
The model of network map and data placement
in the distributed decentralized storage platform

Anatoly Bogatyrev, Sergei Liubich, Fabian Wahle, Stanislav Bogatyrev, and
Alexey Vanin

JSC ”NEO Saint Petersburg Competence Center”, St. Petersburg, Russia
{info,anatoly,sergei,fabian,stanislav,alexey}@nspcc.ru

https://nspcc.ru

Abstract. Nowadays, building an efficient, reliable and scalable decen-
tralized data storage architecture is an actual problem in both corpo-
rate and academic communities since decentralization requires new ap-
proaches that adapt existing models of distributed systems. The aim of
this research is to form a model for the decentralized storage system to
distribute data over available storage nodes, efficiently reorganize data
when nodes are added or removed and enforce flexible constraints on
object replica placement that maximize data safety in the presence of
coincident or correlated failures.
The model of distributed decentralized object storage integrated with
blockchain payment system is proposed in this paper. A novel approach
based on representing a network map as a graph and creating extended
filtering mechanism for deterministic subgraph definition for object place-
ment is introduced. The concept of a container, defining a network map
subgraph, and a placement function for obtaining a container subgraph
(based on the network map graph) or an object placement subgraph
(based on the container subgraph) are presented. A modification of the
CRUSH method is proposed for data placement.

Keywords: Network map · Placement function · Placement rule · Stor-
age policy · Distributed decentralized storage platform.

1 Introduction

The development of blockchain technology has recently moved not so much to-
wards global public permissionless blockchains as toward the implementation of
corporate- and state use to solve specific internal tasks. It is logical to expect
the development of Dapp projects in this direction. At the same time, DApps
are supposed to store data in the decentralized storage systems to preserve their
advantages over classic applications.

Currently, most projects [1, 2] in this field are aimed at implementing sim-
ple exclusive storages of data of some users on the capacities of other users or
at creating add-ons via IPFS [3] for implementing public content distribution
based on traditional hosting and CDN. In this case, the niche of storages that

2 A.Bogatyrev, S.Liubich, F.Wahle, S.Bogatyrev, A.Vanin

have a convenient API for DApp and the ability to organize isolated areas with
control over data exchange in both public- and other private data storage areas
is practically empty.

Building an efficient, reliable and scalable decentralized data storage architec-
ture is an actual problem in both corporate and academic communities since de-
centralization requires new approaches that adapt existing models of distributed
systems.

The aim of this research is to propose a model for the decentralized fault-
tolerant [4] object storage system to distribute data over available storage nodes
(a modification of the CRUSH [5] method is proposed for data placement), ef-
ficiently reorganize data when nodes are added or removed and enforce flexible
constraints on object replica placement that maximize data safety in the pres-
ence of coincident or correlated failures.

The proposed model contains the following components: network structure,
network map, data placement method and the concept of a container. These
components are discussed in this paper.

2 The Model

2.1 Network Structure

The Distributed Decentralized Storage Platform (DDSP) p2p network is com-
prised of two types of nodes: Inner Ring nodes are responsible for maintaining
information about network topology, accounting and data audit; Outer Ring
nodes are responsible for storing data and ensuring its integrity and availability.
Information about all active Outer Ring storage nodes and their properties forms
a Network Map. Inner Ring is responsible for keeping Network Map up to date
and distributes changes over all network peers. At the same time, Inner Ring
nodes have to maintain all operations in the conditions of total distrust [7] of all
network nodes. To solve this, it is proposed to use dBFT consensus protocol [8,
9].

2.2 Network Map

DDSP keeps the network map up to date and distributes it over nodes. It con-
tains information about groups of nodes, their location in the network and main
parameters necessary for correct data search and placement. The network map
is represented as a graph [6] in the proposed method. The graph consists of ver-
tices: buckets and nodes. A bucket is a vertex of the graph [5]. Together with
outbound edges, it forms a subgraph of the network map, leaves of which are
represented by nodes. Nodes can only be leaves, the bucket can be a parent
for other buckets or nodes. The bucket is characterized by type and value (a
key-value pair).

