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Abstract

A required task for developing cyber-physical systems (CPS)
with people and business aspects in the loop is to capture
human knowledge & design in an explicit manner. Knowl-
edge engineering can be applied to tackle this task. Thereby,
the idea is to utilize human knowledge & design in an au-
tomated manner throughout the life-cycle of CPS. In partic-
ular, one challenge is to connect conceptual models and op-
eration environments. The former focuses on capturing and
decomposing human knowledge & design about people, busi-
nesses, and CPS using semi-formal concepts that can be exe-
cuted through procedures for sequential semantics, while the
latter focuses on continuous-time models and CPS that op-
erate in the physical world at run-time. By connecting con-
ceptual models and operation environments in an intelligent
manner, the s*IoT conceptual modeling approach is able to
align two levels of iterpretability: one for people concerned
with feasible, desirable, and viable designs and one for ef-
ficient, automated, and reliable use of CPSs. Therby, s*IoT
supersedes the approach of developing application-specific
interfaces between conceptual models and operation environ-
ments. Rather, s*IoT employs the semantic web stack to re-
duce the human effort for developing application-specific in-
terfaces. While this is a promising approach, the question is
if the integration of machine-learning approaches offers ad-
ditional benefits for s*IoT, as machine-learning approaches
can presumably further eliminate human effort associated
with technologies from the semantic web stack. This paper
presents an arguable opinion about the issue.

Introduction

While most cyber-physical systems (CPS) are intended to
enhance the capabilities of people and businesses, this is a
problem because it is difficult for CPS to know people’s and
businesses’ requirements (Sowe et al. 2016). Making human
knowledge & design accessible can help CPS to make intel-
ligent decisions and achieve their goals which are ultimately
the goals of people and businesses. Conceptual modeling is
an approach to make human knowledge & design explicit
in a semi-formal manner that can be understood by humans
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at design-time. The resulting semi-formal artifacts also have
a potential to be connected to CPS at run-time. To achieve
this potential, a specialization of the conceptual modeling
approach is necessary. Correspondingly, the s*IoT concep-
tual modeling approach has been proposed to bring together
in an intelligent manner (1) conceptual models that decom-
pose human knowledge & design and (2) operation envi-
ronments that further abstract from intricate capabilities of
CPS (Walch and Karagiannis 2019). The result thereof are
”smart” models that can be understood by humans and CPS.

Connectivity between conceptual models and operation
environments can be realized by different means. One option
is to develop conceptual models and operation environments
by hand, which implies that different stakeholders have to
invest a great amount of effort. Connecting these manually
developed artifacts is possible by developing application-
specific interfaces, which again requires human effort for
each interface. Another option is to employ the semantic
web stack to automate the connection of conceptual models
and operation environments. The semantic web stack pro-
vides benefits for topics that require diversity, synthesis, and
definiteness (Janowicz et al. 2014). As a consequence, tech-
nologies from the semantic web stack are adopted in the cur-
rent version of the s*IoT conceptual modeling approach. In
detail, ontologies and reasoning are employed by the s*IoT
modeling method and tool. This enables automation by fur-
ther decomposing conceptual models into elements with for-
mal semantics that are matched to the formal semantics ab-
stracting capabilities of operation environments. While em-
ploying the semantic web stack allows for the elimination of
a large portion of manual work, some aspects still have to
be largely developed by hand in a labor-intensive and error-
prone process that has become a key bottleneck (Doan et
al. 2004). Therefore, a third potential option is to employ
machine learning. Thereby, the focus is on opportunities for
advanced automation.

The methodology of this paper is to present an arguable
opinion about the combination of knowledge engineering
and machine learning. In particular, a potential update of
the s*IoT conceptual modeling approach is explored by ex-
amining the opportunities of machine learning. Therefore,
three cases are discussed on the topic of automating the
connection between conceptual models and operation envi-
ronments. The goal is to describe a direction along which
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Figure 1: Topic for which the applicability of machine learning is analyzed.

future research can progress. This direction is framed by
the conceptual framework of specializing the design sci-
ence paradigm with a model-based approach. Additionally, a
meta-level view is applied that considers the resulting mod-
els as systems under study. Research questions for this pa-
per are to map the opportunities of machine learning for
connecting conceptual models and operation environments,
to structure information from concrete cases in which ma-
chine learning is needed, and to conclude future research di-
rections. To answer the research questions, the method of
conceptual analysis is applied. An analysis of the results
in terms of strengths, weaknesses, opportunities and threats
(SWQOT) is conducted for validation purposes.

