
Similarity analysis using Hausdorff metrics 
 

Aleksandr Mezhenin
 [0000-0002-7150-9811]

, Alena Zhigalova
 [0000-0001-7076-0951]

 

 

ITMO University, Kronverksky Ave. 49, St. Petersburg, Russia 

 a.v.mezhenin@gmail.com, alenazhigalova@mail.ru 

 

Abstract. In this paper we present aspects of similarity analysis of polygonal 

models of arbitrary topological type. To arrive at such estimates, general topol-

ogy metrics was used, more specifically, the Hausdorff dimensionality. Calcula-

tion of the determined three-dimensional polygonal models metrics will be sub-

jected to analyses. The aspects of drawing normal vectors to the surfaces under 

examination, that are crucial to the calculation of the Hausdorff dimensionality, 

has been considered and analyzed. To improve the precision of metric calcula-

tion at the stage of construction of normal vectors to the surface, it is suggested 

to employ the averaging method - the calculation of the weighted average be-

tween the normal vectors of the neighboring triangles. 

Since there exists an issue of accuracy when Hausdorff metrics calculation is 

performed, to improve the precision of metric calculation at the stage of con-

struction of normal vectors to the surface, it is suggested to employ the averag-

ing method - the calculation of the weighted average between the normal vec-

tors of the neighboring triangles. 

 

Keywords: Hausdorff metric, Virtual simulators, 3D reconstruction, Photo-

grammetry. 

1 Introduction 

The main purpose of video surveillance systems is to provide a visual inspection of an 

object equipped with them. When designing, it is necessary to take into account the 

combination of factors that increase the efficiency of the developed video surveillance 

systems. One of the most important factors is the coverage zone of the observed area 

with cameras and the absence of so-called “blind zones”. Their appearance depends 

on many factors: the characteristics of the cameras being installed, their location, the 

number, used data formats [11].  

Obviously, the more cameras, the easier it is to place them so as to get the most 

complete coverage of the observed scene, but this increases the cost of the developed 

system. The proposed computer simulation of the coverage area in the form of a cloud 

of points of the observed surfaces of the 3D space, according to the authors, will al-

low obtaining preliminary estimates of the effectiveness of the developed video sur-

veillance systems [16] at the design stage, which will improve design solutions. A 

mathematical model is proposed, as well as algorithms for modeling a cloud of points 

and obtaining heat maps for comparing coverage areas [9]. 
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2 Analog overview 

Ledas Geometry Comparison (LGC) helps to inter compare arbitral 3D models and 

their structural assemblies. The result of the LGC comparison is thus presented in a 

user-friendly way, indicating groups of differing. Moreover, the LGC approach con-

fronts each other identical faces of two models, restoring associative and allowing 

easy surface planes-related information transfer from one model to another: attributes, 

parameters, assembly issues, etc. If the position of one of the models has been 

changed by shifting or turning, the LGC returns the models to the same position, and 

performs a more consistent comparison of the geometry in this position. LGC ap-

proach does not depend on a specific 3D data format. For the present, LGC supports 

majorin dependent formats. 

MESHLAB - open source solution allowing to compare polygon meshes. The pro-

gram implements a Hausdorff distance filter, which calculates the distance from the 

grid X to Y. First and foremost, the Hausdorff metric between two meshes is the max-

imum between two so-called one-sided Hausdorff distances (technically speaking, it 

is not distance). These two measures are not symmetrical (for example, the results 

depend on which mesh is given as X). The Hausdorff MeshLab filters enable the user 

to calculate only a one-sided version. A sample based on the ensemble of X mesh 

points is used for calculation while for each x the nearest point y on the grid Y is rec-

ognized. This means that the result depends heavily on how many points on X are 

taken. A general approach is to use the mesh apex with the highest density as sample 

points for this purpose we select the “Apex Sampling” option in the dialog box. It is 

important to become certain that the number of samples is greater than or equal to the 

number of apices. The gathered information  is recorded in the layers log window. 

This project currently exists as a web application. 

