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Abstract. In the work, the following two variants of the direct and inverse 
problems about image smearing along a rectilinear trajectory are com-
pared: 1) Uniform smearing, the same at all points of the image (smear Δ 
= const). This variant is described by a set of one-dimensional Fredholm 
integral equations (IEs) of the first kind of convolution type with direction 
of x axis along the smear trajectory and y is perpendicular to a smear, as 
well as by one two-dimensional IE of convolution type, moreover the axis 
x is directed horizontally and y vertically down. IEs are solved by 
Tikhonov regularization (TR) method (since the problem for solving them 
is ill-posed) and Fourier transform (FT). 2) Non-uniform image smearing 
of several moving objects (smear Δ = Δ (x)). This variant is described by 
IE of general type and solved by TR method and quadrature method (in 
case of set of one-dimensional IEs) or cubature method (in case of one 
two-dimensional IE).  It is shown that in case of non-uniform smear, use 
of a set of one-dimensional IEs is preferable to a two-dimensional IE. The 
results of numerical experiments are obtained. 

Keywords: Smeared image, Rectilinear smear, Uniform and non-uniform 
smeares, Integral equations, Tikhonov regularization method, MatLab.   

1 Introduction 

Consider one of the actual problems of distorted image processing – the elimi-
nation of image smearing via mathematical processing ([1–6], et al.). Smearing 
may be due to a shift of the image recording device – IRD (digital photo camera, 
videocamera, tracking device) or the motion of the object itself (one person or 
several people, cars, aircraftes) during the exposure. The problem of mathemat-
ical elimination of smear consists of two problems: a direct problem (smear 
modeling) and an inverse problem (smear elimination).   

To date, in a number of publications, the variant of rectilinear uniform image 
smearing is considered in detail [1, 4–8 ], but the rectilinear non-uniform 
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smearing is not considered in detail [1] and the arbitrary (non-uniform non-
rectilinear) smearing is considered altogether briefly (the “blind” deconvolution 
method [6, p. 192]).   

The purpose of this work is a comparative consideration of two variants for 
straight-line image smearing – uniform and non-uniform one. Example: a 
smeared image of runners on a track, running at the same, as well as at different 
speeds obtained by a fixed IRD. Note that in [1], the case was considered when 
an IRD during the exposure moved rectilinear with some (known) speed . 
In this paper, we consider the case when the smear  of the objects them-
selves is known.   

First, we recall the well-known case of uniform rectilinear smear [4, 5, 7–9].  

2 The mathematical description of uniform rectilinear 
image smearing  

Consider the direct and inverse problems.   

2.1 The direct problem  

The direct problem of uniform and rectilinear smear is described by an integral 
[4, 9]:  

 ,  (1) 

where  is smear value; the x and ξ axes are directed along a smear, 
and the y axis is perpendicular to a smear (y plays the role of a parameter);  
is the given non-smeared image, and  is the calculated smeared image in 

each y-line. To calculate g according to (1), we developed m-function smear-
ing.m [9], as well as smear.m, a simplified version of smearing.m when the smear 
angle , while in MatLab there are m-functions fspecial.m and imfilter. m 
[6] for modeling g.  

2.2 The inverse problem  

The inverse (more important and complex) problem can be solved in two ap-
proaches.  
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In the first approach, a set of one-dimensional Fredholm integral equations 
(IEs) of the first kind of convolution type (for each value of y) is solved to 
eliminate the smearing [4, 7–9]:  

 ,  (2) 

where 

   (3) 

IE (2) is obtained from relatio (1). Here, h is mathematically the kernel of IE, 
and physically and technically it is the point spread function (PSF) [2, 5, 9, 10]. 
The PSF is what each point of the object turns into on the image when smearing  
(in a stroke). In the smearing problem, the function h is usually differential or 
spatially invariant, which means that the smear is uniform and the smear value 
Δ is the same at all points of the image.  