The model of network map and data placement in the DDSP 3

2.3 Placement Function and Placement Rule

Instead of maintaining and querying database with information about each ob-
ject’s location, the proposed DDSP uses consistent placement function with the
following arguments:

– storage Policy defined with Placement Rules,

– network map (or the network map subgraph),

– rendezvous hashing salt.

The one can define a storage policy that is applied to the stored object. The
placement rules consist of a set of SELECT() or FILTER() operations applied
to the network map. The result of these operations is a subgraph of the network
map where data can be placed. The SELECT() operation is applied to a tree-like
subset of Network Map. It takes as inputs a replication factor and a bucket type.
Multiple operations in the storage policy are enqueued and each subsequent op-
eration is recursively applied to the previous operation’s output. The FILTER()
operation is applied to the graph. The operation inputs are the bucket type,
bucket value and comparison operation. For text values, the operations eq and
ne are available. For numeric values, gt, ge, lt, le are additionally available.

A set of operations on the graph (in the placement rule) can be grouped by
using AND, OR, NOT. The placement function is performed recursively, with
the operation of the next step being performed for all the nodes retrieved at
the previous step. Buckets and placement nodes in the bucket are selected using
Rendezvous hashing algorithm. With it, each node or bucket has an individual
hash number for an individual item, and a bucket or node having the largest hash
number are chosen. Data in this algorithm is distributed uniformly and small
number of data movement is required when nodes are added or removed [5].
However, it can achieve minimum data movement when nodes are added or
removed.

The placement function is executed recursively with the operation of the next
step being applied for all the nodes retrieved at the previous step.

root

Loc: RULoc: EULoc: US Storage: SSD

City: Milan

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10

Fig. 1. Network map example.

4 A.Bogatyrev, S.Liubich, F.Wahle, S.Bogatyrev, A.Vanin

This network map (or network map subgarph) (see Fig. 1) consists of the
bucket with types Loc (country), City (city), Storage (storage disk type) and
the nodes of the corresponding buckets. The storage policy may be defined as
follows:

– it is stored in 2 different countries,
– it has 3 copies per each country,
– it should be stored on SSD drives only.

This informal description should be represented as sets of SELECT(r, type)
and FILTER(type:value, op) operations. The total replication factor is obtained
by multiplying all the factors of each SELECT(r, type) replication. The final
statement must always be SELECT(X, Node) (see Table 1).

Table 1. The placement rule application to the network map graph.

Placement rule Bucket result Placement group result

SELECT(2, Loc) [Eu] ∪ [Ru]

[[Node 3, Node 4,
Node 5, Node 6],
[Node 7, Node 8,
Node 9, Node 10]]

FILTER
(Storage:SSD, equal)

([Eu] ∩ [Storage:SSD]) ∪
([Ru] ∩ [Storage:SSD])

[[Node 4, Node 5,
Node 6],
[Node 7, Node 8,
Node 9, Node 10]]

SELECT(3, Node)

([N1, N2, N3] ∈
([EU] ∩ [Storage:SSD])) ∪
([N4, N5, N6] ∈
([Ru] ∩ [Storage:SSD]))

[[Node 4, Node 5, Node 6],
[Node 8, Node 9, Node 10]]

Thus, the subgraph of the network map and the 6 nodes have been obtained
(see Fig. 2), where the object should be placed on to meet the placement policy
requirements. The result of the placement function operation is a subgraph of
the network map – the Placement group – leaves of which are a deterministic
and consistent list of the storage nodes. If the storage policy, salt and network
map are known the Placement group can be retrieved without referring to a
third party or storing “object-storage node” pairs.

