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Abstract

Word Embeddings can capture lexico-semantic information
but remain flawed in their inability to assign unique represen-
tations to different senses of polysemous words. They also
fail to include information from well-curated semantic lexi-
cons and dictionaries. Previous approaches that obtain onto-
logically grounded word-sense representations learn embed-
dings that are superior in understanding contextual similarity
but are outperformed on several word relatedness tasks by
single prototype words. In this work, we introduce a new ap-
proach that can induce polysemy to any pre-defined embed-
ding space by jointly grounding contextualized sense repre-
sentations learned from sense-tagged corpora and word em-
beddings to a knowledge base. The advantage of this method
is that it allows integrating ontological information while also
readily inducing polysemy to pre-defined embedding spaces
without the need for re-training. We evaluate our vectors on
several word similarity and relatedness tasks, along with two
extrinsic tasks and find that it consistently outperforms cur-
rent state-of-the-art.

Introduction
Distributed representations of words (Mikolov et al. 2013b)
has proven to be successful in addressing various drawbacks
of symbolic representations which treat words as atomic
units of meaning. By grouping similar words and captur-
ing analogical and lexical relationships, they are a popular
choice in several downstream NLP applications.

While these embeddings capture meaningful lexical rela-
tionships, they come with their own set of drawbacks. For
instance, complete reliance on natural language corpora am-
plifies existing vocabulary bias that is inherent in datasets.
Vocabulary bias is caused by words not seen in the training
corpora and also extends to bias in word usage where some
words, often morphologically complex words, are used less
frequently than other words or phrases with the same mean-
ing. Thus embeddings suffer from inaccurate modeling of
less frequent words which is evident in the relatively lower
performance of word embeddings on the rare word simi-
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larity task (Luong, Socher, and Manning 2013b). An ap-
proach by (Bojanowski et al. 2016a) propose using charac-
ter n-gram representations to address the problem of out-of-
vocabulary and rare words. (Faruqui et al. 2014) also pro-
posed retrofitting vectors to an ontology to deal with inaccu-
rate modeling of less frequent words. However, these meth-
ods don’t account for polysemy.

Polysemy is an important feature of language which
causes words to have a different meaning or “sense” based
on the context in which they occur. For instance, the word
bank can refer to a financial institution or land on either
side of a river. A large body of work has gone into develop-
ing word sense disambiguation systems to identify the cor-
rect sense of a word based on its context. Word embeddings,
on the other hand, assign a single vector representation to
a word type, irrespective of polysemy. The availability of
disambiguation systems coupled with the growing reliance
of NLP systems on distributional semantics has led to an
increasing interest in obtaining powerful sense representa-
tions.

Some of the previous work that has gone into learning
sense representations includes unsupervised learning tech-
niques to cluster contexts and learn multi prototype vec-
tors((Reisinger and Mooney 2010) , (Huang et al. 2012)
and (Wu and Giles 2015)). A common drawback with the
cluster based approach is the difficulty in deciding the num-
ber of clusters apriori. ( (Neelakantan et al. 2015) , (Tian
et al. 2014) ,(Cheng and Kartsaklis 2015)) also learn multi-
ple word embeddings by modifying the Skip-Gram model.
These approaches yield to sense representations that are lim-
ited in terms of interpretability which makes it challenging
to include in downstream tasks. To remedy this, (Iacobacci,
Pilehvar, and Navigli 2015), (Chen, Liu, and Sun 2014) use
sense-tagged corpora and Word2Vec modifications to obtain
sense representations; however, they only make use of dis-
tributional semantics.

