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Abstract. Effective data propagation between nodes is crucial factor in
distributed systems. Reactive notifications allow responding quickly to
various system events: failures, topology changes, etc. The general ap-
proach is to use the gossip protocol. Data is distributed as a rumor; each
node retransmits input messages to another nodes. In this paper, we con-
sider a particular case of the gossip protocol usage. Distributed system
informs included nodes about the participation in collective challenge,
thereby forming a sub-network topology. We evaluate efficiency with the
simulation model of topology propagation process.

Keywords: gossip protocol, distributed system, computer network

1 Introduction

The distributed system efficiency can be evaluated by the speed of reaction to
internal or external events [3,4,5]. The system takes time to make a decision and
propagate instructions among nodes. Rapid data distribution preserves integrity,
which is one of the systems properties [1].

Gossip protocol is used to distribute alerts over the network in distributed
systems [6]. There are different approaches for gossip protocol implementation.
First approach is the push-gossip protocol [6,7]. Nodes transfer data for some
amount of time. ime can be chosen sufficiently high, so all participants with high
likelihood will receive the data. This is called rumor-mongering protocol. Also
nodes can send data on demand until it is made obsolete by newer information.
This is called anti-entropy protocol. It is useful for sharing information reliably
among a group of participants [2].

Second approach is the pull-gossip protocol [6,7]. Data is periodically re-
quested on demand by nodes. This approach allows to decrease number of trans-
mitted messages in the network. Pull-gossip protocol is synchronous, while push-
gossip protocol can work asynchronously. Also, there is combined approach,
where the system starts propagation as push-gossip and then uses pull-gossip
for decreasing the load on network [6,9]. Average consensus [10] and averaging
gossip algorithms [11] also form an special case of usage.
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All this implementations transmit notifications and the data within the frame
of established network topology [8]. Consider distributed system within transient
state. Nodes often connect and disconnect from the system. System chooses set
of nodes and propagate instructions among them, so they can know each other
to do the set of system tasks together. There is a connection on physical layer
between nodes, but gossip protocol defines logic topology of the system. Such case
implies the use of push protocols. Nodes are waiting for input gossip messages
with instructions to execute. However, due to the decentralized nature of the
system and the lack of prior synchronization, there is an issue of determining
gossip transmission parameters. In this paper we will examine the simulation
model of push-gossip propagation process as a method to determine optimal
transmission parameters.

2 Simulation model

Gossip propagation process can be defined by several parameters: number of
participants in the process, fan-out (number of random data recipients), recip-
ients choosing algorithm, etc. Propagation time and nodes notification rate are
characteristics of the process.

The simulation model is built with the usage of general-purpose programming
language (source code available at github.com/nspcc-dev/gossip-model). As an
input model takes number of nodes S, fan-out size f and number of experiments.
The simulation stages are schematically presented in Figure 1.

Data

(a) First iteration

Data Data Data

(b) Second iteration

Fig. 1. Model process representation
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For every node the model generates structures and sets data flag in the first
one. Simulation process consistently repeats three stages:

– planning,
– propagation,
– evaluation.

At the planning stage the model chooses data sender nodes. In this paper we
examine model, which chooses nodes with data flag that has not sent any data
yet. In this case, every node in the system will retransmit data only once. This
simplifies real implementation of algorithm and reduces number of transmitted
messages.

At the propagation stage, data sender nodes independently choose recipients.
The number of recipients is defined by fan-out parameter f . This operation is
based on a pseudo-random number generator with a uniform distribution. Model
sets data flag on every recipient.

At the evaluation stage, the model collects statistics and checks stop condi-
tion. Stop condition is met if all nodes have data flag. In this paper it is called
saturation. If stop condition is not met, stages are repeated again. In this paper
it is called iteration. Figure 1a represents first iteration and Figure 1b represents
second iteration. Number of iterations considered as a data propagation time.

The model outputs table with numbers of iterations and number of experi-
ments that has been finished with exact propagation time. With precision based
on number of experiments, we can determine saturation probability for constant
S, f and propagation time limit as a number of iterations.

The model has a number of simplifications. Iteration is a synchronous process,
but in the real system data propagates asynchronously. However, it affects the
speed of propagation and does not affect the order. There is no parameter for
data loss probability in data channels and the model considers only the mesh
topology in the system.

3 Simulation results

3.1 General interpretation

As described in section 2, the model allows to determine saturation probability
for constant S, f and the number of iteration limit. Consider iteration limit as 3
iterations and vary fan-out parameter f for different network sizes. Results are
presented in Figure 2.

Saturation probability has the same curve for different S. With a low fan-out
parameter f , the model has never met the iteration limit, thus the possibility of
saturation has the value of 0. Then there is the area, where saturation probability
grows up to the value of 1. After that, there is no point in increasing the fan-out
parameter.

Data propagates faster if there is no collisions between random sets of recipi-
ents. Consider fastest propagation time for fixed fan-out size f and iteration limit
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Fig. 2. Estimation of saturation probability with different fan-out

h. First node sends f unique messages, then f nodes sends f2 unique messages.
After h iteration, the number of all sent messages must be equal S:

S =

h∑
i=0

f i (1)

Parameter f defined in (1) actually is the minimal fan-out size, where saturation
is still possible, even with low likelihood.

Consider the worst scenario when all data of the sender nodes choose the
same recipients. In this case, saturation is possible if fan-out has a size of:

f = S − 1 (2)

Parameter f defined in (2) actually is the maximum fan-out size, where satura-
tion is possible. But probability for all pseudo-random number generators to be
synchronized is extremely low.

3.2 Optimal fan-out calculation

Saturation probability function with any parameters can be represented as in
Figure 3. Set of fan-out sizes lay between fmin and fmax. In real distributed
system, it is reasonable to define saturation probability with expected reliability
parameters. In this case, we can determine optimal fan-out for that saturation
probability bound. In Figure 3 it is the intersection between probability satura-
tion function and boundary v.

The model allows to find relation between number of nodes S and optimal
fan-out fopt, so distributed system may increase the scale effectiveness. We have
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Fig. 3. Saturation probability function and optimal fan-out

modeled distributed system with iteration limit h = 3, saturation probability at
least 0.99999 and found out optimal fan-out for different S. The obtained set of
values can be expressed as a function with the logarithmic regression:

fopt(S) =

{
5.5 lnS − 4.8, if S < 30,

1.4 lnS + 9, if S ≥ 30
(3)

As soon as saturation probability function consists of two convex curves, fopt
is also set as a pair of logarithmic functions. Overall results are presented in
Figure 4.
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4 Conclusion

The simulation model allows to evaluate the effectiveness of the push-gossip
protocol for network topology propagation with different propagation parame-
ters. With the experiments, the saturation function was determined with fmin

and fmax values. In addition, the model allows to determine the optimal fan-out
value fopt with fixed network size S, probability saturation boundary and propa-
gation time h. It allows to define optimal fan-out function for scalable distributed
systems. In this paper we defined optimal fan-out function (3) for distributed
system with propagation time h = 3 iterations and saturation probability at
least 0.99999.

Further research includes adding other physical topologies to the model. Also
adding data loss probability and examining saturation probability function with
new parameters.
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