Following the introduction, the paper is structured in five
sections. First, foundations and related work are summarized
on conceptual modeling, CPSs, and their connection. Af-
terwards, the s*IoT conceptual modeling approach is intro-
duced briefly, also in terms of how it benefits from employ-
ing the semantic web stack. Based on these two sections, an
update is suggested on how the s*IoT modeling method and
tool can be combined with machine learning. The results are
critically reflected in a discussion section before the conclu-
sion.

Foundations and Related Work

Figure 1 shows the topic addressed by the s*IoT concep-
tual modeling approach. This topic is analyzed in this paper
regarding the applicability of machine learning. Therefore,
foundations and related work are briefly discussed.

The topic under scrutiny can be structured in three main
parts: conceptual modeling, CPS, and the connection be-
tween the two. Conceptual modeling can be employed in a
distilling cycle to make human knowledge & design explicit
(Karagiannis, Buchmann, and Walch 2017). The result is ex-

plicit knowledge & design that is decomposed by human-
oriented and machine-oriented representations. These rep-
resentations are conceptual models. Conceptual models are
semi-formal in the sense that they can be processed by ICT
systems but also contain semantics that require human in-
terpretation. To build conceptual models, modeling methods
and tools are required. A linguistic, procedural, and algorith-
mic abstraction of conceptual models, their modeling meth-
ods, and modeling tools is provided by metamodels (Kara-
giannis and Kiihn 2002). Together, metamodels and models
support the engineering of knowledge & design in an ag-
ile cycle (Karagiannis 2015). Thereby, engineering can be
viewed as a task of assembling representational components
rather than axiom-writing (Clark et al. 2001). As a conse-
quence, an engineer is not always necessary when knowl-
edge & design of subject matter experts is made explicit,
as the latter can directly interact with conceptual models
using representations familiar or intuitive to them. Cyber-
physical systems are feedback systems involving cyber and
physical components, which enables innovative applications
for, e.g., Industry 4.0, Society 5.0, and Smart Cities. The
difference to traditional ICT systems is that there is no
clear separation, but rather an intersection of physical pro-
cesses and software (Shi et al. 2011). However, modeling
is required to enable different multidisciplinary teams to
work together on the problem of designing and using CPS.
As a consequence, CPSs create new challenges for model-
ing not covered by traditional modeling methods for ICT
systems (Derler, Lee, and Sangiovanni-Vincentelli 2011;
Sharma et al. 2014). That is because traditional ICT sys-
tems rely on models that encoding knowledge & design
through sequential steps, while CPSs are deeply rooted in
the physical world, which requires continuous-time models
that are working with, e.g., solvers that numerically approx-



imate the solutions to differential equations. Connectivity
between conceptual models and CPS requires an integra-
tion of design-time and run-time aspects. Therefore, con-
ceptual models can be extended by operational semantics
(Lehmann et al. 2010) on the one end of the connection. On
the other, CPS can be understood as a run-time environment
for executable models. The run-time environment can be en-
capsulated by an execution environment that provides inter-
faces on the same level of abstraction as executable mod-
els. Together, run-time environment and execution environ-
ment make up the operation environment of executable mod-
els. However, in reality the connection between executable
models and execution environments is a complex issue, as
there is no fixed point of alignment (Walch and Karagiannis
2019).

After this short introduction to the foundations of the topic
under scrutiny, related work for the connection between con-
ceptual models and operation environments is discussed. Re-
garding the execution of conceptual models, there is a ben-
efit for conceptual models that are cognitively adequate for
humans and processable by machines, as such models could,
e.g., enable communication and collaboration, support deci-
sion makers through analysis and simulation, and automate
enterprise operations through model execution (Hinkelmann
et al. 2018). To harness these benefits, formal semantics of
conceptual models are essential (Hinkelmann et al. 2016).
Examples of conceptual models that are extended by formal
operational semantics are model types like UML which are
extended by fUML (Dévai et al. 2015), SysML which re-
quires dedicated execution environments (Wolny 2017), and
BPMN which can be put to use by workflow engines (De Gi-
acomo et al. 2017). However, only few types of models can
be executed (Thalheim 2018), which is a problem due to ag-
ile and fast changing modeling requirements and especially
considering that CPS could be employed to operational-
ize models. Regarding the abstraction of CPS in conceptual
models, the PRINTEPS project is a recent example (Morita
et al. 2018). PRINTEPS commits to the robot operating sys-
tem (ROS) as an abstraction of the run-time environment
that different robots offer. This execution environment is re-
flected in domain-specific conceptual models that are ex-
tended with operational semantics for model execution. Fur-
ther model abstraction allows for conceptual models that are
intuitive for domain experts. In PRINTEPS, some of the ab-
straction and decomposition mechanisms that relate differ-
ent conceptual models and ROS are automated. However,
one problem is that the commitment to ROS is not applicable
to all kinds of CPS, especially as CPS architectures change
from hierarchical to service-oriented (Foehr et al. 2017,
Gruettner, Richter, and Basten 2017).