3  Determining the distance between triangles on the plane 

Let us consider a simplified version of the problem for the 2D case of calibration of 

distance between plane triangles. It is essential that we find the closest of the three 

possible triangles to the given one. For this purpose the centers of the triangles and 

the crosscut of bisectors. Then the distances to the centers of other triangles are calcu-

lated, and the closest one is recognized. This algorithm is set out below and was car-

ried out in the Matlab environment. 

Problem: there is a triangle, we need to recognize the closest to its center of three 

other triangles. 

The scheme of the algorithm: 

1. Δ ABC - initial. The coordinates of its three points are keyed in.(a, b, c in Figure 

5). 

2. The coordinates of the points of the three other triangles are keyed in. 

3. The in center Δ ABC, the bisectors crosscut point O, is calculated: 
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where a; b; c - sides of a triangle, Xi -X-direction coordinate of  the point. 
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4. Calculation of the minimum distance from point O to three triangles, consider at 

the example of one of them - Δ P1P2P3. For each point P1P2P3, the distance Pi from 

point O is calculated and compared with the previous Pi..1, as a result, the minimum 

OP is selected. The distance is estimated through the built-in PDIST Matlab feature 

for  the Euclidean distance calculation [11]. It is worth noting that this feature is also 

available for the dimensionality space 3.   
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between points x and y in n-dimensional space. 

5. As of the current step, there are 3 distance values (disto1, disto2, disto3 in Fig-

ure 5) from O point  to the triangles. The maximum and minimum values among them 

are calculated (distomax, and distomin in Fig. 5). 

6. In this manner, the triangle with the maximum distance, the one, which is further 

from the point O, changes to a red color. The nearest - neighbor turns green. The 

restturns yellow. 

4  Determining the distance between triangles on the 3D 

For the sake of simplicity, let us imagine discrete 3D models represented by triangular 

meshes, since this is the most general way of representation of such data. The triangu-

lar mesh M will be a representation of the ensemble of points P in R
3
 (apices) and the 

ensemble of triangles T that describe the connection between the apices of P. 

Let us denote the two continuous surfaces S and S ', and   

2
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 where 
2
 – is the Euclidian norm. 

Therefore Hausdorff  metrics between S and S': ),(max),( ''
'' SSdSSd

Sp
 . 

It is important to understand the fact that the metrics is not symmetrical, h.e. 

),(),( '' SSdSSd  . Let us denote ),( 'SSd as the direct distance, ),( ' SSd  as 

inverse distance.  Then the symmetrical metrics:  

 ),(),,(max),( '''

2 SSdSSdSSd  .        (4) 
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Symmetric metrics ensures a more precise measurement of an error between two 

surfaces, since the calculation of a “one-way” error can lead to significantly underes-

timated distance values, as it was shown in Figure 1. 

 

 
 

Fig. 1. Distance Comparison. 

 

One can see that ),( 'SSd is smaller than ),( ' SSd , since ),(),( ' BSdSAd  . 

Thus, a not very large one-way distance does not mean a small presentation. The cal-

culation of the Hausdorff distance between two discrete surfaces ),( TPM  and 

),( ''' TPM  is related to the preceding definitions. Let us focus on calculation of the 

Hausdorff direct distance, h.e. ),( 'MMd , since the symmetric distance can be cal-

culated from the direct and inverse distances. The distance between any point p from 

M (p is assumed not to be from P) and 
'M  can be calculated from the estimation of 

the distance minimum between p and all triangles 
'TT  . 

When the orthographical projection p 'of p on the plane T' is inside the triangle, the 

distance between the point and the triangle is simply a distance from the point to the 

plane. When the projection remains outside T ', the distance between the point and the 

plane is the distance between p and the closest p "from T', which should lie on one of 

the sides of T ' (Fig. 2). 

 

 

Fig. 2. Projection Construction. 

Although d(p,S')  can be calculated for any point p, it is essential to perform 

sampling to calculate the maximum pєS. Each T triangle is sampled, and the distance 

between each sample and M 'is estimated. Each triangle sampling is performed as 

follows: two sides of the triangle are considered as directions for the sample lattice. In 
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accordance with the criterion of length, each side is selected with n points. By means 

of directions, it is easy to construct a 'correct' mesh of the triangle under consideration 

(Fig. 3). According to this sampling, n (n + 1) / 2 samples are constricted in each tri-

angle. An interesting property of this sample is that the triangle can be split into 

smaller ones that possess all the same areas, which leads to much simpler calculations 

of the integrals taken through surface. 

