

Trustless Blockchain-based Access Control in
Dynamic Collaboration

Mouhamad Almakhour

Lebanese University, Faculty of
Engineering-CRSI, Univ. Campus,

Hadath, Lebanon
mohammadmakhour@gmail.com

Layth Sliman
EFREI Engineering

School-Paris
Villejuif, France

layth.sliman@efrei.fr

Abed Ellatif Samhat
Lebanese University, Faculty of

Engineering-CRSI, Univ.Campus,
Hadath, Lebanon

 samhat@ul.edu.lb

Walid Gaaloul
Telecom SudParis

Evry, France
walid.gaaloul@mines-telecom.fr

Abstract—AC (Access Control) is the process of ensuring
that an authenticated user accesses only what he or she is
authorized to do with respect to certain models and security
policies. In business collaboration systems, services are
designed to conduct actions requested by a customer, using
service provider’s infrastructure. In such context, the
agreement on a conventional access management system is
difficult because it will depend on different infrastructures and
security policies implemented by each involved party. In this
paper, we investigate the authorization process that manages
permissions and rights of access to shared services in a
federation of enterprises and we propose a solution based on
the Ethereum Blockchain platform and the Attribute Based
Access Control Model (ABAC) to define this authorization
process.

Keywords— Access Control, collaboration, Trust,
BlockChain, ABAC

I. INTRODUCTION

Trust is a major factor in business collaboration.
Managing trust involves complex and costly processes and
brings its own risks to companies’ information systems
because relying on trust often involves the presence of a
“trusted” third party and may compromise the security.
However, the lack of trust may lead to major business
opportunities lose, for instance in “on the fly” collaboration.
In such scenarios companies collaborate by conducting
actions on each other’s’ system in order to achieve the
common objective. One of the most interesting technologies
that may resolve this dilemma is Blockchain. The
Blockchain provides trust without a trusted third party.
Blockchain is a technology that provides a decentralized
“database” on a network that is scalable, secure, tamper-
proof, and accessible by each peer on the network. Thus,
using Blockchain allows coping with both trust and data
integrity issues. However, managing identity and access
control in Blockchain based collaboration brings its own
issues. Conventional methods to manage access control reach
their limitations in such a context taking into consideration
the constraints related to the Blockchain infrastructure on
one side and the heterogeneous access control policies
implemented by each involved party, on the other side.

In this paper, we consider the authorization process that
manages permissions and rights of access to shared services
in a federation of enterprises. To do so, we propose a
solution based on the Ethereum Blockchain platform and the
Attribute Based Access Control Model (ABAC) to define

this authorization process via smart contracts. To validate our
proposal, we implement cross-organizations authorization
process as a smart contract, which is deployed on the Testnet
BlockChain of Ethereum.

The rest of the paper is organized as follows: in section II,
we present the related works, mainly the different identity
management models as well as the existent model of access
management. In section III, we discuss the proposed solution
and the motivation of the adopted models. The
implementation of the proposed solution is presented in
section IV where different scenarios are given also. Section
V concludes this paper.

II. RELATED WORKS

 The concept of virtual team or virtual company was born
in the 1990s to describe the new forms of management and
digital exchanges between teams or between companies. The
virtual organization is defined as "a temporary alliance of
independent, connected, geographically dispersed
organizations, institutions, industries, enterprises, etc.,
including a high level of trust, who collaborate and share
their resources and skills in order to respond to customer
requests "[2]. The difficulty lies in the differences in
infrastructure and security policies implemented by each
partner. Each of them must interconnect with others and
share resources while maintaining the security of their own
organization. All must provide a means of communication
that ensures the integrity and confidentiality of the data.
Similarly, they must have a way to verify the identity of the
people and systems involved in the collaboration. Then
Access management should guarantee to each and all people
involved in the organization's projects, at all times, all the
means necessary to carry out the mission entrusted to them,
with respect to the permissions and security policies of the
different involved organizations. That these means be at
every moment limited to the just necessary. Below, we
briefly describe the different identity management models as
well as the different access management models.

