
Internet of Things, Networks and Security

Evaluation of hardware requirements for device

management of constrained nodes based on the

LWM2M standard

Paul Schmelzer1,2 and Jens-Peter Akelbein1,3

1 University of Applied Sciences, Darmstadt, Germany
2 Research Assistant, paul.schmelzer@h-da.de

3 Professor for Computer and Software Engineering, jens-peter.akelbein@h-da.de

Abstract. Nowadays, resource constrained devices are seen as one of
the main components for building the Internet of Things (IoT). Typical
constraints of such devices are given by the size of the built-in memory,
a non-continuous power supply, and limited computing power. A cat-
egorization for such constraints into classes is given in RFC7228. The
exponential growth of the number of end devices demand for a cen-
tralized, automated, and secure device management to handle the com-
plexity of the upcoming IoT. The emerging open standard Lightweight
Machine to Machine (LWM2M) is one of the first approaches to meet
the requirements for managing constrained devices. A growing variety of
implementations of the LWM2M protocol stack became available in the
past years. This paper aims to define useful metrics for measuring device
management capabilities on constrained nodes. Two relevant open source
implementations are compared by their memory usage. The results show
that LWM2M is feasible on Class 2 devices.

Keywords: IoT · Device Management · LWM2M

1 Introduction

According to Gartner and other analysts the amount of IoT devices in consumer
and business environments doubles each two years. Such an increase of intercon-
nected devices forming complex systems with broader attack surfaces demands
for an appropriate security level of communication protocols and firmware for
IoT devices. These new requirements ask for a new infrastructure for managing
devices in an automated and centralized manner. This approach is well known
for interconnected devices like personal computers, mobile phones, printers, etc.
In the field of constrained devices such as small sensor nodes for measuring tem-
perature, humidity, pressure etc. or actuators like thermostats or light switches,
device management is not yet widespread [1]. Microcontroller for such applica-
tions are available since a few years providing hardware accelerations for cryp-
tography as well. Furthermore, wireless connectivity for sensor nodes is devel-
oping towards a standardized interoperability like given by the IEEE 802.15.4
standard. In a wireless sensor network (WSN) devices often interact directly

Internet of Things, Networks and Security

103

http://www.cerc-conference.eu
http://www.cerc-conference.eu


Internet of Things, Networks and Security

2 Paul Schmelzer and Jens-Peter Akelbein

with their environment. This leads to new risks especially in safety-critical ap-
plications like smoke detectors. So with introducing interconnectivity such small
devices must become maintainable with Firmware Over-the-Air (FOTA). In ad-
dition, for detecting misbehaviour a WSN requires monitoring capabilities and
should provide remote parameter configuration. This paper focuses on function-
ality for security purposes in particular. The LWM2M protocol developed by
the Open Mobile Alliance (OMA) is an example for how to standardize open
device management [2]. With its focus on constrained devices LWM2M provides
a variety of services besides device management and is build on top of IP. In
the last years several open implementations for LWM2M clients came up. They
differ in a large variety in their memory consumption and implemented func-
tionality. So for selecting an appropriate implementation an upfront analysis is
necessary whether functional requirements are met and hardware requirements
can be fulfilled by a given hardware device.

2 Device management and its implementation

Before personal computers got interconnected through a network, management
functionality was rarely required. Each user had to manage its personal device
manually and physical access to the device was required. By interconnecting
such devices, large enterprises introduced a centralized device management en-
abling remote control over a continuously growing number of computers. In
general, such management consists of configuration, monitoring and administra-
tion of managed entities. Managed entities could be network elements, applica-
tions, system resources or services [3]. In the 1990s, management was divided
into three categories: system management, network management and applica-
tion management. With the emergence of smart devices the new domain ”device
management” appeared. Device management consists of functions from all three
categories. Furthermore, it is not only used in a business context, but for private
purposes by individual users as well [3].

Comparing common management protocols, the way of managing entities is
very similar [4]. Managed entities are named resources or objects. They consist
of a name and a corresponding value representing a unique ID. Resources and
objects are often sorted into logical groups (e.g. a group named ”temperature
sensor” with two objects: battery level and temperature). Similar types of op-
erations exist that can be performed on objects. Primarily those are: GET the
value of the object or resource, SET the value of the object or resource, EXE-
CUTE a specific function provided by the object or resource, NOTIFY a central
management point about events being observed by a specific object or resource.

