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ABSTRACT

The automatic segmentation of thoracic organs has clinical
significance. In this paper, we develop the U-Net architecture
and obtain a uniform U-like encoder-decoder segmentation
architecture for the segmentation of thoracic organs. The en-
coder part of this architecture could directly involve the wide-
ly used popular networks (DenseNet or ResNet) by omitting
their last linear connection layers. In our observation, we find
out that individual organs could not appear independently in
one CT slice. Therefore, we empirically propose to use the
multi-task learning for the segmentation of thoracic organs.
The major task focuses on the local pixel-wise segmentation
and the auxiliary task focuses on the global slice classifica-
tion. There are two merits of the multi-task learning. First-
ly, the auxiliary task could improve the generalization perfor-
mance by concurrently learning with the main task. Secondly,
the predicted accuracy of the auxiliary task could achieve al-
most 98% on the validation set, so the predictions of the auxil-
iary task could be used to filter the false positive segmentation
results. The proposed method was test on the Segmentation
of THoracic Organs at Risk (SegTHOR) challenge (submit-
ted name: MILab, till March 21, 2019, 8:44 a.m. UTC) and
achieved the second place by the “All” rank and the second
place by the “Esophagus” rank, respectively.

Index Terms— Automatic segmentation, CT, U-Net,
Multi-task learning

1. INTRODUCTION

The contrast-enhanced Computed Tomography (CT) is the
widely used clinical tool for diagnosing plenty of thoracic dis-
eases. The drab and boring manual segmentation of thoracic
organs from CT images is very time-consuming. The auto-
matic segmentation from CT images will be helpful for on-
cologists to diagnose the thoracic organs at risk in CT images.
In this paper, we focus on the automatic augmentation of tho-
racic organs data, supported by the Segmentation of THoracic
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Organs at Risk (SegTHOR) [1] challenge. The segmentation
task is challenging for following reasons: (1) the shape and
position of each organ on CT slices vary greatly between pa-
tients; (2) the contours in CT images have low contrast, and
can be absent. The challenge focuses on 4 organs as risk:
heart, aorta, trachea, esophagus.

Recently, the developments of the automatic segmenta-
tion based on deep learning have overthrown the traditional
feature extraction methods. The paragon of medical segmen-
tation models is U-Net [2]. U-Net has carefully designed
encoder and decoder parts with shortcut connections. The
most significant advantage of shortcut connections is to
combine low-level features with high-level features at dif-
ferent layers. Recent years, many similar models termed as
encoder-decoder architectures were proposed, for example,
Seg-Net [3] and DeepLab series networks [4, 5].

In [6], an H-DenseUNet was proposed for liver and tumor
segmentation, where intra-slice and inter-slice features were
extracted and jointly optimized through the hybrid feature fu-
sion layer. In [7], a 3D Deeply Supervised Network (3D-
DSN) was proposed to address the liver segmentation prob-
lem. The 3D-DSN involved additional supervision injected
into hidden layers to counteract the adverse effects of gradi-
ent vanishing. This method achieved the state of the art on
the MICCAI-SLiver(7 dataset. V-Net [8] is much like the 3D
version of U-Net, which was directly applied in volumetric
segmentation from MRI volumes depicting prostate.

Honestly, the 3D-CNNs based models fully exploit the s-
pace relative features but training a 3D-CNNs based model
is usually time-consuming and requires large hyperparame-
ters capacity. Therefore, many previous works employed 2D-
CNNs and trained them on 2.5D data, which consisted of a
stack of adjacent slices as input. Then the liver lesion region-
s were predicted according to the center slice. In order to
achieve the accurate segmentation results of 2D-CNNs, au-
thors of [9] proposed a two-step segmentation framework. At
the first step, an FCN was trained to segment liver as ROI in-
put for the second FCN. The second FCN solely segmented
lesions from the predicted liver ROIs of step 1. The two-step
segmentation framework has been widely involved in many
segmentation works [9, 6, 10].

In this paper, we propose a uniform U-like encoder-
decoder segmentation architecture. The previous U-Net and
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Fig. 1. The macro view of Patient01’s CT slices. ‘Y’ (YES) and ‘N’ (NO) indicate whether the corresponding organ appears
in i*" column. From 51*" to 68" slices, only aorta appears; from 68 to 80" slices, esophagus appears; from 81*" to 118"
slices, heart appears; in the 119" slice, all organs appear; from 120" to 156" slices, heart disappears; from 157" to 182"
slices, aorta disappears; from 183" slice to the end, all organs disappear.

its variants usually have symmetrical encoder and decoder
parts. In the uniform U-like architecture, the encoder part
could directly involves the widely used popular networks
(ResNet or DenseNet) by omitting their last linear connection
layers. The encoder has more no-linear mapping ability and
could adopts the transfer learning by initializing its parame-
ters with the popular networks trained on image classification.
The decoder part only works on enlarging the size of feature
maps and shrinking the channel of networks. The uniform
U-like architecture is trained under the multi-task learning
scheme. The major task focuses on the local pixel-wise seg-
mentation and the auxiliary task focuses on the global slice
classification. There are two merits of multi-task learning.
Firstly, the auxiliary task could improve the generalization
performance by concurrently learning with the main task.
Secondly, the predictions of the auxiliary task are used for
filtering the false positive segmentation results.