 

Fig. 3. Sampling for n=5. 

Representative illustration of a sample made on a triangle for n = 5. The sides 

adopted as main directions are in bold and the samples are specified with black dots. 

5 Mean Absolute and Quadratic Mean Errors 

The distance from the point to the surface, defined in (1), can be used to determine the 

average error dm between two surfaces S and S ': 

dm(S, S') = 
 

   
          

   
  ,         (5)  

where |S| stands for the S area. 

Then we get the definition of the quadratic mean error: 

Drmse(S, S') = 
 

   
          

    
         (6) 

By means of an equation (2), symmetric variants of the mean absolute and quadrat-

ic mean error can be determined. 

The calculation of such values for discrete models is quite simple, if the error val-

ues (see Figure 3) can be calculated for each example. 

The (quadratic) error integral over the entire surface is calculated by summing the 

contributions of all parallelograms formed by 4 samples (see Fig. 3), plus the margin-

al triangle. Let us denote four samples inside the triangle by xi,j, xi + 1, j, xi, j + 1,xi + 1, j + 1  

and error value associated with each one by ei, j,ei + 1, j, ei, j +1,ei + 1, j + 1. 

The e integral which is formed by samples x over the parallelogram can be cut into 

two triangles, as one can see in Figure 4. Let us now focus on the e integral over the 

triangle Ti, j = (xi, j, xi + 1, j, xi, j + 1). 
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The simplest method of the error integral calculation involves linear interpolation 

between the values of ei, j, ei + 1, j and ei,j+1.The concept of the sampling method means 

that within each triangle from T, the samples are easily triangulated (shaped into tri-

angles), as shown in fig. 4, and all the resulting triangles have equal area. 

The value of the integral is then | Ti, j | · (ei, j +  ei + 1, j  + ei,j+1)/3. The е
2
 integral for 

the same triangle is also calculated via linear interpolations between e values (result-

ing in quadratic interpolation between e values) and, finally, the integral value: 

 

| Ti, j | · [ei, j (ei, j + ei + 1, j  + ei,j+1)+ ei + 1, j (ei + 1, j  + ei,j+1)+ e
2

i,j+1] / 6    (7) 

 

Fig. 4. Integral Construction. 

6 Experimental results 

The proposed method of comparison of polygonal objects based on the calculation of 

Hausdorff dimension was implemented in MATLAB ImageProcessingToolbox (IPT) 

as m-functions, as a result of which the calculated normal vectors and the value of 

deviations of one surface from another are visualized. For Fig. 5 a showing 2D case of 

calibration of distance between plane triangles. 

 

Fig. 5. 2D case of calibration of distance between plane triangles. 

 For Fig. 6 a graph showing the use of the developed m-functions for comparison 

of different polygonal surfaces, which are the result of two mathematical three-

dimensional functions, showing the normal vectors, constructed from polygons of one 
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surface to another, and the magnitude of the deviation is presented in the form of a 

graph color palette. 

 

 

 
 

Fig. 6. Construction of normal vectors to different surfaces. 

7 Conclusion 

Studies have shown that virtual environments can be used to verify the application of 

intelligent systems, debugging and testing of photogrammetric systems, machine vi-

sion, etc. Synthetic image generated mathematically equivalent to the actual photo-

graphs. Thus they may be used as a calibration image. 

For a more accurate assessment of the efficiency and quality of these approaches is 

planned to conduct additional testing these methods simulation of different shooting 

conditions: the conditions of uneven lighting, noise, taking into account the reflection 

properties of the objects materials. 

The proposed method of analysis of the similarity of polygonal models of arbitrary 

topological type can serve as a basis for the implementation of appropriate algorithms. 

Using the weighted average in calculating the normal vectors, according to the au-

thors, further increases the accuracy of calculating Hausdorff metric. The proposed 

approach can be applied to problems of assessing the quality of 3D reconstruction 

algorithms and pattern recognition models, as well as problems of levels of detail 

representation of polygonal models. 
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