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ABSTRACT 

 

Cancer is one of the leading cause of death across the globe 

and projection of radiation towards tumor is the standard 

treatment of cancer. The first step of irradiation is to delineate 

tumor from organs near to the tumor. Unlike previous 

methods of CT segmentation, this paper proposed a procedure 

for segmentation of organs individually in CT images of the 

thoracic region such as Heart, Aorta, Trachea and Esophagus 

and merging them to form multi organ Segmented image. The 

aim of this method is to avoid coarse output from dilated U-

Nets. The overlapping issues has addressed by calculating the 

mode of eight neighborhood of pixels. The performance of the 

proposed technique tested on 60 CT scans collected from 

SegTHOR Challenge. Dice ratio and Hausdorff distance have 

used in evaluation paradigm.  

 

Index Terms— Hausdorff distance, dilated U-nets, eight 

neighborhoods, Coarse output, CT Segmentation. 

 

1. INTRODUCTION           

Cancer is the second leading cause of the death across 

the globe and projection of radiation is a crucial step for 

treatment of esophageal and Lung cancer. Radiation dose 

has to be given with great precision because it is a way of 

delivering packets of high energy (in general X-rays) to kill 

cancer and reduce side effects. Success rate of radiation 

therapy, determined by the cell growth of tumor-effected 

organs and the organs near to the tumor-effected organs 

(called as organs at risk) before and after the treatment. 

Radiation does not kill a cell, it destroys the connection 

between DNA and cell. This leads to abruption in the 

process of tumor cell division, called as abortive mitosis and 

sometimes this can happen to organs near the tumor. 

Therefore, delineation of organs need to done   carefully and 

accurately.  Radiation therapy is a treatment of choice for 

Lung and Esophageal cancer. The irradiation on organs 

begins with segmentation of target tumor and the organs 

near the tumor in computed tomography (CT-scans) images.  

In general, experts do segmentation manually by intensity 

levels and anatomical knowledge e.g. Esophagus is located 

behind Heart, Trachea is above the Spinal cord, etc. The 

manual process is costly, time consuming and tedious. This 

leads to evolution of techniques for automatic segmentation 

of organs to assist the doctor. 

Automatic Segmentation of organs is quite challenging 

and achieving higher accuracy is very difficult due to 

several factors such as acquiring volumetric data, low 

contrast images, variable size of organs from patient to 

patient, similarity between the shapes of organs and over- 

fitting towards organs with high intensity or better-

structured organs. 

Recent trends towards development of deep learning 

architectures is performing quite well as compared to the 

traditional methods, especially working with large volumes 

of data and on variety of data such as audio, video, medical, 

social, sensor, etc. The development of parallel GPU’s, 

publically labeled datasets, powerful frame works like 

Tensor flow, and Theano became quite accessible in 

addition to speeding up the training of deep learning models. 

Deep learning became a fuel for many computer vision 

problems such as moving object detection,  segmentation, 

motion tracking [1]. 

 However, several works have addressed for automatic 

segmentation of organs at risk on CT/MRI scans at different 

parts of body and using deep learning techniques. In a 

review paper [2], the techniques of segmentation and 

detailed algorithm’s such as region based, Clustering and 

classification methods and its applications on MRI and CT 

scans has been explained. Litjens et al. [3], conducted a 

survey on deep learning in medical image analysis and 

described the architectures in convolutional neural network 

plus explained about its application’s in medical image 

analysis. He et al. [4], worked on segmentation of pelvic 

organ segmentation using distinctive curve guided Fully 

Connected Neural Networks (FCN) to segment Rectum, 

Prostate and Bladder. Segmentation of organs at risk in 

Thoracic CT images by applying sharp mask techniques 

with FCN followed by Conditional Random Fields(CRF) is 

proposed by Trullo et al. [5]. However, the results need to 

improve furtherly to aid surgeons. Herein, the authors have 

experimentally showed the success rate of architecture with 

standard dilated U-net. Atrous convrolution/Dilated 

Convolutional network [6] model is applied on each organ 

and using Dice ratio and Hausdorff distance as evaluation 

metrics. To overcome the challenges mentioned above, this 

work proposed a procedure for segmentation of organs 

individually in CT images of the thoracic region i.e. Heart, 

Aorta, Trachea and Esophagus and merging them to form 

multi organ segmented image. 



