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ABSTRACT 
 
Accurate segmentation of organs at risk (OARs) is a key step 
in image guided radiation therapy. In this work, we proposed 
multi-resolution 3D V-Net networks to automatically 
segment thoracic organs at risk in computed tomography (CT) 
images. Specifically, we adopt two resolutions and propose a 
customized V-Net model called VB-Net for both resolutions. 
The VB-Net model in the coarse resolution can robustly 
localize the organs, while the VB-Net model in the fine 
resolution can accurately refine the boundary of each organ. 
In the SegTHOR 2019 challenge, 40 CT scans with 4 thoracic 
organs (i.e., esophagus, heart, trachea and aorta) were used 
for training. We experimented with both single-class and 
multi-class Dice losses to train the networks. Our best results 
were obtained by averaging multiple models trained with 
single-class Dice loss. At the time of submission, our results 
rank the 1st for segmentation of all four OARs.  
 

Index Terms—organs at risk, V-Net, single-class, multi-
class, ensemble, segmentation 
 

1. INTRODUCTION 
 
In lung and esophageal cancer, radiation therapy is a 
treatment of choice [1]. In radiation treatment planning, the 
target tumor and nearby healthy organs named organs at risk 
(OARs) need to be carefully contoured in order to make a 
dose plan. Often the contouring step is manual. This step 
takes hours for radiation oncologists and suffers large inter- 
and intra- operator variability. For some organs (e.g. the 
esophagus), the segmentation is especially challenging: shape 
and position vary greatly between patients; the contours in 
CT images have low contrast, and can be absent [1].  
In recent years, deep learning based methods have been 
widely used in medical image segmentation. Among them, 
U-Net [2] and V-Net [3] are the most popular ones. V-Net was 
proposed to combine the residual networks with U-Net. By 
doing so, V-Net encourages much smoother gradient flow, 
thus easier in optimization and convergence.  We developed 
a customized V-Net called VB-Net to segment OARs and 
target tumors for radiation planning. Validated on both an 
internal dataset and this challenge dataset, the proposed VB-

Net shows promising results in accuracy, speed and 
robustness. 

2. METHOD 
 
2.1 VB-Net for Accurate Organ Segmentation 
 
V-Net was initially proposed to segment the prostate by 
training an end-to-end fully convolutional network on MRI 
[3]. V-Net is composed of two paths, the left contraction path 
is used to extract high-level context information by 
convolutions and down-samplings. The right expanding path 
uses skip connections to fuse high-level context information 
with fine-grained local information for precise boundary 
localization. By means of introducing residual function and 
skip connection, V-Net shows better segmentation accuracy 
compared with many classical CNNs.  

 
 

 

Fig. 1. The architecture of the proposed VB-Net. 

The architecture of our proposed VB-Net is shown in Fig. 1. 
It replaces the conventional convolutional layers inside down 
block and up block with the bottleneck structure shown in the 



bottom of Fig. 1. Due to the use of bottle-neck structure, we 
named the architecture as VB-Net (B stands for bottle-neck). 
The bottleneck structure consists of three convolutional 
layers. The first convolutional layer applies a 1 × 1 × 1 
convolution kernel to reduce the channels of feature maps. 
The second convolutional layer performs a spatial 
convolution with the same kernel size as the conventional 
convolutional layer. The last convolutional layer applies a 
1 × 1 × 1  convolution kernel to increase the channels of 
feature maps back to the original size. By performing spatial 
convolutions on the feature maps with reduced channels, 
there are two benefits: 1) the model size is largely reduced, 
e.g., from V-Net (250 MB) to VB-Net (8.8MB); 2) the 
inference time is also reduced. In the following, we give a 
theoretical analysis of model sizes between a conventional 
convolutional layer and the corresponding bottleneck 
structure. The model size (parameter size) of a convolutional 
layer with kernel size K × K × K and input/output channel 
size C is K3C2. In contrast, the model size of the 

corresponding bottleneck structure is 
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N is the ratio between original and reduced channel sizes. 
Given K = 3 in most settings, the model compression ratio 
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times model compression ratio when N = 2, 12.34 times 
model compression ratio when N = 4. In the following 
experiments, we adopt N = 4 that reduces V-Net from 250 
MB to 8.8 MB. With a small model size of VB-Net, it 
becomes easy to deploy the segmentation network either to 
cloud or to the mobile applications. 
 
2.2 Multi-resolution strategy 
 
Many deep learning algorithms segment organs using a single 
resolution. As 3D medical images (e.g., CT, MR) are often 
large in size, e.g. 512 × 512 × 300, passing the whole 3D 
image volume into networks will consume a lot of GPU 
memory, hence increasing the chances of segmentation 
failure due to lack of GPU memory. One solution is to 
resample the image volume into a lower resolution for 
segmentation, however, the image details will be lost in this 
way and the segmentation boundary will be zigzag. Another 
commonly used strategy is dividing the whole image volume 
into overlapping sub-volumes using a sliding window. 
However, this strategy is very time-consuming and not 
practical in industry deployment. 
In this work, we adopt a multi-resolution strategy. 
Specifically, two VB-Nets are trained separately on different 
image resolutions. In the coarse resolution, we train a VB-Net 
to roughly localize the volume of interest (VOI) for each 
organ. The VB-Net is trained using resampled images at 6 
mm voxel size. In the fine resolution, we train VB-Net to 
accurately delineate the organ boundary within the detected 
VOI.  
 