LWM2M implementations: As of today, the LWM2M standard has a very
low market penetration. For now there are a couple of open implementations
already available. Some of them are part of IoT operating systems like MBED,
RIOT, Contiki or Zephyr. Others are maintained by companies [5, 6]. LWM2M
uses a client-server architecture while this paper investigates clients only. An

Internet of Things, Networks and Security

104

http://www.cerc-conference.eu
http://www.cerc-conference.eu


Internet of Things, Networks and Security

Evaluation of hardware requirements for device management 3

LWM2M server requires a more powerful machine where resource constraints
should not be an obstacle.

Related Work: The literature provides already some work on evaluating
device management on constrained nodes. Z. Sheng et al. presented an efficient
way minimizing packet size with Constrained Application Protocol (CoAP) [7].
Others implemented their own LWM2M client for evaluation patterns of mem-
ory usage and network load [8, 9]. D. Tracey et al. used Contiki for expanding
LWM2M by new objects for a comparison with the Common Information Model
(CIM) as a standard being used in enterprise-wide management solutions [10].
The results show that LWM2M manages data in a more efficient way. Further-
more there had been attempts to connect Bluetooth Low Energy (BLE) networks
to LWM2M via a Gateway mapping the BLE service onto LWM2M objects [11].
According to the authors, this approach was taken because IP isn’t still suit-
able on all constrained devices. A very similar approach was taken by [12] who
integrated LWM2M into the Continua architecture for medical remote patient
services. This was also realised by a Gateway mapping medical data (e.g. blood
pressure, smart watch) to LWM2M Objects. To run LWM2M on more con-
strained devices directly without the needs for a gateway in between A. Karaagac
et al. presented several optimizations in the LWM2M communication flow [13].
Improving security and power supply on constrained devices is an active field of
research [14–17]. In the future IoT a centralized interoperable device manage-
ment is key [18].

3 Evaluation criteria and methodology

Devices for large IoT environments bring their own non-functional requirements.
When the number of devices grows, manual workload for changing batteries af-
ter one or a few years drive operational cost becoming a strong inhibitor for
new business models based on such large IoT environments. Hence their energy
consumption should allow periods of 5, 10, or even more years of running time.
Another criteria is on limiting the required size of memory to a minimum for us-
ing the cheapest hardware configuration of microcontroller variants. Both energy
consumption and memory size depend on the hardware architecture and a mod-
est resource footprint of the used software. The following list of non-functional
requirements should be used for assessing the eligibility of network protocols and
their implementations in resource constrained environments.

Memory usage: Several software components like an operating system, IP
stack, etc. build the software stack running on constrained devices. Device man-
agement adds further components to the stack. Its code is stored in ROM/Flash
where the size can be determined after compilation time. The size of the data
segments define the size of required RAM. It is used for variables, buffers etc.
where only the size of the static part of memory can be determined after com-
pilation time exactly. During runtime the size of dynamically allocated memory
like a heap needs to be added. For constrained devices, an implementation should
achieve that only a minimal part of RAM is being used dynamically.

Internet of Things, Networks and Security

105

http://www.cerc-conference.eu
http://www.cerc-conference.eu


Internet of Things, Networks and Security

4 Paul Schmelzer and Jens-Peter Akelbein

Energy usage: For a very low energy consumption constrained devices should
be in a power saving or sleeping mode most of the time. Both optimizing the
software stack behaviour for maximizing the deep sleep time and measuring the
energy consumption per software function is an active research area [19].

Protocol overhead: Reducing the overhead of communication protocols for
constrained node networks (CNN) can be achieved by minimizing the size of
messages and the number of messages to be sent. Readable formats like XML
or JSON use much more bytes as a consequence compared to binary formats.
Corresponding metrics allow measuring the efficiency of the complete network
stack or layers of it.

Encryption: Public key infrastructures (PKI) are hardly implementable even
for class 2 devices. Current open approaches are based on DTLS with PSK or
raw public keys. If weaker encryption is sufficient there are a few lightweight
cipher suites choosable [20]. Furthermore, hardware accelerated cryptography
primitives can be used. However, for FOTA, secure multicasting would be desir-
able [21].

Modularity: For maintaining a software stack over a long lifetime, the im-
plementation should be modularized. Configurability allows providing only the
required code parts within the shipped firmware.

As the following results were gained in an ongoing project this paper presents
first results investigating memory usage. For determining the memory footprint a
tool from G. Mukundan [22] was used. It analyses firmware in executable format
from the Map and ELF file. For the investigation, sample firmware applications
were created where a Nordic nRF52-DK board was chosen for the evaluation as
a typical hardware used for constrained nodes.