The problem of solving IE (2) is ill-posed [11, 12]. Therefore, we use the 
stable Tikhonov regularization method (TRM) with Fourier transform (FT) [5, 
9, 11]: 

 ,  (4) 

where 

   (5) 

is the regularized spectrum, or FT of the solution;  and 
 are the Fourier spectra of functions  and , where 

F is a FT symbol;  is the regularization parameter;  is the regulari-
zation order (usually  or 2). To select the parameter a, a number of meth-
ods have been developed: the discrepancy principle, the method of teaching 
example-images, etc. [9, p. 236], [11]. The calculation of a restored image by the 
formulas (4)–(5) is carried out according to the developed m-function desmear-
ingf.m [9, p. 137, 330].  

In the second approach, a two-dimensional Fredholm IE of the first kind of 
convolution type (cf. (2)) is used to eliminate the smearing (and the defocusing) 
[3, 4–9]: 
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 ,  (6) 

where x and ξ axes are horizontal, and y and η are vertically down. In this case, 
the PSF h will be displayed on the plane as a narrow strip (Fig. 1) [9, p. 
112]: 

  
Fig. 1. The point spread function (PSF)  in the form of a narrow strip of length 

Δ at angle θ. 

 
In this approach, the calculation of the direct problem is based on the m-func-
tions fspecial.m and imfilter.m [6]. And the solution of two-dimensional IE (6) 
(inverse problem) by the TR method and two-dimensional FT is equal to 

, where  is the inverse Fourier transform (IFT) 

or 

 .  (7) 

In (7),  is regularized spectrum (two-dimensional FT) of the solu-
tion, equal to (cf.  (5)) 

 ,  (8) 

where , . MatLab has the m-func-

ti-on deconvreg.m [6] for solving the IE (6) by the TR and FT methods accord-
ing to (7)–(8). We give the well-known formulas (1)–(8) in order to compare 
different approaches.  
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3 The mathematical description of non-uniform rectilinear 
image smearing 

Based on relations (1)–(8), we consider the non-uniform rectilinear image smear-
ing along the smear trajectory. Suppose that from a smeared picture, we deter-
mined in some way the dependence  of the smear Δ on coordinate x, 
directed along the smear.  

3.1 The direct problem  

In this case, the PSF h will not be difference, or spatially invariant and the 
direct problem will be written as (cf. (1)):  

 .  (9) 

To calculate g according to (9), we developed the m-function smear_n.m.  

3.2 The inverse problem  

The inverse problem in case of the first approach is written as a set of one-
dimensional Fredholm integral equations of the first kind of general type (for 
each value of y) [9, p. 125]:   

 ,  (10) 

where A is an integral operator;  and  are limits for ξ and x. PSF h 
will be written as:  

   (11) 

To solve IE (10), the FT cannot be applied, but the quadrature method is well 
suited and leads IE (10) to a system of linear algebraic equations (SLAE) [9, p. 
126]:  

 ,  (12) 
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where A is the matrix associated with h (the same to all y-rows),  is the 
desired vector,  is the right-hand side of the SLAE. A stable solution of the 

SLAE (12) is given by the Tikhonov regularization method [9, p. 126] 

 ,  (13) 

where  is the regularization parameter, I is the unit matrix, is the 
transposed matrix, and  is the regularized solution in y-row equal to 

 .  (14) 

For computer implementation of formulas (10)–(14), the m-function 
desmearq_n.m was developed.  

Note that the quadrature method with Tikhonov's regularization (14) can 
also be used to solve a IE of convolution type (2) with PSF (3). The m-function 
desmearingq.m has been developed for this.  

The inverse problem in case of the second approach can be written in the 
form of a two-dimensional Fredholm integral equation of the first kind of general 
type (cf. (6)): 

 .  (15) 

Equation (15) can be solved by a quadrature method (more precisely, cubature) 
(cf. [13, p. 167]). According to this method, each of the integrals in (15) is 
replaced by a finite sum on discrete node grids with respect to x, ξ, y, η and we 
obtain a SLAE with a four-dimensional matrix A and a two-dimensional right-
hand side g. To solve such a SLAE, one needs to transform the four-dimensional 
matrix A into a two-dimensional one, two-dimensional right-hand side g to 
transform into a one-dimensional one, and the resulting one-dimensional solu-
tion w to transform into a two-dimensional one. Although the (successful) at-
tempt to solve a two-dimensional IE by the cubature method took place [13, p. 
167–169], nevertheless, this is a cumbersome method and its use for restoration 
of non-uniform smeared image is problematic.  