2.3 Single/Multi-class loss function 

 
There are many loss functions popular in segmentation 
methods, such as pixel-wise cross entropy loss, focal loss and 
the Dice loss [3], etc. The Dice loss has a clear advantage over 
pixel-wise cross entropy loss: it focuses only on foreground 
voxels disregarding how many the background voxels in the 
whole image. In this work, we adopt a generalized Dice loss 
function that applies to both single-class and multi-class 
segmentation problems. The mathematical formulation is 
given below: 
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where the inner summation runs over the N voxels in the 
image domain, C represents the number of class labels, ݌௖(݅)  
is the probability of class c at voxel i predicted by the network, 
݃௖(݅) ∈ {0,1} is the binary label indicating whether the label 
of voxel i is class c. The above formula becomes the single-
class Dice loss function when C =  1. 
 

3. DATA AND EXPERIMENTS 
 
3.1 Dataset 
 
The experimental data is collected from SegTHOR 2019 
training and testing data sets. The training and testing data 
include 40 and 20 patients, respectively. The CT scans have 
512 x 512 pixels in-plane size with spatial resolution varying 
from 0.90 mm to 1.37 mm. The number of slices varies from 
150 to 284 with a slice thickness between 2 mm and 3.7 mm. 
The most frequent spatial resolution is 0.98 × 0.98 × 2.5 
mm3. We used the published 40 CT scans as training data, 20 
CT scans as testing data and evaluate the segmentation 
accuracy using the online judgement.  
 
3.2 Intensity normalization 
 
In order to accelerate the convergence of neural network 
training, image intensities are first normalized. Based on the 
4 thoracic organs to be segmented (i.e., heart, aorta, trachea 
and esophagus), we choose the mediastinal window for 
global intensity normalization, i.e., window level 40, window 
width 350. The minimum and maximum gray levels are -310 
and 400, respectively. Intensity values between them are 
linearly normalized into the range [−1,1] . Intensities less 
than the minimum are set to -1 and those greater than the 
maximum are set to +1. 
 
3.3 Patch-wise network training 
 
The training images are resampled to isotropic resolutions 
and normalized first. In the coarse resolution, we resample 
images to 6mm isotropic spacing. To prevent label 
diminishing, we dilate the masks of esophagus and trachea by 
10 mm in the original image space before resampling to the 
coarse resolution. In the fine resolution, we resample images 



to 1mm isotropic spacing without any mask dilation. After 
resampling, 3D sub-image volumes of size 96 voxel × 96 
voxel × 96 voxel are randomly sampled as training crops. In 
the coarse resolution, we randomly sample sub-volumes from 
the entire image domain. In the fine resolution, we randomly 
sample sub-volumes only in the area indicated by the ground-
truth mask. In this way, the fine-resolution network will focus 
more on the organ boundary than the coarse-resolution 
network. For each sampled image crop, the corresponding 
mask crop is extracted as the ground-truth mask, which is 
used as the network prediction target. With pairs of image and 
mask crops, we independently train segmentation networks 
for coarse-resolution and fine-resolution segmentation, 
respectively.  
 
3.4 Fully convolutional network inference 
 
In the inference phase, a multi-resolution strategy discussed 
in Section 2.2 is used to connect the coarse and fine resolution 
networks. The coarse-resolution network aims to roughly 
segment the organ, which is used to estimate a volume of 
interest (VOI). After that, a high-resolution image crop is 
resampled from VOI and the fine-resolution network is used 
to precisely segment the organ boundary.  
Different from patch-wise network training, we perform fully 
convolutional network inference in the testing stage, where 
we fed the network with the entire image instead of 
overlapped image crops as is often done in many other works. 
The reasons that we are able to perform fully convolutional 
inference for 3D segmentation are two folds: 1) we adopt a 
multi-resolution strategy. In the coarse resolution, the entire 
image is resampled to 6mm isotropic spacing, which 
consumes only several hundred megabytes GPU memory. 
The same also applies to the fine-resolution segmentation, 
which focuses only on a sub-volume located by the coarse-
resolution network. 2) Besides the multi-resolution strategy, 
another reason for being able to perform 3D fully 
convolutional inference is that we implement the inference 
engine from scratch, instead of using the open-source 
framework, such as pytorch, tensorflow. By doing so, we are 
able to optimize the runtime GPU memory specifically for the 
VB-Net, which gives about 75% GPU memory cost 
compared with the same implementation of pytorch. The 
details of GPU memory optimization is beyond the scope of 
this paper.  
 