Previous work combining distributional semantics and
knowledge bases include (Jauhar, Dyer, and Hovy 2015) and
(Rothe and Schütze 2015) that grounding word embeddings
to ontologies to obtain sense representations. As a result
of grounding, these techniques drastically improved perfor-
mance on several similarity tasks but an observed pattern is
that this leads to compromised performance on word relat-
edness tasks((Faruqui et al. 2014), (Jauhar, Dyer, and Hovy



2015)).
In this work, we present a novel approach that uses knowl-

edge bases and sense representations to directly induce pol-
ysemy to any pre-defined word embedding space. Our ap-
proach leads to interpretable, ontologically grounded sense
representations that can easily be used with powerful dis-
ambiguation systems. The main contributions of this pa-
per are a) Obtaining ontologically grounded sense repre-
sentations that perform well on both similarity and related-
ness tasks b) Automatic sense induction and integration of
knowledge base information into any predefined embedding
space without re-training c) Our embeddings also show per-
formance benefits when used with transfer learning meth-
ods like CoVE (McCann et al. 2017) and ELMo (Peters
et al. 2018) on extrinsic tasks. d) Furthermore, we propose
methodologies for knowledge base augmentation along with
an approach to learn more effective sense representations.

Methodology
In our approach we thus rely on a) Sense tagged corpora
to obtain contextualized sense representations. The objec-
tive of which is to capture sense relations and interactions
in naturally occurring corpora. The sense representations
are interpretable and have lexical mappings to a knowledge
base. We use them to induce polysemy in word embedding
spaces. b) Pretrained word embeddings to capture beneficial
lexical relationships that are inherent on account of being
trained on large amounts of data. Sense representations do
not adequately capture these relationships due to the limited
size of sense-tagged corpora which is used to train them. c)
Lastly, to account for the vocabulary bias in corpora which
causes similar meaning words to be farther apart in embed-
ding spaces, we use a knowledge base to jointly ground word
and sense representations.
We thus describe our approach in three parts a) Lexicon
building b) Sense-Form Representations and c) Multi
Word-Sense Representations

a) Lexicon Building
For our Knowledge Base, we rely on WordNet (Miller 1995)
and a Thesaurus1. WordNet(WN) is a large lexical database
that groups synonyms to synsets and records relations be-
tween them in the form of synonyms, hypernyms, and hy-
ponyms. The synsets are highly interpretable since they
come with a gloss along with examples. A thesaurus, on
the other hand, groups words into different clusters based
on similarity of meaning.

Thesaurus Inclusion The structure of WordNet(WN)
is such that it labels semantic relations among different
synsets. While this structure helps determine the degree
of similarity between synsets, it leads to a restricted set
of synonyms that represent a synset. To best combine
information from both resources, we augment the synonyms
in a WordNet synset using a Thesaurus.

1https://www.thesaurus.com/

Figure 1: WordNet synset nodes split based on syntactic
form information

Unlike WordNet(WN), the thesaurus does not have dis-
tinct labels for senses. Senses are instead represented by a
group of words. Given a query word, the thesaurus returns
clusters of words where each cluster represents some sense.
Given a WN synset(s), we use the synset’s headword to
query the thesaurus and use a simple algorithm to map the
most appropriate cluster to the corresponding WN synset by
computing each cluster’s probability with respect to (s).

Probabilities are assigned based on the words in a clus-
ter and the WN structure. Thus if a thesaurus cluster has
more words that are “closer” based on WN structure to
the synset(s), it receives a higher probability. To mea-
sure “closeness”, we use the path-similarity(p) metric of
WN. Path-similarity(p) measures the similarity between two
synsets by considering the distance between them. It ranges
from 0− 1 with scores towards 1 denoting “closer” synsets.
Since path-similarity(p) calculates similarity between two
synsets, thus given a word (w) in a thesaurus cluster queried
using the headword of the WN synset(s), we find the
distance-based similarity dw,s between s and w by first ob-
taining all of the synsets(Sw) in WN for w and use it to cal-
culate dw,s as follows.

dw,s ← max{p(s, si)∀si ∈ Sw}

If a word is not found in WN, we assign dw,s to 0.1 which is
the lowest distance-based similarity implying it is ”farthest”
from the synset(s) in WN.

To account for varying cluster sizes in the thesaurus



Algorithm 1 Thesaurus Inclusion
Input: WordNet Synset (s), corresponding synonym
set(Sw)
Output: Most probable cluster for a word Cwn out of all
possible clusters Cw found in Thesaurus for a word.