A. Identity Management Models

1) Isolated identity

In this model, each service provider uses its own identity
domain, that is, its own identity provider. A user must use a
different ID and credential to authenticate with each domain.
From the point of view of each identity provider, identity

27

management is simpler. In addition, in case of identity
corruption in an identity domain, the other service providers
are not impacted. This model also allows to define a different
level of security for credentials (length of the password,
number of credentials to be presented, etc. . .) Indeed, the
latter must repeat the steps of authentication and
identification with each of the identity domains attached to
the service providers. Therefore, he must manage and
remember as many identifiers and information useful for
authentication as services he must access. This increases the
risk of forgetting or losing this information, especially for
services that are rarely accessed. In addition, this situation
can be a source of weak adherence to the organization's
security policy, which will be deemed too restrictive.

2) Federated identity

Identity federation is defined as a set of agreements,
standards, and technologies that allow a group of service
providers to recognize credentials from other service
providers that belong to the federation [1][3]. The federation
gives users the illusion of using only one unique identifier
while continuing to present a different one to each service
provider. In federated identity architecture, each service
provider uses its own identity provider, but is able to accept
identities from other providers. Access to a service provider
can then be through an identity of an identity provider other
than his own.

3) Centralized identity

In this model, only an identifier and a credential are used
by the service providers. Three examples of implementation
of this type of identity management [3]:

3.1 Common Identity

 In this model, a single entity acts as the identity provider
for all service providers. The mode of operation is halfway
between the isolated identity model and the federated
identity model. With this type of implementation the single
identity provider is a central and sensitive point for all
service providers. Indeed, in the event of a failure or
modification at the level of the identity domain, all the
dependent entities are impacted.

3.2 Meta identity

The implementation of a meta-identity domain allows
service providers to share information about identities.

3.3 Single Sign-On (SSO)

The Single Sign-On approach is similar to an identity
federation, but no identity match is required because there is
only one identity provider. In this architecture, a user needs
to authenticate only once (single sign-on) with a service
provider. It is then authenticated de facto with other service
providers. The Single Sign-On model can be associated with
the identity federation model, allowing single-domain inter-
domain authentication.

B. Access Management Models

 For access management, the following model can be found
in the literature and used in exciting systems.

1 Identity based access control (IBAC)

 The IBAC model [1] is historically the first type of access
control and still used by operating systems in the personal

computer markets, with Microsoft Windows for example,
and servers with UNIX and Linux systems. This model is
based on a matrix composed of a finite set of entities, target
resources and rules. It leads to the establishment of a
comprehensive list of access rights i.e. Access Control List
(ACL). This implies that any unauthorized access is
prohibited. Thus, the rights are assigned directly to the user
accounts (each right is assigned by name). One of the
implementations of the IBAC model is Discretionary Access
Control (DAC) [4], which is based on the concept of the
owner of the resource. The latter has total control over the
resource he or she has created and for which he or she is
responsible. It determines which entity has permission to
conduct what type of action on its resource. The complexity
of ACLs increases according to the number of identities and
the number of resources since it is necessary to list the
authorizations for each Identity-Resource combination. In
fact, when a new resource is available or when a new user
arrives, the list of authorizations must be updated.

2 Mandatory Access Control (MAC)

In the case where the owner of an information system
should not be responsible for managing the underlying
security, MAC-type models can limit access based on the
sensitivity of the data. For this purpose, the target entities are
hierarchized in different levels of security called labels. Bell
and Level [1] developed a model where a minimum level of
security is required to access the resource. This level defines
the level of privilege of the user. Similarly, a security level is
assigned to the resource. This level determines the level of
classification of the resource. The user then has access to the
resource only if his level of authorization is greater than or
equal to the classification level of the resource. In addition,
for an application, an execution level, called the current
level, is also defined. The current level of an application is
always less than or equal to the privilege level of the user
responsible for running the application. The "no read up"
condition implies that an application can read access to
information only if the current level of the application is
greater than or equal to the classification level of the
resource that manages the data. Similarly, the "no write
down" condition assumes that an application can transmit
information to a resource only if its current level is less than
or equal to the classification level of the target resource. This
access control model is also called Rule Based Access
Control (RuBAC) because access is governed by rules.

