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Abstract. The spectral method is developed for estimating the parameters 
of the point-spread function (PSF) in the problem of restorating the dis-
torted (smeared, defocused) images. The method is based on the analysis 
of the Fourier spectrum of a distorted image. This method makes it pos-
sible to estimate the PSF parameters: the angle θ and magnitude Δ of 
image smearing, as well as the size r of image defocusing spot. New esti-
mates are obtained for parameters θ and Δ using the Nyquist frequency 
and a estimate for r using the Bessel function. The results of applying this 
method to image processing are presented. This method can be used to 
enhance the accuracy of smeared and defocused image restoration via their 
mathematical processing by stable methods for solving the Fredholm in-
tegral equations of the first kind (ill-posed problem). 

Keywords: Image distortions (smearing, defocusing), Point-spread func-
tion, Distortion parameters, Fourier spectrum, Integral equations, 
MatLab.  

1 Introduction 

Various image recording devices (IRDs), namely, digital photo cameras, video 
cameras, tracking systems, telescopes, microscopes, et al. record images of ob-
jects – people, animals, technical details, car license plates, astronomical objects, 
biological microorganisms, etc. In this case, an image may be smeared (due to 
the device shift or the object movement) or defocused (due to an erroneous 
focus setting), as well as noisy by external or instrumental noise [1–4]. These 
image distortions can be eliminated by a technical way – via photography at a 
stationary IRD or object (in this case, there will be no image smearing), via 
correct setting the focus (there will be no defocusing), and via photography in 
the absence of noise.  
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However, photography conditions are not always favorable. Examples: pho-
tographing a fast-flying aircraft (the photograph may become smeared) [4, p. 
172], fuzzy initial pictures of astronomical objects taken by the Hubble telescope 
[4, p. 105], [5], etc.  

The distorted images can be restored via mathematical and computer pro-
cessing ([2, 4, 6-11], etc.). Such a way is an essential addition to the image 
restoration problem, when technical restoration is problematic.  

2 Mathematical formulation of the image restoration problem 

The problem for eliminating of image smearing or defocusing is usually realized 
by solving two-dimensional Fredholm integral equation (IE) of the first kind of 
convolution type [2, 4, 7, 9–12]:  

 ,  (1) 

where h is the PSF or the kernel of IE, which is usually spatially invariant (a 
difference function); w and g are the intensity distribution over the true and 
distorted images, respectively; δg is the noise.  

The goal of the work is to enhance the accuracy of the solution of IE (1) via 
refining the PSF, or the kernel  of IE (1).  

3 Methods for solving integral equation (1) 

The problem for solving IE (1) is ill-posed (essentially unstable) [4, 7–11]. There-
fore, we will use for its solving stable methods – the Tikhonov regularization [2, 
4, 7–13], as well as the Wiener parametric filtering [2, 4, 9].  

The solution of IE (1) by Tikhonov’s regularization with Fourier transform 
(FT) is , where  is the inverse FT, a > 0 is the 

regularization parameter, and  is the regularized spectrum (two-di-
mensional FT) of the solution:  

 ,  (2) 

where  is the regularization order (usually p = 1, 2 or 3), spectra (FTs) 
, , and F is the direct FT.  
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The solution of IE (1) by Wiener’s parametric filtering is 
, where  is the parameter equal to the 

noise/signal power ratio (NSPR) and the solution spectrum equals  

 .  (3) 

The solution of IE (1) by Tikhonov's regularization (TR) and Wiener’s para-
metric filtering (WPF) is realized in the IPT package of the MatLab system in 
the form of m-functions deconvreg.m and deconvwnr.m, respectively. However, 
even the TR and WPF methods are very sensitive to errors of the distortion 
parameters – the smearing values Δ and θ, as well as ρ of image defocusing, i.e. 
to inaccuracies in knowledge of the PSF, or to errors of the kernel h of IE (1).  

As an illustration, Fig. 1a shows the image of the phantom tomogram devel-
oped by us [4, p. 14] mrt-1-02.bmp 407×380 pixels, smeared at angle θ = 35°, 
smear Δ = 14 pixels.  

 
Fig. 1. Images: a – smeared, b – restored with exact values Δ and θ, c – restored with 

inexact values. 

Fig. 1b shows the image restoration result via solving IE (1) by the TR method 
(TRM) according to (2) with a = 10–4 and the WPF method (WPFM) accord-
ing to (3) with K = 10–4  for exact smear parameters θ = 35° and Δ = 14 pixels. 
Furthermore, the m-functions of the system MatLab fspecial.m, imfilter.m (di-
rect problem), as well as deconvreg.m and deconvwnr.m (inverse problem) are 
used [6]. And Fig. 1c shows a restored image with erroneous values of the smear 
parameters  and  pixels (a = K = 10–3). The values of the pa-
rameters a and K are chosen by the selection way, namely, via displaying im-
ages with various parameters a and K and visual selection of the parameters’ 
values giving the best image restoration wa and wK . Although  and  differ 
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insignificantly from the exact θ and Δ, the restoration is unsatisfactory 
(Fig. 1с). 