The s*10T Conceptual Modeling Approach

The s*IoT conceptual modeling approach has been pro-
posed due to new requirements that emerged from AMME
and changing architectures of CPS (Walch and Karagian-
nis 2019). In particular, problems have been identified when
conceptual models are put to use, as the manual align-
ment of conceptual models and operation environments by
application-specific interfaces requires human development
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Figure 2: Aspects of connecting conceptual models and op-
eration environments.

effort that does not scale. To alleviate this issue, the s*IoT
modeling method and tool integrates technologies from the
semantic web stack.

Figure 2 shows aspects of connecting conceptual mod-
els and operation environments in the space between hu-
man knowledge & design and CPS capabilities. Require-
ments can be derived from the former while descriptions can
be derived for the latter. Requirements and descriptions can
be modelled in terms of function, structure, and behaviour.
Structural aspects refer to components and their relation-
ships, functional aspects to the hierarchy of abstract roles
and concrete realizations (i.e., goals and measurable effects),
and behavioural aspects to the performance over time. Be-
tween all these aspects, gaps may exist with regards to com-
putational paradigms, granularity of detail, and language of
presentations. In s*IoT, connecting these aspect in models
is supported by technologies from the semantic web stack.
The resulting benefit is that the point of alignment between
requirements and descriptions is not fixed for specific ap-
plications, but rather it allows for added flexibility, intelli-
gence, and automation when connecting different kinds of
conceptual models and operation environments. This is pos-
sible because the semantic web stack provides technologies
that elevate the connection from application-specific inter-
faces to semantic mappings between the involved elements.
An example for a concrete application case is to model hu-
man knowledge & design about, e.g., an Industry 4.0 pro-
duction process, to annotate the resulting conceptual model
with formal semantics, and to discover suitable services of
CPS for model execution.

s*1oT and Machine Learning

To improve the s*IoT conceptual modeling approach, the
benefits of machine learning are examined with regards
to the issue of connecting conceptual models and opera-
tion environments. Therefore, three cases are presented. In
these three cases, the current version of the s*IoT model-
ing method and tool are applied. As this implies the use
of technologies from the semantic web stack, the results
are “smart” models. Additionally, “smart” models are also
extended by employing machine learning on a proof-of-
concept basis in the three presented cases.

Case One - Recognizing the Structure of Cyber-
Physical Environments: In this case, the s*IoT modeling
method and tool are applied to model a mock-up coffee mak-
ing process and to execute that process in a cyber-physical



environment that contains a robotic arm and coffee ingredi-
ents. To enable model execution, the structure of the cyber-
physical environment is abstracted to the modeling layer.
This is done manually by humans who created an ontology
that extends the model of the mock-up coffee making pro-
cess. The ontology contains information about objects in the
cyber-physical environment like the coffee ingredients and
the robotic arm, e.g., their x, y, and z positions. By com-
bining all these elements in ”smart” models, the execution
of the process becomes possible. Currently, the options that
machine learning provides to this case are being evaluated.
In particular, image recognition was used to update the on-
tology of objects based on real-time data. As a consequence,
it is feasible that no manual intervention would be necessary
in case the amount, position, or size of coffee ingredients
changes, if machine learning approaches were to be inte-
grated in the s*IoT modeling method and tool.

Case Two - Reasoning Function from Structure: In
this case, the s*IoT modeling method and tool are applied to
model the function and structure of CPS. By using technolo-
gies from the semantic web stack, it is possible to reason the
function of CPS from their structure. This requires knowl-
edge engineers and domain experts to define the relation be-
tween function and structure, e.g., a robotic vehicle that can
drive and steer has - among other things - two independent
motors, wheels, and motor controllers. Currently, it is evalu-
ated how this kind of reasoning can be supported by machine
learning. Previously, the structure of a CPS had to be mod-
eled by hand, as well as the relation between function and
structure. Existing models of that kind were used to orga-
nize training sets for machine learning. Based on these train-
ing sets and machine learning technologies, it was possible
to identify the structure of CPS from images and to clas-
sify CPS by their function. A thorough comparison of ben-
efits and drawbacks between the currently employed tech-
nologies from the semantic web stack and machine learning
should be able to provide further insights.