2. METHOD 

  To segment organs (Esophagus, Trachea, Heart and 

Aorta) accurately from the raw CT images, we are using 

dilated/ Atrous convolution and the schematic diagram is 

shown in Fig 1. Proposed architecture is selected based on 

two reasons 1) the size of organs varies from patient to 

patient and slice to slice, 2) the output of convolutional 

neural network in multi segmentation is a coarse output. The 

detailed explanation of the Dilated U-Net is given in section 

2.1. Thereafter, the final segmented output is formed by 

summation of the individual output coming from each 

model. 

 

Figure. 1. Architecture for segmentation of organs. 

 

2.1 Dilated U-Net 

The use of deep convolutional neural network for fully 

connection fashioned segmentation has been addressed 

successfully in [7]. However, the repeated use of average 

pooling and striding at successive layers reduce the spatial 

resolution of the output feature maps. The one common 

approach is to recover spatial resolution in de-convolutional 

layers as used in [8], but it requires additional time and 

memory. Papandreou et al. [9], used dilation kernel to 

generate desirable resolution to feature maps at any layer. It 

will be applied to a network in two ways 1) post processing 

technique once network is trained and 2) an integrated 

model for training. In our case, we have followed the second 

approach.  

Let x[i] be the 1-D input signal, y[i] be the output of 

dilated convolution of kernel w[k] of length k is 
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The parameter 𝑟 corresponds as stride through which we 

alter the image. Standard convolution is a special case in 

dilated convolution, if  𝑟 = 1. Dilated convolution helps in 

enlarging the filed view of kernels at any layer of the Dilated 

U-Net. Dilated U-Net uses a small kernel (typically 3 × 3 

kernel) in order to control computational time and number 

of parameters. Dilated convolution with r as rate introduces 

𝑟 − 1 zeros in successive values in kernel i.e. enlarging of 

𝑘 × 𝑘  kernel into 𝑘𝑑 = 𝑘 + (𝑘 − 1)(𝑟 − 1)  without 

increasing the computational amount and parameters. It 

offers a Mechanism to find trade-off between small field of 

view and large field of view. 

 

Figure. 2. Dilated U-Net Architecture. The numbers beside the 

blue boxes is filter size and number represented with D is dilation 

rate. 

We used a Dilated U-Net architecture with 14 layers, in 

which first six layers involves operation of convolution, 

dilation, ReLU and batch normalization followed by 

average pooling after every consecutive two layers. The last 

six layers are up sampled using bilinear interpolation and 

concatenation with previous layers. Further, it involves 

convolution, ReLU and batch normalization. Convolution, 

ReLU and batch normalization applied on seventh layer and 

passed to the dilation box individually. The detailed 

architecture is shown in Figure 2.    



 The feature maps of seventh layer followed convolution, 

ReLU and batch normalization passed separately to each 

layer in dilation box. In dilation box the output of seventh 

layer convoluted with different dilation rate from  𝑟 =

20 𝑡𝑜 25  and summation of this six layers is given as input 

to the seventh layer of Dilated U-Net architecture and it is 

shown in Figure 3. 

2.2 Post processing  

 The outputs from the Heart, Esophagus, Aorta and 

Trachea are combined to form an overall segmented result. 

The drawback of this process is overlapping of individual 

organ regions. To overcome the overlapping regions 

problem, the mode of eight-neighborhood intensities is used 

for location 𝑖 𝑎𝑛𝑑 𝑗 as shown in equation 2 
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 From this eight neighborhood locations, the mode is 

calculated and replaces the value at location 𝑖, 𝑗 . By this 

approach, the overlapping issue is addressed. 

 
Figure.3. Dilation box working where D represents dilation rate 

              3.  EXPERIMENTAL RESULTS 

We performed the experiments on standard dilated U-Net 

architecture. Further, post processing has applied on Dilated 

U-Net output using mode as filter. Hausdroff and Dice ratio 

has used as quantitative evaluation measures. The proposed 

algorithm has implemented in Python 3.5, 64-bit Windows8 

platform with Intel Xenon CPU@2.80 GHz, 64 GB of RAM 

and 8 GB of GPU. 