Fig. 2a presents a similar example with colored (rgb) defocused image of the 
astronomical object (galaxy) m83.jpg 378×400×3 pixels.  

 
Fig. 2. Images: a – defocused, b – restored with exact value ρ, c – restored with inexact 

value. 

In this example, the PSF is a uniform disk of radius ρ = 10 pixels. Fig. 2b shows 
the image restoration result via solving IE (1) by the TR and WPF methods 
with exact defocusing parameter ρ = 10 pixels (a = K = 10–4). And in Fig. 2c, 
a restored image is given with erroneous value of the parameter  pixels 
(a = K = 2·10–3). Although  differs little from the exact ρ, the restoration is 
unsatisfactory (Fig. 2c). This example is given for the comparison with the 
results of mathematical image restoration obtained by the Hubble telescope [5] 
in the presence of remanence spherical aberration of the telescope mirror which 
is equivalent to defocusing.  

These and other examples [4, 7, 10, 11, 14, 15] indicate that some method is 
necessary to enhance the accuracy of the estimation of image distortion param-
eters, in other words, to enhance the accuracy of knowledge of the point-spread 
function. One of these methods is the spectral method for estimating the PSF 
[4, 10, 11, 14] which determines the PSF parameters by Fourier spectrum of the 
distorted image. In this paper, the spectral method is further developed, in 
particular, its verification is performed on a number of distorted images.  

Note the following existing ways for estimating the image distortion param-
eters: from streaks in the image [4, 9], from the blurring of points on the image 
in the case of defocusing [2, 4, 9], from the Fourier spectrum of the image [1, 
16, 17] and others. We should point out the rapidly developed methods of “blind” 
and “semiblind” deconvolution [2, 6, 18] for estimating the PSF. We should also 
point out [7, 19], in which a stable algorithm was developed for reconstructing 
images under inexactly known response function (or PSF).  

11~ =r
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4 Spectral method 

Denote by  the intensity distribution over the distorted image, where 
the x axis is directed horizontally and y vertically down.  

We carry out a two-dimensional Fourier transform (FT) of distorted image 
 

 ,  (4) 

where  and  are Fourier frequencies directed horizontally and vertically, 

like x and y. We suppose that the FT (4) is calculated through discrete FT 
(DFT) with the help of m-function fft2.m. Moreover, the DFT centering proce-
dure [6, p. 126] is performed with the help of fftshift.m. As a result, we obtain 
the complex DFT (the Fourier spectrum)  which is conveniently ex-
pressed as  or modulus .  

4.1 Estimating the image smear parameters 

Let us consider smeared image of the phantom tomogram. (Fig. 1a). We intro-
duce new axes on the smeared image, namely, we direct axis x' along the smear 
and axis y' perpendicular to the smear. On the spectrogram, we introduce w 
axis along the smear. As a result of image smear along x', the Fourier spectrum 

 shrinks along w axis (the decrease of the wmax occurs). This decrease 

grows with the raise of the smear value Δ. Such effect is connected with sup-
pression of the high Fourier frequencies when image smearing [1, 16, 17].  

Fig. 3 shows three versions of the Fourier spectrum in the form of centered 
discrete FT (DFT) of the image mrt-1-02.bmp. Fig. 3a represented the spectrum 
of the undistorted image, Fig. 3b and Fig. 3c shows the spectrum of the smeared 
image  and  respectively. One can see that the spec-

trum appearance is substantially different. This allows us to determine whether 
the image was smeared initially. Furthermore, comparison of Fig. 3b and Fig. 
3c shows that the spectrum modulus  gives sharper image than 
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Fig. 3. a – DFT of the undistorted image , b – DFT of the smeared im-

age , c – DFT of the smeared image . 

Estimating the image smear magnitude. The smeared image spectrum (Fig. 3c) 
consists of a set of almost parallel lines and a central quasi-ellipse (сf. [1–4, 10, 
11, 14, 16, 17]). Let us draw through the quasi-ellipse the middle line L and the 
axis w perpendicular to it, as well as the horizontal axis  and the vertical 
axis . We also note on the axis w the first (when ) and the last (when 

) zeros of the spectrum . As shown in [11], smear magnitude 
equals 

 .  (5) 

In relation to the considered example, the dimensionless ratio  (in any 
same units: pixels, centimeters, Nyquist frequencies, etc.) is estimated from sev-
eral measurements in Fig. 3c as pixels. Therefore, 
pixels, which is close to the accurate value of  pixels.   