Case Three - Modeler Assistant based on CPS Be-
haviour: In this case, the goal is to reduce the time and
cognitive effort modelers spent, by providing intelligent as-
sistants to modelers. These assistants should actively clas-
sify the modeler’s activities, predict future tasks, and proac-
tively perform those tasks automatically (Panton et al. 2006).
One example for this is case-based reasoning, where knowl-
edge of previously experienced cases is used to propose so-
lutions to changing requirements (Martin and Hinkelmann
2018). Currently, s*IoT offers no intelligent assistants for
modelers. Therefore, machine learning can be explored to
fill this gap. The concept is that, as processes are being put
to use by CPS, the feedback data from CPS behaviour can
be collected. This feedback can be used in machine learn-
ing to classify good and bad patterns of processes. Based
on this classification, it should be possible to predict how
newly modeled processes will behave. This prediction could
be made available to the modelers of processes during their
modeling task. After reviewing the necessary machine learn-
ing technologies, it is feasible that progress can be made to-
wards developing a prototype for this case.

Discussion

A conclusive SWOT analysis is an effective approach for
rationalization. Therefore, a SWOT analysis is conducted
to validate the opinions formed in this paper about the po-
tentials of machine learning for the s*IoT conceptual mod-
elling approach. Furthermore, the SWOT analysis general-
izes from the three presented cases.

The strengths of machine learning for s*IoT are: (1) Hu-
man effort associated with technologies from the semantic
web stack can be reduced. This allows for greater flexibil-
ity when connecting conceptual models and operation envi-
ronments. (2) New application scenarios become possible as
modeling methods and tools evolve. (3) The quality of con-
ceptual models and CPS is increased as machine learning en-
ables a tighter connection between the two. The weaknesses
of machine learning for s*IoT are: (1) Additional complex-
ity is introduced as the workload of human stakeholders gets
automated. New sources of error and a lack of tractability
are a problem for modeling method engineers and model-
ers. (2) Machine learning requires human effort to select ma-
chine learning paradigms, prepare training data, and super-
vise learning algorithms. (3) The applicability of machine
learning is related to the availability of training data. This
is somewhat contradictory to conceptual modeling which is
often used to capture innovative and creative ideas. The op-
portunities of machine learning for s*IoT are: (1) Collab-
oration is facilitated among the machine learning commu-
nity, the conceptual modeling community, and the CPS com-
munity. This creates new chances for research, application,
and education. (2) The dissemination of the s*IoT modeling
method and tool can be accelerated by embracing the current
trend of machine learning. (3) By automating human effort,
human resources become available. These human resources
can be used for creative and innovative tasks. The threats
of machine learning for s*I0T are: (1) Machine learning is a
complex topic and human resources are sparse. Furthermore,
projects that involve machine learning are often difficult to
plan due to the lack of previous results. (2) It is possible that
the trend of machine learning changes as it did before. The
danger is to focus on soon to be outdated aspects of machine
learning. (3) A social and ethical perspective has to be con-
sidered when tasks of humans are automated. Furthermore,
all kinds of risks have to be considered when humans are
replaced by automation.

Conclusion

Knowledge engineering is necessary in the life-cycle of
CPS, as human knowledge & design is essential for CPS
with people and businesses in the loop. In the life-cycle
of CPS, conceptual models are knowledge engineering ar-
tifacts that have to be connected to operation environments.
Connecting conceptual models and operation environments
is elevated by s*IoT from an application-specific develop-
ment effort towards a systematic approach that makes use
of technologies from the semantic web stack. While this
is a promising endeavor, this paper is exploring advanced
options for elevating the connection of conceptual models
and operation environments even further. In particular, the



reemerging trend of machine learning is evaluated regarding
benefits it could provide for s*IoT.

Three cases are presented in which machine learning sup-
ports connecting conceptual models and operation environ-
ments. In the first, the recognized structure of a cyber-
physical environment is made available for conceptual mod-
els. In the second, functional capabilities of CPS are clas-
sified based on the structure of CPS components. In the
third, the behaviour of processes is predicted during mod-
eling based on their previous execution by CPS. Preliminary
results from the three cases are promising. The next step is
to integrate the machine learning technologies used in those
three cases as part of the s*IoT modeling method and tool,
which will allow modelers unfamiliar with the technologies
to make use of them. Furthermore, this allows other model-
ing method engineers to integrate them into their modeling
methods as well.
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