
Updating Typed XML Documents Using a
Functional Data Model

Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

loupalp@fel.cvut.cz

Updating Typed XML Documents Using a

Functional Data Model

Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

loupalp@fel.cvut.cz

Abstract. We address a problem of updating XML documents having
their XML schema described by a Document Type Definition (DTD)
without breaking their validity. We present a way how to express con-
structs available in DTD in a functional data model and propose algo-
rithms for performing insert, update and delete operations. After that we
embed the update capability into an existing query language for XML.
This paper thus outlines the whole ”life cycle” of the approach from the
problem analysis to its implementation.

1 Motivation and Problem Statement

During our work on a functional framework for querying XML – XML-λ – we
identified a need for extending the language with support of data modification
operations. Our aim is to develop an approach similar to the SQL language for
relational databases, i.e. have an ability both to query and update underlying
data.

With respect to our aim we set up basic requirements for our approach. First,
we always consider typed data (this is a natural requirement because of the fact
that our framework is based on a type system). At this stage we use DTD
for constraining document validity. Second, we have already a query language
designed. It makes sense to extend this language in a ”logical” way with update
operations. By the term ”logical” we mean the utilization of existing constructs
as sets, existing type system and the idea of functional approach in general.

The paper is structured as follows: Section 2 lists existing approaches for up-
dating XML data and discusses their contribution. In Section 3 we briefly outline
the concept of the functional framework we use, its data model and the query
language that is used for implementing the proposal. We discuss the problem in
Section 4 where we show our solution. Section 5 deals with enriching the syntax
of our query language with update operations. In Section 6 we conclude with
ideas for future work.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2007, pp. 11–20, ISBN 80-7378-002-X.

12 Pavel Loupal
2 Loupal, P.

2 Languages for Updating XML

By the term updating XML we mean the ability of a language to perform mod-
ifications (i.e. insert, update and delete operations, etc.) over a set of XML
documents.

Since the creation of the XML in 1998 there have been many efforts to develop
various data models and query languages. A lot of time has also been spent on
indexing and query optimization. On the other hand the problem of updating
XML gains more interest in few past years. Yet there seems to be not a complete
solution for this problem.

Existing papers dealing with updating XML are mostly related to XQuery [2]
(and the need for having updates in XQuery is also considered as one of the most
important topics in the further development of the language [4]). Lehti [7] pro-
poses an extension to XQuery that allows all update operations but does not care
about the validity of the documents. Tatarinov, et al. [11] also extends XQuery
syntax with insert, update and delete operations and shows the implementation
of storage in a relational database system. Benedikt, et al. [1, 10] deals in deep
with the semantics of updates in XQuery.

For the sake of completeness we should not omit XUpdate [6] – a relatively
old proposal that takes a different way. It uses XML-based syntax for describing
update operations. This specification is probably less formal than those previous
but it is often used in praxis.

Considering previous works we can deduce that there are common types
of operations for performing modifications that are embedded in a language –
delete, update, insert before or insert after. This seems to be a sufficient base for
ongoing work. None of those proposals but deals with the problem of updating
typed data and thus it makes sense to put some effort into studying of this
problem. The evolution process around XML leads to use of types so it makes
sense to work on this problem in the world of typed XML documents.

3 XML-λ Framework

XML-λ is a proposal published in 2001 by Pokorný [8, 9]. In contrast to W3C
languages it uses functional data model instead of tree- or graph-oriented model.
The primary motivation was to see XML documents as a database that conforms
to some XML schema (defined, for example, by DTD).

The framework is based on type system theory – it can be informally said
that first a “base” type system Tbase is defined then a regular type system Treg

that extends Tbase with regular types is induced. Upon this the Treg is enriched
with types corresponding to an XML schema and the TE type system is defined.
Over such type system we define a query (and update) language based on simply
typed lambda calculus.

Updating Typed XML Documents Using a Functional Data Model 13
Updating Typed XML Documents Using a Functional Data Model 3

3.1 Type System Introduction

Type system is built on base B – a set containing finite number of base types
S1, . . . , Sk (k ≥ 1). Type hierarchy is then created by following inductive defini-
tion:

Definition 1. Let B is a set of primitive types S1 . . . Sn, k ≥ 1. Type System
Tbase over base B is the least set containing types given by 1.-4.