In [10, 14], to determine Δ, the formula:  is used (see Fig. 3c). 
However, formula (5) gives a more accurate result (see also [11]).  

Estimating the smear direction. Using Fig. 3c we determine the angle  be-
tween the horizontal axis  and w axis, as well as the angle   (meas-
ured angles). However, the angles  and , generally speaking, do not coincide 
with the true angles θ and ψ. This is due to the fact that the image in Fig. 1 
and its spectrum in Fig. 3 are, generally speaking, rectangular in size  
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(M rows and N columns). Their ratio is . Only when  and 
therefore  (when the image is a square)  and .  

To determine the true angles θ and ψ we take into account that  equals 
to the slope coefficient of any straight line, and when stretching or compressing 
the image, i.e. when r is changed, the slope coefficient changes r times: 

, and therefore the true angle ψ equals  

   (6) 

and .  
In our example, according to Fig. 3, we determine by several measurements: 

, , , , . 
Using (6), we get:  , and , which is close to the 
exact value of smear angle .  

So, using the spectral method, we determined with good accuracy the smear 
magnitude (an integer):  pixels and smear angle:  
which are close to the exact values.  

Now, using the values Δ and θ found from the spectrum, we can obtain a 
high-quality restoration of the tomogram–phantom image via solving IE (1) by 
Tikhonov's regularization and Wiener’s parametric filtering using m-functions 
deconvreg.m and deconvwnr.m. In this case, the point-spread function (PSF) 
was calculated with the help of m-function fspecial.m [6]. The result of restora-
tion is shown in Fig. 1b.  

4.2 Estimating the image defocusing parameter 

Consider the simplest variant of defocusing, when every point on the object is 
converted in its image into a uniform circle (disk) of radius ρ and density 1/πρ2 
[10, p. 158]. This can occur in the case of a thin lens with a circular aperture 
[4, p. 193]. Consider one such circle. Two-dimensional Fourier transform of a 
uniform circle of radius ρ (its optical transfer function – OTF) is expressed 
through the one-dimensional Hankel transform [20, p. 69], [21, p. 249]:  

 ,  (7) 

where D is the circle area, , and J0(z) is the first-kind Bessel func-

tion of the zeroth order. The last integral in (7) equals [21, p. 668]  
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 ,  (8) 

where J1(ωρ) is the first-kind Bessel function of the first order. Taking into 
account (8), we obtain (cf. [16, p. 24], [17, p. 100]):  

 .  (9) 

Fig. 4 shows the Bessel function J1(ωρ) (cf. [21, p. 669]). We see that J1(ωρ) 
has the following zeroes:  
   (10) 

 
Fig. 4. Bessel function J1(ωρ) of the first kind and first order. 

These zeroes correspond to the black elliptical contours on Fig. 5b, as well as 
higher contrasted ones on Fig. 5c (modulus of its spectrum) (cf. [4, p. 101]).  

From (10), we derive:  

 ,  (11) 

where  are the Nyquist frequencies (but not in pixels) corre-
sponding to the semiaxis of each ellipse. Upon discretization, the maximum 
Nyquist frequency is ωmax = π both along the horizontal and vertical axes in 
Fig. 5c. Then the frequencies , i = 1, 2, 3, 4,… are equal to 
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, where  are dimension-

less ratios.  
We obtain: , , ; , , 

, etc. On the average, , which is close to the exact value 
of  pixels.  

 
Fig. 5. a – DFT  of the undistorted image m83.jpg, b – DFT of the defo-

cused image , c – DFT of the defocused image . 

Only now, using the value  found from the spectrum and rounded to 
, we got the opportunity to restore with increased accuracy the image of 

the galaxy M33 via solving IE (1) by the TR (and WPF) method according to 
(2) with  using m-functions deconvreg.m and  deconvwnr.m. The 
restoration result is shown in Fig. 2c. We see a clear image restoration and it is 
due to the fact that the spectral method makes it possible to determine the 
defocusing parameter ρ almost exactly.  

We note that in papers [4, 10, 11] the defocusing variant is also considered 
in the case when the PSF is a Gaussian, and the estimates of the parameter s 
of the Gaussian are used.  

5 Conclusion 

This work confirms the effectiveness of the spectral method for determining the 
image distortion type (smear or defocusing) and determining the distortion pa-
rameters. The proposed spectral method can be applied to enhance the resolu-
tion of image recording devices (digital video cameras, telescopes, microscopes, 
tomographs, etc.). 

This work was supported  by the grant MFKTU ITMO (Project No. 619296). 
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