3 Role Based Access Control (RBAC)

 Unlike the IBAC model where entitlements are granted
directly to the user, in the RBAC model developed by the
National Institute of Standards and Technology (NIST),
permissions are assigned to roles. The management of
authorizations is then simplified. In addition, NIST proposes
several variants of the RBAC [5], for instance, using the
notion of inheritance between roles. In RBAC, the difficulty
lies in the completeness and the granularity of the roles. In
fact, too broad roles admit too many rights and too small
roles will increase the difficulty of administration.

4 Attribute Based Access Control (ABAC)

The model ABAC, defined in [6], proposes to have the
access rights according to the characteristics of the identities.
Like the IBAC model, the access rights policy can be
materialized by a matrix, but not based on identities. As a
result, access rights to a resource or service are defined for

28

one or more attributes that identities may have. This
paradigm therefore offers more flexibility. In addition, by
defining an attribute closer to the notion of role, ABAC
makes it possible to simulate the behavior of an RBAC
model, but generalizes it by not limiting the access rights to
the only users present in the organization. It allows in
particular to determine access rights with a finer granularity.
In addition, defining a role as a set of attributes makes it
easier to handle conflicts. The management of access rights
is facilitated because it does not require additional
information. However, access security is then based on the
values assigned to the attributes and thus on the quality and
integrity of the information related to the identities.

5 Organization Based Access Control (OrBAC)

With the OrBAC model [4], the organization is perceived
from an abstract perspective as a set of activities that roles
have permission, prohibition or obligation to achieve through
views. Just like in RBAC, it is possible to use the notion of
inheritance for roles. Concretely, authorizations are granted
to subjects for actions on objects through three-dimensional
matrices.

III. PROPOSED SOLUTION

After reviewing the main identity and access
management model, we focus on the requirements of our
authorization process that manages permissions and rights of
access to shared services in a federation of enterprises. The
requirements include:

- Providing trust between different members of the
federation who do not know each other.

- Denying any illegal access from outside the Federation,
unauthorized access or no access agreement.

- Decentralization of authorization process that prevents
the risk of loss of access control that allows services to
be stopped.

Today, one of the most important technologies used in
the security field is the Blockchain. The Blockchain ensures
trust without a trusted third party. Confidence is obtained by:

• Validation of transactions added to blocks

• For a transaction added to BlockChain, you cannot edit
or delete.

Based on such technology, smart contracts are agreements
between parties that are written in executable code on the
Blockchain instead of being written in natural language,. The
execution is then managed automatically by the BlockChain
according to the conditions described in the contract.

 We propose a solution based on the smart management
system contracts. The idea behind this solution is to define an
authorization process that manages permissions and access
rights to shared services in a business federation. This
process satisfies the requirements by providing trust between
different members using Blockchain. It also denies any
illegal access from outside the federation. With Blockchain,
the decentralization of authorization process can be also
done. All steps are done automatically from Smart Contracts,
so no needs for a manager on the process.

Our solution is based on ABAC access management
model explained earlier to define an authorization process

that manages the permissions and rights of access to shared
services in a business federation and the implementation is
based on the Ethereum Blockchain platform.

A. Ethereum Blockchain technologie

Blockchain technology allows a distributed computing
architecture where the transactions are publicly announced
and the participants agree on a single history of these
transactions (or some kind of ledger) [10] [12]. The
transactions are grouped into blocks, given timestamps, and
then published. The hash of each block includes the hash of
the previous block to form a chain, making published blocks
difficult to alter. As Bitcoin began attracting attention,
developers have taken advantage of the features of
BlockChain technology as an infrastructure to create their
own platforms (aside from the main use of Blockchain in
facilitating the transfer of digital currency in Bitcoin). On the
one hand, some platforms use the Bitcoin network as
infrastructure for notarization or proof of existence of digital
files, crowd funding, dispute mediation, and spam control,
among others. On the other hand, some platforms have
emerged and took the form of “alt coins'', which are
alternative Blockchain-based crypto currencies that aim to
improve the capabilities of Bitcoin (or lack thereof) by
implementing their own features and capabilities. The
“improvements'' can come in the form of a different proof-
of-work algorithm (to shorten the verification time of trans-
actions) or different hashing algorithm. There are a lot of alt
coins, but the biggest ones that have attracted a following
and attention is Ethereum [7]. In our work and following the
schema illustrated in figure 1, we use Ethereum as it is a
public or unlicensed block chain. Anyone with a computer
and open source software can participate by listening,
trading, or exploring data, which means that all data
included in a transaction or smart contract is public. We
need a database to store users, attributes, permissions and
logs. Each company shares its service in the federation for
the benefit of users. The transactions can be public or
private according to the agreement between the members of
the federation and the governance should not be controlled
by a member of the federation.