1. base type: each member of B is type over B
2. functional type: if T1 and T2 are types over B, then (T1 → T2) is also a type

over B
3. n-tuple type: if T1, . . . , Tn (n ≥ 1) are types over B, then (T1, . . . , Tn) is type

over B
4. union type: if T1, . . . , Tn (n ≥ 1) are types over B, then (T1 + . . . + Tn) is

type over B

Subsequently we define a regular type system Treg that extends type system
Tbase with regular constructs:

Definition 2. Let B= {String,Bool}, let NAME be a set of names. Type Sys-
tem Treg is the least set containing types given by 1.-6.

1. Every member of the base B is an (primitive) type over B.
2. named character data: Let tag ∈ NAME. Then tag : String is an (elementary)

type over B,
tag : is an (empty elementary) type over B.

3. Let T be a group type or named character data. Then

– zero or more: T∗ is a type over B.
– one or more: T+ is a type over B.
– zero or one: T? is a type over B.

4. alternative: Let T1 and T2 be types. Then (T1|T2) is a type over B.
5. sequence: Let T1, . . . , Tn be types. Then (T1, . . . , Tn) is a type over B.
6. named type: Let T be a type given by a step from 3.-5. Let tag ∈ NAME.

Then tag : T is a type over B.

3.2 Binding Types to XML

Having the Treg type system we have to extend it to be able to work with XML
data. We build the type system TE induced by Treg. Key idea is to define abstract
items that are particular XML elements or attributes with some content and also
define a set containing all abstract items within an XML instance – E.

Definition 3. Let Treg over base B be a type system from definition 2 and E is
the set of abstract items. Then type system TE induced by Treg is the least set
containing type given by this rule:

Let tag : T ∈ Treg. Then TAG : T is a member of TE. (Replacement of all
tags in tag : T by uppercase version)

14 Pavel Loupal
4 Loupal, P.

With types from TE we can consider functional types for extracting data
values from elements (via abstractions and projections) with two ways

1. for simple element: if tag : String ∈ Treg, then (E → tag : String) ∈ TE

2. for compound element: if tag : T ∈ Treg, then (E → T ′) ∈ TE

Note also that in TE we can express attributes in the same way as XML
elements – as functions.

3.3 Query Language Construction

Typical query has the query part – an expression to be evaluated over data –
and the constructor part that wraps query result and forms the XML output.
XML-λ’s query language is based on λ-terms defined over the type system TE

as shown in Definition 4.
Main constructs of the language are variables, constants, tuples, use of pro-

jections and λ-calculus operations – applications and abstractions. Tagged terms
might be used for declaring functions. Syntax of this language is similar to
λ-calculus expression i.e. λ . . . (λ . . . (expression) . . .). In addition, there are also
typical constructs such as logical connectives, constants or comparison predi-
cates.

Language of terms is inductively defined as the least set containing all terms
created by application of following rules:

Definition 4. Let T, T1, . . . , Tn, n ≥ 1 be members of Tbase. Then

1. variable: each variable of type T is a term of type T

2. constant: each constant (member of F) of type T is a term of type T

3. application: if M is a term of type ((T1, . . . , Tn) → T) and N1, . . . , Nn are
(in the same order) types T1, . . . , Tn, then M(N1, . . . , Nn) is a term of type
T

4. λ-abstraction: if x1, . . . , xn are distinct variables of types T1, . . . , Tn and M

is a term of type T , then λx1, . . . , xn(M) is a term of type ((T1, . . . , Tn) → T)
5. n-tuple: if N1, . . . , Nn are terms of types T1, . . . , Tn, then (N1, . . . , Nn) is a

term of type (T1, . . . , Tn)
6. projection: if (N1, . . . , Nn) is a term of type (T1, . . . , Tn), then N1, . . . , Nn

are terms of types T1, . . . , Tn

7. tagged term: if N is a term of type NAME and M is a term of type T then
N : T is a term of type (E → T).

3.4 Query Example

For our purposes we use the notoriously known bibliography example DTD from
the XML Query Use Cases [5] document. We also consider XML data provided
in the same document.

