, pénssand
logs. Each company shares its service in the fédaréor
the benefit of users. The transactions can be @uili
private according to the agreement between the ressvf
the federation and the governance should not bealted
by a member of the federation.

Do you even need Blockchain?

Doyouneeda o

database?

Does itrequire d

shared write access? ™

Arewriters” 7
nterests unified” ™

Arewitersknown
/ \L” i L‘J‘Lrtl\({“‘ don'tuse blockchain
and trust

Do youwant/need to

usea ddrd £

Whereis consensus

control functionality? determined

private or public?

“fhublic
1

I
use apublic blockchain ‘ use a hybrid blockchain

Figure 1: Types of Blockchain [10]

use aprivate blockchain

29

Regarding other well-known blockchain technologye w
note that Bitcoin [2] is a crypto currency and ughe

IV. ETHEREUM BASED IMPLEMENTATION

technique of the blockchain as a payment network. |A. ETHEREUM

addition, Bitcoin does not support the necessaryrsm
contracts required in our process. As for Hyperéedepbric

[11], it is a private or licensed blockchain praibdesigned

for B2B business applications. Most managed bloakch
protocols allow authentication, authorization
authorization of actions. This makes Hyperledgebriea
more suitable for companies in various industrescll as

In 2013, Ethereum was proposed by Vitalik Butedirtiteate
a BlockChain-based distributed computing platforithwhe
capability of building and running decentralizeglkgations
or smart contracts [7] [8]. As a BlockChain-based

andcryptocurrencies, it offers the same features dsoBi of

easy mobile payments, reliability, full control ofie's own
money, high availability, fast international payrtenzero

supply chain, healthcare, and banks) that want 46 U or low fees, protected identity, and privacy. Eehen,

blockchain technology for internal or collaboratimerposes
without operating on public networks. As our needuires
a public blockchain and the type of the Hyperledgeéric is
private blockchain and which is for internal apgtion
without operating on public networks, we decideduse
Ethereum blockchain technology. In the

however, offers more than enabling online tranefatigital
money; it enables its users to build and deploy rema
contracts. Ethereum is composed of most of theopods$
that other cryptocurrencies, like Bitcoin, also .useor
example, Ethereum also includes a peer-to peeoqobfor

currentthe Blockchain. And the Blockchain is managed aegtk

implementation of Ethereum, consensus is reached bsecure by nodes in the network. In addition to ehes

mining based on proof of work.

B. ABAC Access Management

In this part we discuss and compare the acce

management models mentioned in related work section

protocols, the main modification and innovation of
Ethereum is being a programmable Blockchain, iie.,
allows its users to create, deploy, and run deakrdéd

Sagaplications on the Blockchain.

B. ETHEREUM VIRTUAL MACHINE

In the IBAC model, access controls are based on aptthe center of Ethereum is the Ethereum Virtualdkine

exhaustive list of entitlements for each authoriaedount.

The complexity of ACLs increases according to thenher

of identities and the number of resources sincesit
necessary to exhaustively list the authorizatioms dach

combination. The federation contains a large numtifer
users so this model is not compatible with the rfatien of

companies.

The RBAC model allows to reduce the list size oé th
authorizations. Access controls are performed enrdies
assigned to the accounts. Application roles arentgch
based on the business profile. The difficulty liesthe
completeness and the granularity of the roles.als, ftoo
broad roles admit too many rights and too smakgoill
increase the difficulty of administration. In thedgration
each user has a different right or permission saligenot
use this template because of the granularity ofies roles.

In the OrBAC model, permissions or prohibitions hesed
on contextual expressions defined according
organizational structure of the institution. In amuork, the
federation defines the users that they have thet dbaccess
and we cannot define them in advance.

The MAC model relies on flow control. Constrainte a
defined on data and resources. The level of emtéthe of an
account then determines whether or not he hasighé to

access the information. In our process, we do rasteh
constraints to define because the permission iviged

according to the user.

In the ABAC model, access controls check the presamd
value of application attributes defined at the actdevel. It
is then possible to simulate the RBAC behavior apping
the attributes on the definition of the roles. Timigdel is the
appropriate one for our process because accordintet
attributes of each user, access rights are given.

(EVM), which can execute codes of arbitrary aldoriic
complexity. Therefore, applications that are creatsing
known programming languages, such as JavaScriptbea
run on the EVM. To facilitate the execution of cede the
blockchain and to maintain consensus, the nodethef
network run the EVM and execute the same instrostio
Computations in the EVM are payed in ether (ETH)jol
is the currency used in Ethereum.