Figure 1: Types of Blockchain [10]

29

Regarding other well-known blockchain technology, we
note that Bitcoin [2] is a crypto currency and uses the
technique of the blockchain as a payment network. In
addition, Bitcoin does not support the necessary smart
contracts required in our process. As for Hyperledger Fabric
[11], it is a private or licensed blockchain protocol designed
for B2B business applications. Most managed blockchain
protocols allow authentication, authorization and
authorization of actions. This makes Hyperledger Fabric
more suitable for companies in various industries (such as
supply chain, healthcare, and banks) that want to use
blockchain technology for internal or collaborative purposes
without operating on public networks. As our need requires
a public blockchain and the type of the Hyperledger fabric is
private blockchain and which is for internal application
without operating on public networks, we decided to use
Ethereum blockchain technology. In the current
implementation of Ethereum, consensus is reached by
mining based on proof of work.

B. ABAC Access Management

 In this part we discuss and compare the access
management models mentioned in related work section.
In the IBAC model, access controls are based on an
exhaustive list of entitlements for each authorized account.
The complexity of ACLs increases according to the number
of identities and the number of resources since it is
necessary to exhaustively list the authorizations for each
combination. The federation contains a large number of
users so this model is not compatible with the federation of
companies.

The RBAC model allows to reduce the list size of the
authorizations. Access controls are performed on the roles
assigned to the accounts. Application roles are granted
based on the business profile. The difficulty lies in the
completeness and the granularity of the roles. In fact, too
broad roles admit too many rights and too small roles will
increase the difficulty of administration. In the federation
each user has a different right or permission so we did not
use this template because of the granularity of the user roles.

In the OrBAC model, permissions or prohibitions are based
on contextual expressions defined according to the
organizational structure of the institution. In our work, the
federation defines the users that they have the right of access
and we cannot define them in advance.

The MAC model relies on flow control. Constraints are
defined on data and resources. The level of entitlement of an
account then determines whether or not he has the right to
access the information. In our process, we do not have
constraints to define because the permission is provided
according to the user.

In the ABAC model, access controls check the presence and
value of application attributes defined at the account level. It
is then possible to simulate the RBAC behavior by mapping
the attributes on the definition of the roles. This model is the
appropriate one for our process because according to the
attributes of each user, access rights are given.

IV. ETHEREUM BASED IMPLEMENTATION

A. ETHEREUM

In 2013, Ethereum was proposed by Vitalik Buterin to create
a BlockChain-based distributed computing platform with the
capability of building and running decentralized applications
or smart contracts [7] [8]. As a BlockChain-based
cryptocurrencies, it offers the same features as Bitcoin of
easy mobile payments, reliability, full control of one's own
money, high availability, fast international payments, zero
or low fees, protected identity, and privacy. Ethereum,
however, offers more than enabling online transfer of digital
money; it enables its users to build and deploy smart
contracts. Ethereum is composed of most of the protocols
that other cryptocurrencies, like Bitcoin, also use. For
example, Ethereum also includes a peer-to peer protocol for
the Blockchain. And the Blockchain is managed and kept
secure by nodes in the network. In addition to these
protocols, the main modification and innovation of
Ethereum is being a programmable Blockchain, i.e., it
allows its users to create, deploy, and run decentralized
applications on the Blockchain.

B. ETHEREUM VIRTUAL MACHINE

At the center of Ethereum is the Ethereum Virtual Machine
(EVM), which can execute codes of arbitrary algorithmic
complexity. Therefore, applications that are created using
known programming languages, such as JavaScript, can be
run on the EVM. To facilitate the execution of codes in the
blockchain and to maintain consensus, the nodes of the
network run the EVM and execute the same instructions.
Computations in the EVM are payed in ether (ETH), which
is the currency used in Ethereum.