 

3.1 Dataset 

The performance of the proposed method is evaluated on 

SegTHOR challenge dataset in CodaLab [5]. We evaluated 

our model on 60 CT Scans and 40 CT scans for training 

along with manual segmentation of heart, trachea, aorta and 

esophagus as ground truth images and 20 CT scans for 

testing. The size of each scan is 512 × 512 × (150~300) 

voxels and resolution of each scan is 0.98 × 0.98 × 2.5. 

3.2 Pre-Processing 

Each scan is normalized to zero mean and unit standard 

deviation. Train test split is performed with test size as 0.2, 

resulting 32 scans for training and 8 for validation and 

remaining 20 CT scans for testing. 

Data augmentation need to apply when training data is 

less and it is necessary for network to learn desired 

properties at microscopic level. In images like CT scans and 

MRI scans, shift, rotation and deformation invariance is 

needed and it’s implemented in U-Net. We implemented 

rotation, shift variance-using Keras ImageDataGenerator 

class focusing on width, height, rotation, and zoom 

parameters. 

3.3 Training 

 

The data is different for each organ i.e. the number of 

active voxels for each organ is different, so to avoid over-

fitting towards a dominant organ we trained each organ 

separately and summation has done over the intensities of 

four models. We fine-tune the weights using binary cross 

entropy loss. Adam gradient descent has used with a 

learning rate 0.0001 until 75 epochs with 300 epochs per 

step.  

3.4 Results 

The results of the proposed method are compared with U-

Net architecture and are shown in Figure 4. The U-Net 

output is shown in Figure 4(b), it is noticed that the output 

is coarse in nature. Figure 4(c) shows the results of 

segmentation of Heart, Esophagus and Aorta whereas 

Figure 4(d) presents the output of overlapping regions 

separated by applying post processing. 



The Table1 gives comparative quantitative evalaution of 

the proposed U-Net  in terms of   the dice ratio with  U- Net, 

and proposed U-Net postprocessing. The proposed U-net 

outperformed basic U-Net in Aorta, Esophagus and 

Trachea. The proposed U-Net run parllel with Heart. The 

postproceesing helped to achieve high results in Trachea 

than proposed U-Net.  

 

Figure 4. Comparative results of the proposed technique with U-

Net method. a) Ground truth b) U-Net Output[10] c) Proposed 

dilated U-Net d) Output after Post processing 

Table 1: Dice ratio for Heart, Aorta, Esophagus, and Trachea  
 Heart Aorta Esophagus Trachea 

U-Net 0.8562 0.8427 0.3829 0.5536 

Proposed 

U-Net 

0.8597 0.8526 0.4648 0.6295 

Proposed 
U-Net Post 

Processing  

0.8595 0.8537 0.4694 0.6425 

 

Table 2: Hausdorff distance for Heart, Aorta, Esophaus and 

Trachea 
 Heart Aorta Esophagus Trachea 

U-Net 0.8746 1.3026 3.4941 3.3315 

Proposed 

U-Net 

0.8993 1.4577 2.8665 3.9841 

Proposed 
U-Net post 

processing  

0.8930 1.4495 2.8883 2.7342 

 

Table 2 gives the comparative quantitative evalaution of 

the proposed U-Net  in terms of   the Hausdorff distance  

with  U- Net, and proposed U-Net postprocessing. The 

proposed U-net outperformed basic U-Net in Esophagus. 

The post proceesing helped to achieve high results than 

basic U-Net and the proposed U-Net in Trachea.  

4. Conclusion 

 In this work, a new framework has been developed for 

segmentation of Heart, Aorta, Esophagus and Trachea using 

60 CT scans dataset from SegTHOR challenge. Individual 

segmentation of organs from background and augmentation 

helped to train models on low level and high level features. 

The results were further improved with a deliberated post 

processing. For performance evaluation, Dice ratio and 

Hausdorff Distance metrics were used wherein the 

segmentation of Esophagus and Trachea shows significant 

improvement. 
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