2. METHOD

In this section, we will introduce the multi-task learning
scheme and the uniform U-like encoder-decoder architecture.

2.1. Multi-task Learning

During the automatic segmentation of thoracic organs on the
SegTHOR challenge data, we found out that individual organ-
s could not appear independently in one slice. In Fig. (1), we
give the detailed macro view of Patient01’s CT slices. All pa-
tients have similar macro appearance orders. In other words,
the organs appear dependently. If we could learn the macro
classification, we could use the classification results to filter
the false positive predictions of each organ. It will be much
more valuable since the organs appear dependently. We apply
the multi-task learning scheme to concurrently learn the seg-
mentation and classification tasks. The formulation of learn-
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Fig. 2. The uniform U-like encoder-decoder architecture with
multi-task learning, where the blue arrow indicates a convo-
lutional layer, the dashed line indicates a copy operation, the
solid line indicates a global average pooling layer, the green
arrow indicates a bilinear upsample and the combined dashed
block indicates a concatenation operation.

ing is as follow:

D:l_ii Q'Zijpfj'gzkj
K =1 Zij(pfj)2 + Zij(gfj)z
K.
+a Y (W log gt + (1— 1) -log(1—¢*). (1)
k=1

where K, = 5 and K. = 4, which indicate the number of
segmentation and classification categories, respectively. D is



the combined cost function. The major segmentation task is
trained with dice loss and the auxiliary classification task is
trained with multi-label logistic regression. In the dice loss
part, pfj and gfj are the kth output produced by a softmax
function and the kth one-hot target of pixel (¢, j), respectively.
In the multi-label logistic regression part, ¢* and h* are the
kth output produced by the corresponding logistic function
and the kth target, respectively. « is used to balance the loss.
In our experiments, we set a = 0.5.

2.2. Uniform U-like Encoder-Decoder Architecture

In most segmentation tasks, manually labelling is time-
consuming, therefore the train sets are always restrained.
Transfer learning is a very useful strategy to train a network
on a small data set. In order to apply the transfer learning
in the SegTHOR challenge, we abstract a uniform U-like
encoder-decoder architecture, where the encoder part could
directly involve the widely used ResNet or DenseNet by
omitting their last linear connection layers. The encoder part
could adopt the transfer learning by initializing the encoders
parameters with the corresponding networks trained on image
classification. The decoder part only works on enlarging the
size of feature maps and shrinking the channel of networks.
The U-like architecture is depicted in Fig. (2).

3. EXPERIMENT

There are 40 and 20 3D abdominal CT scans for training
and testing on the SegTHOR Challenge dataset, respective-
ly. We randomly split the given 40 training CT volumes in-
to 32 for training and 8 for validation. The 3D CT scan-
s were cut into slices along z-axis. Under the architecture
of the uniform U-like architecture, the encoder part is free
for setting. We implemented 6 widely used networks as the
encoder part including ResNet-101, ResNet-152, DenseNet-
121, DenseNet-161, DenseNet-169 and DenseNet-201. The
decoder part of them only involved one convolutional layer to
shrink the number of channels.

The training of networks stopped when the dice per case
of the validation set did not grow during 10 epochs. In or-
der to fully use the given data, we then reloaded the trained
model and retrained it on the full 40 slices for fixed 10 e-
pochs. All networks were implemented by Pytorch [11] and
trained using the stochastic gradient descent with momentum
of 0.9. All networks were trained on the images with the o-
riginal resolution and in form of 2.5D data, which consists of
3 adjacent axial slices. The image intensity values of all s-
cans were truncated to the range of [—128,384] HU to omit
the irrelevant information. The initial learning rate was 0.01
and decayed by multiplying 0.9. For data augmentation, we
adopted random horizontal and vertical flipping and scaling
between 0.6 and 1 to alleviate the overfitting problem. The
networks were trained using four NVIDIA Titan Xp GPUs

and it took about 6 ~ 8 hours. After each testing, we used
a largest connected component labeling to refine the segmen-
tation results of each organ. The final submitted result is the
ensemble result of those 6 U-like networks. The experimental
results are listed on Table 1. We achieved the second place in
the “All” rank order and the second place in the “Esophagus”
rank order, respectively.

4. CONCLUSION

The uniform U-like architecture is abstracted from the wide-
ly used U-Net. The encoder part of the uniform U-like ar-
chitecture is free for setting different network structures and
the transfer learning is easy to be applied in this design. In
our experimental observation, the transfer learning accelerat-
ed the training of those networks and boosted the performance
of them. The multi-task learning is helpful on discovering or-
gans’ dependence. However, we did not analyze its advan-
tages because of the time limit of the challenge.

We need to emphasize the fact that the connected com-
ponent labeling is very useful for the SegTHOR challenge
since all organs are indivisible and our method was based
on the 2D-CNNs. Since the given CT is not enough for the
SegTHOR data set compared with other segmentation tasks,
the trained networks were easy to overfit. Therefore, the en-
semble strategy is also very necessary for the SegTHOR chal-
lenge.
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