C. ETHEREUM ACCOUNTS

Ethereum’s basic unit is the account. Ethereum uses two
types of accounts: Externally Owned Account (EOA) and
Contract Account. An EOA is controlled by a corresponding
private key, has an ether balance, can send transactions
(transfer ether to another account or trigger a contract code),
and does not have an associated code. Similar to a Bitcoin
address, an EOA is in the form of random numbers and
letters, and therefore looks anonymous and can be shared
publicly. A contract account (or simply called contract) has
an ether balance and has an associated code. All actions in
the blockchain are set in motion by the transactions created
by EOAs. This means that the code in a contract is executed
when it receives a transaction from an EOA, where the input
parameters for the code execution are included in the
transaction. Therefore, contracts can be considered as
autonomous agents inside the EVM that execute a specific
piece of code when poked by a transaction. Code execution
in a contract can also be triggered by messages from other
contracts (see the next subsection for detailed explanation
on transactions and messages). In contrast to Bitcoins script,
a contract performs Turing-complete computations and is
typically written using some high-level language, such as
Solidity, Serpent, and Lisp like Language. A contract's
behavior is fully dependent on its code and on the
transactions sent to it and therefore offers the possibility for
creating decentralized and trusted systems.

30

D. TRANSACTIONS AND MESSAGES

An Ethereum transaction is a signed data package that stores
a message from an EOA to another account on the
blockchain. A transaction contains the Ethereum address of
the recipient, a signature that identifies the sender, the
amount of ether being transferred, an optional data field, and
startGas and gasPrice values. The startGas limits the
maximum amount of gas the code execution triggered by the
message can incur. And the gasPrice is the amount in ether
to be paid for one unit of gas consumed (see the next
subsection for detailed explanation on gas). When users
send transactions, they pay a small transaction fee in ether to
the network. This fee protects the blockchain from
malicious computational tasks, such as distributed denial-of-
service (DDoS) attacks and infinite loops [9] [12]. A
message is a virtual object that can only be sent by a
contract to another contract. A message contains the identity
of the sender, the identity of the recipient, the amount of
ether being transferred, input data, and a startGas value.
Similar to a transaction, a message leads to the recipient
account running its code. Therefore, contracts can have
relationships with other contracts in exactly the same way
an EOA can.

E. ETHER AND GAS

Ether (ETH) is Ethereum's native value token and is the
currency of the network. The sender of a transaction needs
to pay for the code it wants to execute, including
computation and data storage. When a code in a contract is
executed as a result of being triggered by a message or
transaction, every node in the network executes this code.
The cost of this execution is expressed in gas. Gas is
purchased for ether from the miners that execute the code
(miners are the nodes in the Ethereum network that receive,
propagate, verify, and execute transactions). Gas and ether
are decoupled because gas is supposed to be constant cost of
network utilization, whereas ether, and currencies in
general, is volatile. Therefore, even if the price of ether
increases, the gas price in terms of ether of executing a
function in a contract remains constant. Every
computational step that is executed in a contract or
transaction requires gas, and each transaction includes a gas
limit and a fee that it is willing to pay per gas. The price of
the gas is decided by the miners, and miners have the choice
of including the transaction and collecting the fee or not
(similar to the transaction fee in Bitcoin, wherein miners can
decide to get the fee or not). Ethereum clients automatically
purchase gas for the ether specified by the sender as
maximum expenditure for a transaction, and the excess gas
not used by the transaction execution is returned to the
sender in ether. Therefore, overspending on the gas is not an
issue because the user will only be charged for the gas
consumed by a transaction. Readers can refer to [7] [12] to
read more about Gas.