C. ETHEREUM ACCOUNTS

Ethereum’s basic unit is the account. Ethereum ta®s
types of accounts: Externally Owned Account (EOAH a
Contract Account. An EOA is controlled by a cormsging
private key, has an ether balance, can send triamssic
(transfer ether to another account or trigger @rashcode),
and does not have an associated code. SimilarBibcain
address, an EOA is in the form of random numberd an
letters, and therefore looks anonymous and canhbecd
publicly. A contract account (or simply called c@ut) has

to than ether balance and has an associated code. tidlhgdn

the blockchain are set in motion by the transastioreated
by EOAs. This means that the code in a contragkéxuted
when it receives a transaction from an EOA, whieeitiput
parameters for the code execution are includedhm t
transaction. Therefore, contracts can be considaasd
autonomous agents inside the EVM that execute aifgpe
piece of code when poked by a transaction. Codeutios

in a contract can also be triggered by messages @iher
contracts (see the next subsection for detailedaaagion
on transactions and messages). In contrast toiB#seript,

a contract performs Turing-complete computationd &n
typically written using some high-level languagecls as
Solidity, Serpent, and Lisp like Language. A coctisa
behavior is fully dependent on its code and on the
transactions sent to it and therefore offers thesidity for
creating decentralized and trusted systems.

30

D. TRANSACTIONS AND MESSAGES

An Ethereum transaction is a signed data packagestbres
a message from an EOA to another account on
blockchain. A transaction contains the Ethereunresidof
the recipient, a signature that identifies the sendhe
amount of ether being transferred, an optional field, and
startGas and gasPrice values. The startGas linhies
maximum amount of gas the code execution triggbyethe
message can incur. And the gasPrice is the amaugther
to be paid for one unit of gas consumed (see thd& n
subsection for detailed explanation on gas). Wheera
send transactions, they pay a small transactiomfether to

added to the block that came before it. Every blomhtains
the hash of the previous block, and thus, creagirghain

ththat connects the first block (genesis block) te durrent

block. The miner who solves a block is rewardec wither
(currently at 5 ETH). The cost of the gas used he t
transactions that are mined, and an extra rewafd3% per
t uncle. Uncles are stale blocks with parents thaacestors
of the including block. Valid uncles are rewardedricrease
the security of the network by neutralizing theeeff of
enetwork lag on the dispersion of mining rewardse HoW
algorithm used in Ethereum is called Ethash (a fremtli
version of the Dagger-Hashimoto algorithm) and nexgua

the network. This fee protects the blockchain fromPrute force solution i.e. miners scan and testafoonce to

malicious computational tasks, such as distribdaial-of-

service (DDoS) attacks and infinite loops [9] [12}

message is a virtual object that can only be sgntab
contract to another contract. A message contamgiimtity

of the sender, the identity of the recipient, tmsoant of

ether being transferred, input data, and a starwhse.

Similar to a transaction, a message leads to thpieat

account running its code. Therefore, contracts hawe

relationships with other contracts in exactly tlaens way
an EOA can.

E. ETHERAND GAS

Ether (ETH) is Ethereum's native value token andhis
currency of the network. The sender of a transaatieeds

find a solution that is below a certain difficultgreshold.
The difficulty is adjusted accordingly so that ikés
approximately 15 seconds to find a valid nonce. Etfesh
PoW is a memory hard computational problem, thait is
application-specific integrated circuit (ASIC) r&sint and
allows a more decentralized distribution of segur(as
compared to specialized hardware used by many minin
pools that dominate the mining in Bitcoin). The g@y of
the blockchain relies on this PoW system, whicterently
means that a block cannot be modified without negladhe
work spent on it, including the work spent on bkeck
chained after it. Therefore, an attacker will beépaged by
honest miners as long as majority of the overathgotation
power participating in the Ethereum network aretied

to pay for the code it wants to execute, includingby honest miners. In this case, a block recordedhin

computation and data storage. When a code in aamtris
executed as a result of being triggered by a messag
transaction, every node in the network executes ¢bie.
The cost of this execution is expressed in gas. {Sas
purchased for ether from the miners that executectide
(miners are the nodes in the Ethereum networkrdeive,
propagate, verify, and execute transactions). Gasether
are decoupled because gas is supposed to be darssanf
network utilization, whereas ether, and currencies
general, is volatile. Therefore, even if the priak ether
increases, the gas price in terms of ether of diera
function in a contract remains constant.
computational step that is executed in a contract
transaction requires gas, and each transactiondasla gas
limit and a fee that it is willing to pay per ga%e price of
the gas is decided by the miners, and miners Heevehoice
of including the transaction and collecting the faenot
(similar to the transaction fee in Bitcoin, whereiiners can
decide to get the fee or not). Ethereum clientsraatically
purchase gas for the ether specified by the semder
maximum expenditure for a transaction, and the sxgmas
not used by the transaction execution is returredhe
sender in ether. Therefore, overspending on thésgast an
issue because the user will only be charged forghe
consumed by a transaction. Readers can refer tiL27]to
read more about Gas.