A query returning all books published by ”Addison-Wesley” is in XML-λ
expressed as shown in Figure 1.

Updating Typed XML Documents Using a Functional Data Model 15
Updating Typed XML Documents Using a Functional Data Model 5

xmldata("bib.xml")

lambda b (/book(b) and b/publisher = "Addison-Wesley")

Fig. 1. An example query written in XML-λ

3.5 Data Model Summary

Previous sections outline the definition of type system TE that we use for mod-
elling types in an XML schema. This means that for each DTD we can con-
struct a particular type system of respective types. In the Language of terms
we propose a mechanism based on lambda calculus operations (applications and
abstractions) combined with projections to work with XML documents.

The most important idea in the framework is the fact that even the small-
est piece of information in an XML document (e.g. an attribute of element
containing just a PCDATA value) is modelled as a partial function that as-
signs a value for exactly one e ∈ E. For example, having an XML element
<phone>+420-800123456</phone> there is a function phone(e) that for ex-
actly one e ∈ E returns value +420-800123456. For more complex types, e.g.
<!ELEMENT author (last, first)> the result of the function is a Cartesian
product E × E.

In XML-λ we model each XML document by a set of items E where each
e ∈ E is of type TITEM . TITEM is a type consisting of a couple (t : TY PE, uid :
INT); TY PE ∈ T and uid is an integer value for maintaining order of items
in the set. Note that some types in a particular type system can have related
information attached (each item of type PCDATA has attached a value of the
item – its content).

In following text we consider following semantic functions with informal
meaning as summarized in following table:

Semantic Function Behaviour

parent(e) For an e ∈ E return its parent item
type(e) For an e ∈ E return its type t (t ∈ T)
application(e, t) Executes an application (rule 3 in Definition 4)

of t-object to the e item. In general it returns a
Cartesian product of E × . . . × E

projection(n-tuple, t) Retrieves all items of type t from given n-tuple.
childTypes(t) Retrieves an list of types (sorted by document or-

der) that might be contained in the result of ap-
plication of a t-object

For further usage we present an algorithm of traversing a fragment of XML
data utilizing our functional framework. The algorithm traverse(E, e, op) takes
three parameters, E – set of items (this represents an XML document in our

16 Pavel Loupal
6 Loupal, P.

model) and e – start-up item for traversing, op – an operation to be performed
on each node.

ALGORITHM traverse(E, e, op)

1: Initialize stack S;

2: Mark e as NEW; Push e to stack S;

3: while (any NEW or OPEN node in S)

4: Pop i from S; Mark i as OPEN;

5: Type t = type(i);

6: n-tuple nt = application(i, t);

7: List_of_types lt = childTypes(t);

8: if lt is String

9: op(i);

10: Mark i as CLOSED;

else

11: For each type in lt

12: n-tuple nt = application(i, type);

13: Mark all items as NEW and push to S;

4 Updating Typed Documents

Document Type Definition (DTD) [3] is a syntactic way how to describe a valid
XML instance. We can break all DTD features into disjoint categories:

1. Elements constraints – Specify the type of an element content. Is one of
EMPTY, ANY, MIXED or ELEMENT_CONTENT,

2. Structure constraints – The occurrence of elements in a content model. Op-
tions are exactly-one, zero-or-one, zero-or-more, one-or-more

3. Attributes constraints – #REQUIRED, #IMPLIED, #FIXED, ID, IDREF(S)

Each update operation can or cannot affect any construct from the particular
DTD. Considering a transactional behaviour we can see two violation scenarios:

1. Fully consistent. After each operation (insert, update or delete) the instance
remains valid. This means that we have to define a complete set of operations
that are strong enough to perform all possible updates.

2. Partially consistent. In this mode we allow partial inconsistency i.e. we con-
sider the whole query as an atomic operation. Therefore we do not require
to have atomic insert,update and delete operations but we have to ensure
that at the end of the processing the instance is valid. In general it means
revalidation of the document being updated.

In our approach we use the first scenario and declare all operations as fully
consistent.

With respect to abilities of the existing XML-λ framework we have to extend
this framework with features allowing us to check constraints available in DTD.