F. MINING AND PROOF-OF-WORK

Transactions are grouped together in blocks, which are then
added to the blockchain through the process called mining.
The mining process uses a proof-of-work (PoW) system
wherein miners all around the world use special software to
solve mathematical problems. Blocks are connected and
linked together to form a blockchain, where a new block is

added to the block that came before it. Every block contains
the hash of the previous block, and thus, creating a chain
that connects the first block (genesis block) to the current
block. The miner who solves a block is rewarded with ether
(currently at 5 ETH). The cost of the gas used in the
transactions that are mined, and an extra reward of 1/32 per
uncle. Uncles are stale blocks with parents that are ancestors
of the including block. Valid uncles are rewarded to increase
the security of the network by neutralizing the effect of
network lag on the dispersion of mining rewards. The PoW
algorithm used in Ethereum is called Ethash (a modified
version of the Dagger-Hashimoto algorithm) and requires a
brute force solution i.e. miners scan and test for a nonce to
find a solution that is below a certain difficulty threshold.
The difficulty is adjusted accordingly so that it takes
approximately 15 seconds to find a valid nonce. The Ethash
PoW is a memory hard computational problem, that is, it is
application-specific integrated circuit (ASIC) resistant and
allows a more decentralized distribution of security (as
compared to specialized hardware used by many mining
pools that dominate the mining in Bitcoin). The security of
the blockchain relies on this PoW system, which inherently
means that a block cannot be modified without redoing the
work spent on it, including the work spent on blocks
chained after it. Therefore, an attacker will be outpaced by
honest miners as long as majority of the overall computation
power participating in the Ethereum network are controlled
by honest miners. In this case, a block recorded in the
blockchain is almost impossible to modify.

G. Scenarios

 At the beginning, a necessary agreement by the entire
federation member defines the rules for access to services
and the requirement (attributes) by a user to obtain service
access, this agreement is called Primary contract which is
signed by all businesses.
First the attributes indicated in the agreement (main
contract) are pre-loaded in the smart contracts, then each
director (Local manager) records the users and their
attributes. An access request is in the form of a Token
request is created automatically after a comparison between
the users attributes to the pre-loaded one. Token represents
the permission and the right of access. The token contains
the user's ID and address, date to expire, Token status, and
delegation option fields. Depending on the attributes, the
Token is created with different values. Different scenarios
are given below.

• Scenario 1: Request a Service Access Token
A user requests a Token to access a service. The Smart
contract verifies the identity of the user from his ID and his
address. The smart contract examines the attributes to give a
request for access to the specific service from the pre-loaded
conditions. If the attributes satisfy the conditions, a Token is
created and returned to the user, otherwise the request is
rejected. After having a Token, each access to the services is
checked (verification of the expiration date and status of the
Token).

• Scenario 2: Revoke an Access or User
This is used to revoke an access of a user left the company
or who changed status that does not allow preserving the old

31

permissions. The local manager sends a revocation request
containing "ID user" and Token to Smart contracts which in
turn add the user and their Tokens to the revocation list.

• Scenario 3: Request service access
To obtain a service provided in the Federation, an access
request will be made by the user by presenting their
"TOKEN ID" in the smart contract Verification which in
turn verifies this Token (@user, ID user, expiry date and
status of the Token) and returns access to the user. If the
answer is negative the request is rejected.

• Scenario 4: Service Delegation
If a user gives his Token to another user, when a service
access request is made the Smart Contracts Verification
Service takes the Token and the delegated user address and
checks whether it is Token with delegation. If it is the case,
the access to service is given.

H. Design and implementation

According to the scenarios presented above, we propose the
following design:

• Component Diagram
In our solution for this process, 5 components are proposed.
Figure 2 illustrates the component diagram and relationships
between components:

• Service/Local User Manager: Its function is to add and
identify all users of the company (ID, @, Attributes) and to
manage add-on and revocations.

• Owner Manager: Several people are authorized by the
company to define the attributes for the creation of a Token
and for the revocation conditions of the Token.

• Smart contracts Add User: This Smart contract is pre-
loaded by the data of all Users (ID, Attributes, address
User). This Contract represents the core of the project
because it includes the main database which allows any user
to obtain access to the services.

• Smart contracts Token: The intelligent contract allows the
creation of Tokens by taking as input the Users ID. This
Smart contract is pre-loaded with attributes (defined by
Owner service).

• Smart contracts Authentication/Service: it takes as input
Token ID, then it checks if this Token exists in the
BlockChain and if it is valid. If yes it provides the service
otherwise the request is rejected.