F. MINING AND PROOF-OF-WORK

Transactions are grouped together in blocks, whrehthen
added to the blockchain through the process catigting.

blockchain is almost impossible to modify.

G. Scenarios

At the beginning, a necessary agreement byetitire
federation member defines the rules for acces®teices
and the requirement (attributes) by a user to nldarvice
access, this agreement is called Primary contréithwis
signed by all businesses.

First the attributes indicated in the agreement ifma
contract) are pre-loaded in the smart contractsn tbach
director (Local manager) records the users andr thei

Everyattributes. An access request is in the form of okeh

grequest is created automatically after a comparisginveen
the users attributes to the pre-loaded one. Tokpresents
the permission and the right of access. The tolkmtains
the user's ID and address, date to expire, Tok&nsstand
delegation option fields. Depending on the atteisutthe
Token is created with different values. Differenesarios
are given below.
e Scenario 1: Request a Service Access Token

A user requests a Token to access a service. ThaatSm
contract verifies the identity of the user from Hisand his
address. The smart contract examines the attrilboitgive a
request for access to the specific service fronptedoaded
conditions. If the attributes satisfy the condispa Token is
created and returned to the user, otherwise theestqgs
rejected. After having a Token, each access tedhéces is
checked (verification of the expiration date aratist of the
Token).

The mining process uses a proof-of-work (PoW) syste

wherein miners all around the world use speciaivsoke to

Scenario 2: Revoke an Access or User

solve mathematical problems. Blocks are connectedi a This is used to revoke an access of a user lefcohgpany

linked together to form a blockchain, where a ndack is

or who changed status that does not allow presgithia old

31

permissions. The local manager sends a revocegmuest
containing "ID user" and Token to Smart contracksciv in
turn add the user and their Tokens to the revocdist

* Scenario 3: Request service access
To obtain a service provided in the Federation,aacess
request will be made by the user by presentingr thei
"TOKEN ID" in the smart contract Verification whicim
turn verifies this Token (@user, ID user, expiryedand
status of the Token) and returns access to the ifstre
answer is negative the request is rejected.

e Scenario 4: Service Delegation
If a user gives his Token to another user, whemraice
access request is made the Smart Contracts Véidfica
Service takes the Token and the delegated useessidnd
checks whether it is Token with delegation. Ifsitthe case,
the access to service is given.

H. Design and implementation

According to the scenarios presented above, weogefhe
following design:

e Component Diagram
In our solution for this process, 5 componentspaoposed.
Figure 2 illustrates the component diagram andiogighips
between components:

 Service/Local User Manager: Its function is tod aahd
identify all users of the company (ID, @, Attribsiteand to
manage add-on and revocations.

» Owner Manager: Several people are authorizedhigy t
company to define the attributes for the creatiba @oken
and for the revocation conditions of the Token.

* Smart contracts Add User: This Smart contracpris-

loaded by the data of all Users (ID, Attributesdss
User). This Contract represents the core of thgepro
because it includes the main database which altomwsuser
to obtain access to the services.

» Smart contracts Token: The intelligent contrditives the
creation of Tokens by taking as input the Users This
Smart contract is pre-loaded with attributes (dedinby
Owner service).

» Smart contracts Authentication/Service: it takessinput
Token ID, then it checks if this Token exists ineth
BlockChain and if it is valid. If yes it providebd service
otherwise the request is rejected.

.cumpnnemﬁ.u'vo'm(-r)

P
L1 Smart contracts Add Users

r—) filldata !
mangement data

o U

require data

- —_—
4()—1] Service -Local User Mnagaer

[

receive data

n; |
4 Y}] owner service
Smart Contracts Token W
ID USER (]
Get Policy
o e e I
1)
Token ‘ Policy
0 4 |
§
send info Send o .
check and|sotre Certf
A
/-\ | W
k/] repgnse Blockchain node B
Service Accgs
3

J I

Token ID ‘ Ll @ ‘
tesponse =

Q

Check Token

Figure 2: Component diagram

Sequence diagram

We show in Figure 3, the sequence diagram to présem
the implementation functions and the different gisasf our
process are working. The process consists of 5gphas

1. Loading policies phase to set the attributesriter to
have an access service.

2. The second phase is to create User in ordetdaisers of
companies.

3. The third phase is create Token, which is resibta for
giving users access to benefit from the serviceghim
federation.

4. Access Service phase is the fourth to verify tibleen
before giving the access.

5. Finally the revocations phase in order to revakeser or
expired token.

USER

Service -Local User Mnagaer | | SERVICE-smart contracts

SMART CONTRACTS TOKEN-ADDUSER ’ ‘ OWNER SERVICE ‘

seq Loading Policies J
1 Defining the aftributes to readh a senvice

2: Negative or posifve respaugﬁ;‘

.....................................