1: Cw ← Thesaurus(w)
2: if length(Cw) = 1
3: n = 0
4: else
5: pc(w)← {p(cluster)∀cluster ∈ Cw}
6: n← index(pc(w) , max(pc(w))
7: end if
9: return Cwn

and prevent larger clusters from invariably having bigger
scores, we divide words in each cluster(c) into ten discrete
bins(bins) based on each word’s d score. The bins are in an
incremental range of 0.1(( [0-0.1 , 0.11- 0.2 ,...,0.91-1.0]),
with the highest score bin being 1. We then obtain cluster
scores, scorecluster as :

scorecluster =
∑

bin∈bins

wbin ∗ count(bin)

We then get the probability of a cluster(pcluster) from
scorecluster by passing it through a sigmoid function.

pcluster =
exp(scorecluster)

exp(scorecluster) + 1

The words in the thesaurus cluster with the highest prob-
ability is then picked to augmented into the synonym list of
the respective WN synset(s) . We’ve outlined the procedure
in Algorithm 1.

In the Table 1 we denote the vocabulary and synset cluster
changes brought about by this step. The last column records
the average number of synonyms linked with a synset in
WordNet. Originally, owing to WordNet’s stringent relation
structure we see there are an average of approximately 2 syn-
onyms within a synset. This number drastically increases us-
ing a thesaurus for augmentation.

Words Phrases Average
syn-
onyms(per
synset)

WordNet 147307 69408 1.75
Thesaurus(Introduced) 4026 500 7.37

Table 1: Vocabulary and synset cluster changes in WordNet
through Thesaurus Inclusion.

WordNet Form Extension To obtain representations that
cater to both similarity and relatedness, we modify the
synset nodes in WordNet. A synset in WordNet is repre-
sented by a set of synonyms. We observe that these synonym

sets include words of the same meaning without differentiat-
ing between their syntactic forms. For instance, consider the
synset operate.v.01, defined as “direct or control; projects,
businesses” , it has both run and running in its synonym
sets. In practice, each syntactic form of a word has differ-
ent semantic distributions. For instance, for this sense, run
is found to most likely occur with words such as lead and
head as compared to its alternate form running which is
more likely to appear with words such as managing, admin-
istrating , leading. To account for this difference in seman-
tics, we extend WordNet nodes to include the syntactic form
information and call a synset, syntactic form pair “sense-
form.” To obtain different sense-form nodes, we make use
of the OMSTI corpus and record different forms of a synset
based on the different syntactic forms of words associated
with the synset. Each “sense-form” is then linked to the
corresponding syntactic form of synonyms. The extended
WordNet(Ext-WN) sense-form nodes and synonyms are de-
picted in Figure 1.

b) Sense-Form Representations
To obtain sense-form representations, we use a sense-tagged
corpus, OMSTI(Taghipour and Ng 2015). The corpus con-
tains sense-tagged words based on WordNet. Each sense-
tagged word is associated with the respective synset found
in WN. We pre-process the corpora by replacing every
word and synset pair as a sense-form based on the syntac-
tic form of the tagged word and the synset. We then use
the Word2Vec toolkit((Mikolov et al. 2013b)) with the Skip
Gram objective function and Negative Sampling to obtain
our contextualized “sense-form” representations.

c) Word-Sense Representation and Induction
We initialise each sense-form node in WN using the rep-
resentations obtained from the sense-tagged corpora. Then,
for each sense-form and the respective augmented synonym
set, we obtain unique multi word-sense representations by
jointly grounding the word and sense-form embeddings to
WordNet. For a word(w) in synonym set of a sense(s), we
obtain multi word-sense representations as follows:

vw,s = αw,s([uw, vs,form(s)])

Where, uw is the pre-trained word embedding , vs,form(s)

is the contextualized sense-form representation of the node
learned from sense-tagged corpora. For grounding, we use
WordNet’s synset rank information and graph structure to
obtain the scaling factor, αw,s for grounding as follows:

αw,s = 1− clog(x), where
x = ranks,w + d(w, s)