Figure 2: Component diagram

• Sequence diagram
We show in Figure 3, the sequence diagram to present how
the implementation functions and the different phases of our
process are working. The process consists of 5 phase:
1. Loading policies phase to set the attributes in order to
have an access service.
2. The second phase is to create User in order to add users of
companies.
3. The third phase is create Token, which is responsible for
giving users access to benefit from the services in the
federation.
4. Access Service phase is the fourth to verify the token
before giving the access.
5. Finally the revocations phase in order to revoke a user or
expired token.

Figure 3: Sequence Diagram (1/2)

32

Figure 4: Sequence Diagram (2/2)

V. CONCLUSION

In this paper, we presented a new smart contract-based
authorization management system. It manages permissions
and rights of access to shared services in a federation of
enterprises. We proposed a blockchain-based management
system by adopting the ABAC access model. The
blockchain is a machine used to ensure that the execution of
transactions is carried out in strict accordance with
previously established rules. So it's a kind of digital trust.
According to the effectiveness of the platforms, we choose
Ethereum as a platform for our solution. In the ABAC
model, access control checks the presence and value of
application attributes defined at the account level. In this
solution, the confidence is obtained by:

• Validation of transactions before being added to blocks
• A transaction added to the Blockchain cannot be

modified or deleted.
As future work, we will work to raise the level of

security. More precisely, define other types of tokens and
will come out of the general Token for all the service in a
federation of companies in the specific Token at the same
service level and develop this process to become more
efficient.

REFERENCES
[1] Guillaume HARRY, “IAM - Gestion des identités et des accès :

concepts et états de l’art ,” CC-BY-NC-ND, 2017.www.crns.fr

[2] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” October 2008 , www.bitcoin.org/bitcoin.pdf

[3] A. Jøsang, J. Fabre, B. Hay, J. Dalziel, S. Pope. “Trust Requirements
in Identity Management. Australasian Information Security
Workshop,” 2005 volume 44, pages 99-108, 2005.

[4] F. Cuppens, N. Cuppens-Boulahia. “ Les modèles de sécurité. Dans
Sécurité des systèmes d'information,” (Traité IC2, série Réseaux et
télécoms). Hermès, pages 13-48, 2006.

[5] Guillaume HARRY, “Failles de sécurité des applications Web,”
contenu sous licence Creative Commons CC-BY-NC-ND
CNRS,38pages,2012.www.resu.dsi.cnrs.fr/IMG/pdf/failles_de_securit
e_v1-3.pdf

[6] L. Wang, D. Wijesekera, S. Jajodia. “A logic-based framework for
attribute based access control,” ACM workshop on Formal methods in
security engineering, pages 45-55, 2004.

[7] Ethereum. “Blockchain App Platform,” Accessed: Nov. 28, 2017.
www.ethereum.org/

[8] G. Wood. “Ethereum: A Secure Decentralised Generalised
TransactionLedger,” Yellow Paper. Accessed: Nov. 28,
2015.www.ethereum.github.io/yellowpaper/paper.pdf

[9] Jason Paul Cruz, “ RBAC-SC: Role-Based Access Control Using
Smart Contract,” Graduate School of Information Science and
Technology, Osaka University, Suita 565-0871. Japan ,March 7, 2018

[10] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda and V.
Santamaría, "To Blockchain or Not to Blockchain: That Is the
Question,"in IT Professional, vol. 20, no 2, pp.62-74, Mar./Apr. 2018.

[11] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos, Christidis Angelo,“Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains,”
arXiv:1801.10228v2 [cs.DC] ,IBM, 17 Apr 2018.

[12] Imran Bashir, “Mastering Blockchain Distributed ledgers
decentralization and smart contracts explained“ First edition book
2017, www.packtpub.com.

[13] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci,
”Blockchain Based Access Control”, University of Pisa, Department
of Computer Science, Pisa, Italy.

[14] Jan Mendling et al., Blockchains for Business Process Management-
Challenges and Opportunities, in ACM Transactions on Management
Information Systems, Volume 9 Issue 1, February 2018

33