Updating Typed XML Documents Using a Functional Data Model 17
Updating Typed XML Documents Using a Functional Data Model 7

The cornerstone of the framework is its type system (it is the basis of types we
can use). For modelling DTD constraints we propose four sets of types, where
all types come from the type system, i.e. T ∈ TE .

1. Tunmodifable is a set of types that cannot be modified. This set contains types
for attributes declared as #FIXED and element types with EMPTY content
model.

2. Tmandatory is a set of types that must not be removed from a document
instance because it would break the DTD constraints. This set contains
attribute types with #REQUIRED declaration and element types for those T

iff all occurrences of T are exactly-one.
3. Treferencing is a set of types that may reference another type, for DTDs those

are attributes declared as IDREF or IDREFS.
4. Treferenced is a set of types that may be referenced by another type, for

DTDs those are attributes declared as ID.

These sets we use in our semantics for particular update operations. We
will use access functions isUnmodifable(e), isMandatory(e), isReferencing(e) and
isReferenced(e) that check the containment of item’s type in respective sets.

In general the semantics of all operations consists of two parts: (1) Check if
the operation is permitted regarding the DTD constraints and (2) Execution of
given update operation. Following sections discuss the semantics of delete, insert
and update operations in detail.

4.1 Delete

Deletion is a operation of removing given part of XML data (i.e. element or
attribute) with its potential subelement(s). We can see the function with a sig-
nature DELETE(e) where e : t ∈ E, t ∈ T.

With respect to validity issues there are two scenarios where this operation
is denied:

1. e is an attribute and is declared as #REQUIRED or #FIXED
2. e is an element with exactly-one or one-or-more occurrence

In our framework it means checking whether the type of item being deleted is
a member of Tmandatory or Tunmodifiable sets. After that we have to ensure that
by deleting of the item we do not delete the last remaining item with exactly-
one or one-or-more occurrence. Following algorithm outlines conceptually the
operation.

Algorithm delete(E, e) takes two parameters, E– set of items (this represents
an XML document in our model) and e – the item to be deleted. It returns true
if the item has been deleted or false if the delete has been denied.

ALGORITHM delete(E, e):

1: if (isMandatory(e) or isUnmodifieble(e))

2: return false;

18 Pavel Loupal
8 Loupal, P.

else

3: p = parent(e);

4: List_of_types pt = childrenTypes(p);

5: if (type(e) in pt) is exactly-one

6: return false;

7: if (type(e) in pt) is one-or-more and

8: data contains at least 1 occurrence of item with type(e)

9: return false;

else

10 traverse(E, e, delete);

11: return true;

Informally we can imagine the operation as a subset subtraction Eresult =
E \ e with ongoing renumbering of remaining items to keep document order.
Maintenance of potential references in document (attributes of type ID, IDREF
and IDREFS) that should take place in the traverse function. For now we
consider it as being out scope of this paper.

4.2 Insert

By the insert operation we mean adding an XML fragment into the target doc-
ument. By the fragment we understand an element, an attribute or an XML
subtree. Insert is more complicated operation than delete because there are more
conditions and restrictions to be checked. We write the statement as

INSERT e1 (AFTER | BEFORE | AS CHILD) e2;

where e1 : T1, e2 : T2 ∈ E; T1, T2 are types. Note that e1 must be a valid
expression in T , i.e. it must be of a type from TE . We can see the operations as
finsert(F,E1,Ei) = Eresult where F ∈ TE and Eresult = E1 ∪ Ei

Algorithm insert after(E, e1, e2) takes three parameters, E – set of items,
e1 – the item to be inserted (e1 6∈ E) and e2 – the context item. It returns true
if the item has been inserted or false if the insert has been denied.

ALGORITHM insert_after (E, e1, e2):

1: p = parent(e1);

2: List_of_types pt = childrenTypes(p);

3: if (type(e1) not in pt)

4: return false;

5: if (following type of e2) is exactly-one and

6: item with the same type already exists in n-tuple

7: return false;

8: Put item into E and perform uid renumbering;

9: return true;

Updating Typed XML Documents Using a Functional Data Model 19
Updating Typed XML Documents Using a Functional Data Model 9

4.3 Update

Update operation means replacing one item by another with the same type.
We can write the signature of this operation as UPDATE e1 WITH e2; where
e1 : T1, e2 : T2 ∈ E; T1 = T2 are types.