4 Results

In total, four LWM2M implementations were selected for this examination. Data
for two of them were already provided by Han et al. [8] and Rao et al. [9].
For investigating the other two, according components were extracted from the
Mbed stack (named mbed client) and RIOT OS (named wakaama). They were
ported and integrated as a sample firmware for chosen hardware board. Figure 1
presents a comparison of the memory usage for both RAM and ROM. S. Rao’s
implementation results in very low consumption of 820 Byte RAM and 8764
Byte ROM without the mandatory LWM2M objects and DTLS. The mbed client
results in an exceptionally high ROM usage of 38450 Byte. One reason seems to
be the overhead generated by using a highly object oriented C++ design with
a large code base while the other three are implemented in C. The mbed client
provides all LWM2M capabilities. For porting it to another software stack easily
a platform abstraction layer is provided also resulting in ROM overhead. The
mbed client is designed to connect to the ARM’s native cloud platform only. A
few changes in the code were necessary for allowing connections to an open source
LWM2M server like Leshan. The RAM consumption of the mbed client is modest
with only about 2130 Byte. Wakaama was developed by the Eclipse Foundation.

Internet of Things, Networks and Security

106

http://www.cerc-conference.eu
http://www.cerc-conference.eu


Internet of Things, Networks and Security

Evaluation of hardware requirements for device management 5

The implementation requires a lot of dynamic memory. Such RAM usage is not
recommended for embedded programming. Nevertheless, the code was ported
to RIOT OS. The ROM usage results in 24250 Byte which is closer to the size
cited by Han. Wakaama provides DTLS security with PSK and raw public key,
certificates are not implemented. Depending on the used DTLS library and its
modularity, security adds around 4-8 KB in RAM and 25-60 KB in ROM. The
RAM and ROM size also depends on which LWM2M capabilities are already
provided by an implementation. This may differ to a small extend between the
presented implementations. The RAM usage of Wakaama with 7010 Byte is still
beyond design objectives for class 2 devices.

(a) RAM (b) ROM

Fig. 1. LWM2M implementations in Byte

As a sort of hacky workaround for the port, around 5 KB of memory are
allocated statically for simulating the previous dynamic memory design on the
heap. This results in memory leaks by assigning static blocks bigger than the
containing data. The memory actually been used by the wakaama code is less
than the reserved memory. To fix this issue it would be advisable to allocate only
the utilized memory for the used objects and identify the parts where dynamic
memory is needed. Furthermore, on RIOT the occupied stack size on the nRF52-
DK could be measured. It was about 1,2 KB.

Additional Results: LWM2M suggests the use of TLS PSK WITH AES -

128 CCM 8 or TLS EC-DHE PSK WITH AES 128 CCM 8 as cipher suites.
These should suffice security needs of interconnected constraint devices according
to RFC 7925 [20]. For LWM2M connections via the internet containing sensitive
data an 8 Byte MAC is probably too weak. Comparing modularity, Wakaama
provides only very limited configuration options for selecting code parts to be
shipped. In contrast, the mbed client can be customized by a configuration file

Internet of Things, Networks and Security

107

http://www.cerc-conference.eu
http://www.cerc-conference.eu


Internet of Things, Networks and Security

6 Paul Schmelzer and Jens-Peter Akelbein

for choosing modules to be contained within the firmware e.g. cipher suites,
IPv4/IPv6, LWM2M bootstrapping etc.

5 Conclusion and Future Work

For using IoT networks including large numbers of constrained devices man-
ageability of all components becomes a strong requirement. Therefore, device
management on constrained nodes needs to be seen as essential for building se-
cure and mature IoT solutions soon. As hardware resources on these nodes are
limited, appropiate software components for implementing device management
need to fulfil non-functional requirements on memory and CPU consumption
as well. LWM2M is an emerging standard in the IoT for managing constrained
devices. Because these devices are restricted, there are special requirements for
software and hardware. The important metrics are memory usage, energy usage,
protocol overhead, encryption and modularity. The presented implementations
vary especially on there memory usage and functionality. Although it has a big
ROM capacity, the mbed client contains all standard functionality and has a well
rounded C++ API. Wakaama on RIOT can still be optimized in its RAM usage
compared to other implementations. Both libraries are maintained actively. The
amount of memory usage justifies the feasibility on Class 2 devices.

For future work it would be worth considering on how to validate the pre-
sented requirements for an application protocol. This paper presents first results
of evaluating the memory footprint as part of a research project. Furthermore,
questions need to be answered how to optimize functional coverage versus mem-
ory footprint, how RAM usage can be minimized, and energy consumption can
be reduced during runtime. Another drawback of current implementations is that
LWM2M clients have to wait for server requests actively. Constrained nodes are
usually active for sending sensor data only while sleeping most of their time.
Keeping the radio module on for receiving requests leads to unnecessary power
consumption. So adding a timing schema with active slots for managing nodes
will be another optimization.