2.4 Container

In order to place objects in the system a user needs to define a container. The
container has the following fields: storage policy (placement rule and redundancy
factor), uuid, owner and maximum capacity. The container defines the subgraph
of the network map. The approach, where a complete network map, which oper-
ates with all the connected nodes, plays the role of an initial graph, can impose
additional costs as the network increases. The allocation of limited space within
the network map (subgraph), defined by the container, allows to do the following:

The model of network map and data placement in the DDSP 5

root

Loc: RULoc: EU Storage: SSD

City: Milan

Node 4 Node 5 Node 6 Node 8 Node 9 Node 10

Fig. 2. The obtained subgraph of the network.

– isolate a subset of nodes. Handling of the subset is faster and more predic-
tive. After the container has been provided with a graph, container traversal
operations are faster,

– protect against overfilling – the overall container‘s capacity and its free ca-
pacity can be roughly estimated.

– Control access to the container,
– simplify payment operations by linking them to the container,
– facilitate the integration of s3 and swift API for DDSP.

To form the container‘s subgraph, the replication factor in each SELECT (r,
type) call is increased by the redundancy factor (Kr). The container uuid is used
as salt for selection in the placement function.

For ease of presentation, consider the example, where Kr = 2 see Table 2.

Table 2. Container.

Source Placement rule Placement function result Salt

Network Map
SELECT(2 ·Kr, Loc) [US , EU, RU, Ja]

Container salt

SELECT(2 ·Kr, node)

[[N1, N2, N3, N4],
[N5, N6, N7, N8],
[N9, N10, N11, N12],
[N13, N14, N15, N16]]

As a result, a number of nodes is obtained that can be represented as a
subgraph of the network map. When forming the container, it is possible to
approximately estimate its capacity. To do so, the weights of the nodes might
be used, depending on their capacity. The weight of the selected nodes has to

6 A.Bogatyrev, S.Liubich, F.Wahle, S.Bogatyrev, A.Vanin

Table 3. Placement group.

Source Placement rule Placement function result Salt

Container
SELECT(2, Loc) [US, Ja] Hash of the object

being placedSELECT(2, node) [[N2, N4], [N15, N16]]

correspond to the container capacity declared. The object is placed into the
container by using the placement function, where the hash of the object being
placed is used as salt (see Table 3).

Network map

Container

Loc: Ca

root

Loc: US Loc: EU

Loc: RU Loc: Ja

Fig. 3. An example of the placement function’s result.

The highlighted buckets are the Placement group subgraph for the object. (see
Fig. 3).

3 Results

The paper proposes a novel approach to scalable data placement in decentralized
distributed storage systems. Using a subset of network map, storage policy rules
for object placement, and a Rendezvous hashing for a node selection allow to
control an object location and a minimal data movement in case of storage nodes
failures. Metrics comparison with the existing models are the subjects of further
research.

References

1. FileCoin Homepage, https://filecoin.io/. Last accessed 30 Jan 2019

The model of network map and data placement in the DDSP 7

2. NKN Homepage, https://www.nkn.org/. Last accessed 30 Jan 2019
3. ”IPFS - content addressed, versioned, p2p file system”,

https://github.com/ipfs/ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-file-
system.pdf. Last accessed 30 Jan 2019

4. Bogatyrev, V.A.: Exchange of Duplicated Computing Complexes in Fault tolerant
Systems. In: Automatic Control and Computer Sciences, vol. 45, no. 5, pp. 268-276
(2011)

5. Weil, S.A., Brandt, S.A., Miller, E.L., Maltzahn, C.: CRUSH: Controlled, Scalable,
Decentralized Placement of Replicated Data. In: ACM IEEE SC 2006 Conference
(SC’06), (2006)

6. Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., Maltzahn, C.: Ceph: A scal-
able, highperformance distributed file system. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI), (2006)

7. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable
Secure File Sharing on Untrusted Storage. In Proceedings of the 2Nd USENIX
Conference on File and Storage Technologies, FAST ’03, pages 29–42, Berkeley,
CA, USA, 2003. USENIX Association, (2003)

8. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The Honey Badger of BFT
Protocols. In Conference: the 2016 ACM SIGSAC Conference, (2016)

9. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In
Proc. USENIX Annual Technical Conference, pp. 305–320, (2014)