Because of the fact that we require both expressions to be of the same type
there cannot occur any validation conflict (both of them are valid before the
operation). The algorithm for performing update is then straightforward.

5 Implanting Updates into the Language

First implementation of the XML-λ language was developed in [12]. It is basically
a query language without any updating capability. We will extend this language
with operations as shown above.

With respect to the concept of the language we declare all operations as
tagged terms. This means that we consider each function as a term of functional
type (E → T). Consequently we define the semantics for all operations.

Following fragment of EBNF shows a concept of including all operations into
the language

[1] Query ::= Options (OpUpdateList | OpQuery)

[2] OpQuery ::= ConstructorPart QueryBody Eof

[3] OpUpdateList ::= { OpUpdate }+

[4] OpUpdate ::= { Delete SubQuery |

Insert Expr (after|before|as child of) SubQuery |

Update SubQuery With Expr }

Note that the non-terminal SubQuery (rule [18] in [12, p.55]) presents a
lambda term that may return set of items. There is also a significant advantage
of using non-terminals SubQuery and Expr. In general these can be function
calls (even user-defined). This is a difference with XUpdate, where only XPath
expressions are used.

An example of delete operation removing all books published by ”Addison-
Wesley” is then written as follows

xmldata("bib.xml")

delete(lambda b (/book(b) and b/publisher = "Addison-Wesley"))

The insert operation that adds a new element author after the first author of a
book specified by its name we write as

xmldata("bib.xml")

insert-after(lambda a (

/book(b) and b/title="TCP/IP Illustrated" and a=b/author[1]),

"<author><last>Richta</last><first>Karel</first></author>"))

An example of the delete operation is obvious and is omitted.

20 Pavel Loupal
10 Loupal, P.

6 Conclusion and Future Work

We have shown a proposal for updating XML data constrained by a Document
Type Definition. We present a functional framework for querying XML that is
extended by structures for expressing DTD semantics. By enriching the query
language with modification operations – inserts, deletes and updates – we obtain
a language suitable both for querying and updating XML documents.

There is still a lot of future work ahead. To get a complete framework we
have to finalize the issue with references within documents (IDs and IDREFS).
This is only a technical problem how to formalize the algorithm to be executed
to keep the documents consistent and valid. Another questionable area are the
dependencies of multiple update operations in one ”query” statement. In this
paper we do not solve any potential conflicts.

Probably the biggest challenge for future work is replacement of DTD by
XML Schema. This means restructuring the type systems Treg and TE and re-
developing the idea of constraint sets.

References

1. M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Adding updates to XQuery:
Semantics, optimization, and static analysis. In XIME-P 2005, 2005.

2. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Simeon. XQuery 1.0: An XML Query Language, September 2005.
http://www.w3.org/TR/xquery/.

3. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (XML) 1.0 (third edition), February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

4. D. Chamberlin. XQuery: Where do we go from here? In XIME-P 2006, 2006.
5. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML

Query Use Cases, September 2005. http://www.w3.org/TR/2005/WD-xquery-
use-cases-20050915/.

6. A. Laux and L. Martin. XUpdate – XML Update Language, 2000. available online
at http://xmldb-org.sourceforge.net/xupdate/index.html.

7. P. Lehti. Design and implementation of a data manipulation processor for an XML
query language. Master’s thesis, Technische Universitaet Darmstadt, 2001.

8. J. Pokorný. XML functionally. In B. C. Desai, Y. Kioki, and M. Toyama, editors,
Proceedings of IDEAS2000, pages 266–274. IEEE Comp. Society, 2000.

9. J. Pokorný. XML-λ: an extendible framework for manipulating XML data. In
Proceedings of BIS 2002, pages 160–168, Poznan, 2002.

10. G. M. Sur, J. Hammer, and J. Siméon. An XQuery-Based Language for Processing
Updates in XML. In PLAN-X 2004, 2004.

11. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In ACM

SIGMOD 2001, 2001.
12. P. Šárek. Implementation of the XML lambda language. Master’s thesis, Dept. of

Software Engineering, Charles University, Prague, 2002.