References

1. Bormann, C., Ersue, M., Keranen, A.: Terminology for Constrained-Node Net-
works. IETF, RFC 7228 (2014)

2. Open Mobile Alliance: Lightweight Machine to Machine Technical Specification
(2018)

3. Gürgen, L., Honiden, S.: Management of Networked Sensing Devices. In: Tenth In-
ternational Conference on Mobile Data Management: Systems, Services and Mid-
dleware. pp. 502–507 (2009)

4. Ghetie, I.G.: Networks and Systems Management: Platforms Analysis and Evalu-
ation. Springer US (2012)

5. AVSystem: Anja. https://github.com/AVSystem/Anjay (2018), last accessed 9
Aug 2018

Internet of Things, Networks and Security

108

http://www.cerc-conference.eu
http://www.cerc-conference.eu


Internet of Things, Networks and Security

Evaluation of hardware requirements for device management 7

6. Foundry, C.: Awa LWM2M. https://github.com/ConnectivityFoundry/AwaLW
M2M, last accessed 9 Aug 2018

7. Recent Advances in Industrial Wireless Sensor Networks Toward Efficient Man-
agement in IoT. IEEE Access 3, 622–637 (2015)

8. Han, J., Ha, M., Kim, D.: Practical security analysis for the constrained node
networks: Focusing on the DTLS protocol. In: 5th International Conference on the
IOT. pp. 22–29 (2015)

9. Rao, S., Chendanda, D., Deshpande, C., Lakkundi, V.: Implementing LWM2M in
constrained IoT devices. In: ICWiSe. pp. 52–57 (2015)

10. Tracey, D., Sreenan, C.: OMA LWM2M in a holistic architecture for the Internet
of Things. In: IEEE 14th ICNSC. pp. 198–203 (2017)

11. Ha, M., Lindh, T.: Enabling Dynamic and Lightweight Management of Distributed
Bluetooth Low Energy Devices. In: ICNC. pp. 620–624 (2018)

12. Li, M., Moll, E., Chituc, C.: IoT for Healthcare: An architecture and prototype
implementation for the remote e-health device management using Continua and
LwM2M protocols. In: 44th Annual Conference of the IEEE Industrial Electronics
Society (IECON). pp. 2920–2926 (2018)

13. Karaagac, A., VanEeghem, M.: Extensions to LwM2M for Intermittent Connec-
tivity and Improved Efficiency. In: IEEE Conference on Standards for Communi-
cations and Networking (CSCN). pp. 1–6 (2018)

14. Lee, H., Lee, K., Kim, H.: Wireless Information and Power Exchange for Energy-
Constrained Device-to-Device Communications. IEEE Internet of Things Journal
5, pp. 3175–3185 (2018)

15. Yoon, S., Kim, J.: Remote security management server for IoT devices. In: Inter-
national Conference on Information and Communication Technology Convergence
(ICTC). pp. 1162–1164 (2017)

16. Aditia, K., Altaf, F., Singh, M.: Optimized CL-PKE with Lightweight Encryp-
tion for Resource Constrained Devices. In: Proceedings of the 20th International
Conference on Distributed Computing and Networking. pp. 427–432 (2019)

17. Lustro, F., Sison, M., Medina, P.: Performance Analysis of Enhanced SPECK
Algorithm. In: Proceedings of the 4th International Conference on Industrial and
Business Engineering. pp. 256–264 (2018)

18. Jin, W., Kim, D.: IoT device management architecture based on proxy. In: 6th In-
ternational Conference on Computer Science and Network Technology (ICCSNT).
pp. 84–87 (2017)

19. Pötsch, A., Berger, A., Springer, A.: Efficient analysis of power consumption be-
haviour of embedded wireless IoT systems. In: IEEE International Instrumentation
and Measurement Technology Conference (I2MTC). pp. 1–6 (2017)

20. Tschofenig, H., Fossati, T.: Transport Layer Security (TLS) / Datagram Transport
Layer Security (DTLS) Profiles for the Internet of Things. IETF, RFC 7925 (2016)

21. Keoh, S., Kumar, S.: DTLS-based Multicast Security in Constrained Environ-
ments, draft-keoh-dice-multicast-security-08 (2015), IETF, Internet Draft

22. Govind Mukundan: Analyzing the Linker Map file with a little help form the
ELF and the DWARF. https://www.embeddedrelated.com/showarticle/900.php
(2015), last accessed 10 Aug 2018

Internet of Things, Networks and Security

109

http://www.cerc-conference.eu
http://www.cerc-conference.eu