3.5 Post-processing 
 
After both coarse- and fine-resolution segmentation, we 
remove noisy isolated segments by picking the largest 3D 
connected component. For esophagus segmentation, instead 
of picking the largest connected component in the fine-
resolution, we pick the connected components with size > 500 
voxels. This post-processing will take care of possible 
disconnections of esophagus segmentation due to its tubular 
structure. For heart segmentation, there may be small isolated 

segments in 2D slices. To remove them, we will pick the 
largest 2D connected component at each slice after the 3D 
one.  
 

4. RESULTS 
 
We validated our method on 20 CT scans of SegTHOR 2019 
online. The SegTHOR 2019 competition uses the overlap 
Dice metric (DM) and the Hausdorff distance (HD) as the 
evaluation metrics. DM and HD are computed independently 
for each of the 4 organs at risk, obtaining 8 measurements and 
rank the performance independently for 8 measurements. The 
average of 8 ranks gives the final ranking. The SegTHOR 
2019 ranking of all participating teams in the testing data is 
summarized by the organizer, where our team listed as 
“gaoking132” ranked 1 out of 44 teams. 
 
4.1 Segmentation accuracy 
 
The segmentation accuracy of the proposed method with 
multi-class, single-class Dice loss, and the ensemble of 
multiple models were evaluated online using 20 testing CT 
scans. In the ensemble model, we used three random seeds to 
train the segmentation network for each organ and average 
their results as the final segmentation result. Table 1 shows 
the Dice metrics of the three methods. With the single-class 
Dice loss, we can optimize network parameters separately for 
each organ, so the final segmentation accuracy of single-class 
Dice loss is higher than that of multi-class Dice loss. By 
averaging multiple single-class models, the results can be 
further improved, which is a common strategy used in many 
challenges. 

Table 1. Dice metrics of multi-class, single-class Dice losses and the 
ensemble model on SegTHOR 2019 online testing set. 

Method 
Dice metric 

Esophagus Heart Trachea Aorta 

Multi-class 0.8402 0.9446 0.9129 0.9388 

Single-class 0.8605 0.9465 0.9172 0.9401 

Ensemble 0.8651 0.9536 0.9276 0.9464 

 
Table 2 shows the Hausdorff distance metrics of the three 
methods, respectively. The results also show that models 
trained with single-class Dice loss is better than that trained 
with multi-class Dice loss. With the model ensemble, the 
segmentation accuracy can be further boosted. 

Table 2. Hausdorff distance metrics of multi-class, single-class Dice 
losses and the ensemble model on SegTHOR 2019 online testing set. 

Method 
Hausdorff distance 

Esophagus Heart Trachea Aorta 

Multi-class 0.8189 0.1739 0.2123 0.2234 

Single-class 0.2883 0.1630 0.2016 0.2124 



Ensemble 0.2590 0.1272 0.1453 0.1209 

 
4.2 GPU memory consumption 
 
Besides accuracy, the proposed VB-Net and multi-resolution 
strategy have great benefits to reduce GPU memory for 
industry deployment. The statistics of GPU memory 
consumption of 20 CT scans are shown in Table 3. 

Table 3. GPU memory consumption of the proposed multi-class and 
single-class VB-Net on SegTHOR 2019 online testing set. Note that 
the model ensemble doesn’t increase the GPU memory cost. 

Method Organ Maxi. Memory Avg. Memory 

Multi-class 4 organs 3885MB 3117.5MB 

Single-
class 

Esophagus 1351MB 1120.1MB 

Trachea 1484MB 1150.0MB 

Aorta 1908MB 1325.8MB 

Heart 1621MB 1383.9MB 

 
4.3 Segmentation runtime 
 
Our single-class VB-Net segments an organ at average 0.76 
second, while the multi-class VB-Net segments the 4 thoracic 
organs in 2 seconds. All timings were measured on an Intel 
Xeon CPU E5-2620 v4 with 12 GB memory and a NVIDIA 
Titan XP graphical card with 12 GB GPU memory. With the 
ensemble model, the segmentation runtime is linearly 
increased with the number of models used. 

Table 4. Segmentation time of the proposed multi-class and single-
class VB-Net on SegTHOR 2019 online testing set. 

Method Organ Avg. Segmentation Time 

Multi-class 4 organs 2.01s 

Single-class 

Esophagus 0.50s 

Trachea 0.86s 

Aorta 0.97s 

Heart 0.72s 

 
5. CONCLUSIONS 

 
In conclusion, we propose a multi-resolution VB-Net 
framework to segment 4 thoracic organs. The multi-
resolution strategy reduces the GPU memory cost while 
maintains a high segmentation accuracy. The experimental 
results on SegTHOR 2019 online testing set show the 
superiority of our method for segmentation of esophagus, 
heart, trachea and aorta, respectively. Besides segmentation 
accuracy, we also evaluated the GPU memory consumption 
and segmentation runtime of our method. The results show 
that our method can accurately segment these organs with a 
small memory footprint and in a fast speed.  
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