T Al |

seq Create Users]

| 4D managment

5: Requesta Token by ID Userf

seq Create Tokens)

: 6 Check D and @address er

; 1 ¢ - Creating a Token automaticalf according to thei afirbutes Stored in advan
8 Retum Token i

e

‘Figure 3: Séquence Diagram (1/2)

32

sef] Access Senvice phase) :
_—

D

»

0: Request acgess fom the Token|

1: Gire an afess fo e senice

E 10: Verfaton Tokenfrom e Uise I (@ UserDate Expiry and Status ‘

seq reocaion phase)

1 12: Revocaton request

.l

! Requremertsto =oke I-I ‘
U?SJErsaIe arevocaion istand add tis s

' 13 Response fase, revcke the foken and acd o revocaion i

| Figure 4:‘Sequence Diagram (2/2)

|_| 14: @ anager ‘

16: Very he Dete Of Expry

V. CONCLUSION

In this paper, we presented a new smart contraseba
authorization management system. It manages peoméss
and rights of access to shared services in a feéderaf

enterprises. We proposed a blockchain-based marmadgem
The

system by adopting the ABAC access model.
blockchain is a machine used to ensure that theutive of
transactions is carried out in strict accordanceth wi
previously established rules. So it's a kind ofitdigtrust.
According to the effectiveness of the platforms, et®ose
Ethereum as a platform for our solution. In the ABA

model, access control checks the presence and wdlue

application attributes defined at the account levelthis
solution, the confidence is obtained by:
* Validation of transactions before being addebltzks

(6]

(71
(8]

(9

(20]

(11]

(12]

(13]

(14]

* A transaction added to the Blockchain cannot be

modified or deleted.

As future work, we will work to raise the level of

security. More precisely, define other types ofetak and
will come out of the general Token for all the seevin a
federation of companies in the specific Token & same

service level and develop this process to becomee mo

efficient.

REFERENCES

Guillaume HARRY, “IAM - Gestion des identités etsdacces :
concepts et états de l'art ,” CC-BY-NC-ND, 204w.crns.fr

Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer EledtonCash
System,” October 2008 www.bitcoin.org/bitcoin.pdf

A. Jgsang, J. Fabre, B. Hay, J. Dalziel, S. Poprist Requirements
in Identity Management. Australasian Information c@#y
Workshop,” 2005 volume 44, pages 99-108, 2005.

F. Cuppens, N. Cuppens-Boulahia. “ Les modélesédergé. Dans
Sécurité des systemes d'information,” (Traité I6&je Réseaux et
télécoms). Hermes, pages 13-48, 2006.

Guillaume HARRY, “Failles de sécurité des applimas Web,”

(1
(2

(3]

(4]

(5]

contenu sous licence Creative Commons CC-BY-NC-ND
CNRS,38pages,20Mww.resu.dsi.cnrs.fr/IMG/pdf/failles_de_securit
e_v1-3.pdf

L. Wang, D. Wijesekera, S. Jajodia. “A logic-badezimework for
attribute based access contréddCM workshop on Formal methods in
security engineering, pages 45-55, 2004.

Ethereum. “Blockchain App Platform,” Accessed: N@8, 2017.
www.ethereum.org/

G. Wood. “Ethereum: A Secure Decentralised Gerszdli
TransactionLedger,” Yellow Paper. Accessed: Nov. , 28
2015www.ethereum.github.io/yellowpaper/paper.pdf

Jason Paul Cruz, “ RBAC-SC: Role-Based Access Gbmising
Smart Contract,” Graduate School of Information eBce and
Technology, Osaka University, Suita 565-0871. Japarch 7, 2018

V. Gatteschi, F. Lamberti, C. Demartini, C. Praatednd V.
Santamaria, "To Blockchain or Not to Blockchain:afHs the
Question,"in IT Professional, vol. 20, no 2, pp®R-Mar./Apr. 2018.

Elli Androulaki, Artem Barger, Vita Bortnikov, Chatian Cachin,
Konstantinos, Christidis Angelo,“Hyperledger Fabric Distributed
Operating System for Permissioned
arXiv:1801.10228v2 [cs.DC] ,IBM, 17 Apr 2018.

Imran Bashir, “Mastering Blockchain Distributed meals

decentralization and smart contracts explainedstFadition book
2017,www.packtpub.com.

Damiano Di Francesco Maesa, Paolo Mori, and LauieciR
"Blockchain Based Access Control”, University os&j Department
of Computer Science, Pisa, ltaly.

Jan Mendling et al., Blockchains for Business Pseddanagement-
Challenges and Opportunities, in ACM Transactiomdtanagement
Information Systems, Volume 9 Issue 1, Februang8201

Blockchains,”

33