It is also possible to apply for solving IE (15) an iteration method, for exam-
ple, the Friedman iterative regularization method [13, p. 272], [14], which is 
simpler than the cubature method, but it requires a good choice of the initial 
approximation, knowledge of the parameter of the method ν, the number of 
iterations, etc.  
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As a result, it should be recognized that the most effective method is (10)–
(14), based on line-by-line image processing, according to which one-dimensional 
IE (10) and SLAE (12) need to be solved with a two-dimensional matrix.  

4 Illustrative example 

The following numerical example was solved. The original image of seven run-
ners on the track is shown in Fig. 2.  

 
Fig. 2. Runners, file runners.jpg 123×400 px (i is counting number). 

4.1 The direct problem 

Fig. 3a shows the result of the direct problem – uniform horizontal smearing 
according to (1) via m-function smear.m. The magnitude of smear Δ = 20 px.  

We can see that image smearing is significant. The smearing is performed 
with diffusing the image edges ('diffusion' option) to reduce the Gibbs effect – 
the effect of false waves [9]. 

4.2 The inverse problem of uniform image smearing 

Fig. 3b shows the result of solving the inverse problem –  the line-by-line resto-
ration of the image by the quadrature method with Tikhonov's regularization 
according to (14) using the developed m-function desmearq.m. Regularization 
parameter  (chosen by selection). We see that despite the considerable 
smearing (Fig. 3a), the image is well restored, and without the Gibbs effect due 
to diffusing the image edges (in Fig. 3a).  

610-=a
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Fig. 3. The direct and inverse problems of uniform image smearing. a – smeared image 

of runners 123×420; b – restored image 123×400. 

4.3 The inverse problem of non-uniform image smearing 

The next step is non-uniform image smearing. We suppose that the runners 
run at different speeds v, which means that they have different smears 
during the exposure time T. On the basis of Figure 2, we determine the bound-
aries between the runners and the values of the smears Δ runners (see Table). 
As a result, a smear  or  is represented as a piecewise constant func-
tion. Each runner has its own smear value within his range.  

Table 

Num-
ber of 
runner 

1 2 3 4 5 6 7 

Range 
of val-
ues i 

       

Value 
of Δ, 
px 

5 8 11 14 17 20 23 

 
Fig. 4a shows an image smeared piecewise non-uniformly, namely, the smearing 
increases from the left runner, for which smear is 5 px, to the right runner, for 
which smear is 23 px, i.e. smearing is substantially non-uniform. This smearing 

T×=D v
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is performed according to (9) using the m-function smear_n.m (with diffusing 
the edges).  

 Fig. 4b shows the result of image restoration (the inverse problem) by the 
quadrature method with Tikhonov's regularization according to (10)–(14) using 
the m-function desmearq_n.m. Regularization parameter  (chosen 
by selection). Fig. 4b shows that the images of the runners is restored, but with 
an uneven background. 

4.4 The alignment of image background 

The background alignment in Fig. 4b has been done: the intensity values in Fig. 
4b more than 100 are replaced by 170 (this is the background value). Fig. 4c 
shows the final result of image restoration after background alignment. We see 
that the images of the runners are restored quite satisfactorily (cf. Fig. 3b). 

 
Fig. 4. The direct and inverse problems of non-uniformly image smearing. a – smeared 

image of runners 123×405; b – restored image 123×379; c – restored image with 
aligned background 123×379. 

3105 -×=a
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5 Conclusion and future plans 

The described technique can be used in practice for restoring group images of 
several objects (people, airplanes, cars) moving at different speeds and therefore 
received different smears Δ on the image during the exposure by a fixed IRD. 
In subsequent publications, the question about a method for determining non-
uniform smear Δ (x), as well as general case of smear Δ = Δ (x, y)  will be 
considered. Example: a smeared image of a stream of cars on a wide highway 
moving at different speeds. A comparison will also be made with the technique 
described in [1], which considers the non-uniform shift of a IRD. Finally, a 
variant of the regularization method with the variable regularization parameter 
a = a(x) will be considered. This variant should take into account the different 
degrees of image distortion in Fig. 4a.  

This work was supported  by the grant MFKTU ITMO (Project No. 619296). 
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