For word (w) in the w, s pair, WN which gives the list
of senses(Sw) in decreasing order of likelihood. We use this
to obtain the rank ranks,w of a senses with respect to w.
The sense with rank 1 in Sw for a word is thus the most
likely sense of the word. As outlined in our previous sec-
tions, we use an augmented synonym set by adding from a
thesaurus for each synset node which means there are many
word-sense pairs in our extended-WN not found in WN. For



example, the extended-WN includes “hold” as a synonym
for sense “influence.n.01”. This word and sense pair(hold,
influence.n.01) is not found in WN. Thus “influence.n.01” is
not part of Shold in the original WN. If a word(w),sense(s)
pair from our extended-WN is present in Sw, we use the
rank directly. If not, we use the rank of the synset in Sw that
is “closest” to the sense s in the word-sense pair. The WN
path-similarity(p) metric is used to denote “closeness”. We
would also like to penalise senses s found in our extended-
WN pairs more if they are farther in the WN graph structure
to the original senses Sw given by WN for word w. The in-
tuition is, the closer a sense is to a word in the WN graph,
the more relevant it is to the word. The same intuition is fol-
lowed in retrofitting vectors to lexicons as well(Faruqui et
al. 2014). d(Sw, s) is the penalizer in our equation which
obtains the distance between a word and a sense as follows:

d(w, s) = min([1− p(s, x)∀x ∈ Sw])

Recall p(s, x) is the path-similarity score with a higher
score denoting closer pairs, implying closer pairs get as-
signed a lower penalizing distance. We use a monotonically
decreasing distribution 1− clog(x) with c as some constant
in our probability distribution as found by (Arora et al.
2018). As a result, of feeding ranks and graph structure
distances between w and s, to this distribution, the lower
ranked(with one being the highest) and farther away synsets
(or bigger d) get lower scaling scores. Senses similar in rank
and distance thus get similar scaling scores.
We thus get grounded representations with the scaling factor
αw,s reflecting likelihood and ontology graph structure.

Experiments

In this section, we describe the experiments done to evaluate
our multi word-sense word embeddings. We use an array of
existing word similarity and relatedness datasets to conduct
intrinsic evaluation and 4 datasets across 2 tasks for extrinsic
evaluation.

Intrinsic Evaluation

We test our embeddings intrinsically on similarity, related-
ness and contextual similarity datasets.

Word Representations To run our experiments,we
pick two different embeddings of 300 dimension
GLoVE(Pennington, Socher, and Manning 2014) ,and
Skip-Gram(SG)(Mikolov et al. 2013a). We use these
embeddings for word sense induction in our experiments
because they are a popular choice for NLP systems at the
time of writing the paper. The resulting CoKE embeddings
after scaling and concatenation with word embeddings is
600 dimension.

Similarity Measures Given a pair of words w with M

senses and w
′

withN senses, we use the following two met-
rics proposed by (Reisinger and Mooney 2010) for comput-

ing similarity scores without using context.

AvgSim(w,w
′
) =

1

MN

M∑
i=1

N∑
j=1

(cos(vw,i, vw′ ,j))

MaxSim(w,w
′
) = max

1≤i≤M,1≤j≤M
cos(vw,i, vw′ ,j)

AvgSim computes word similarity as the average similar-
ity between all pairs of sense vectors. Whereas MaxSim
computes the maximum over all pairwise sense vector simi-
larities.

Baselines We denote two baselines in Table 2. and
Table 3., in addition to the baseline score of the single
prototype word embeddings themselves. The first baseline
we denote is to measure performance on concatenat-
ing sense embeddings learned from the OMSTI corpus
along with word embeddings using WordNet to retrieve
senses for a word. This baseline is to indicate scores on
concatenating embeddings from two different sources.
This is denoted as +Synset(WN) in the table. The sec-
ond baseline, +CoKE(Ext-WN) is to track performance
changes when splitting senses to sense-forms and ground-
ing them to extended-WN. Finally, we show scores with
+CoKE(Thes+Ext-WN) which reflects performance of
grounded word-sense representations using sense-forms,
extended-WordNet and the thesaurus.

Word Similarity We evaluate our embeddings on sev-
eral standard word similarity datasets namely, SimLex
(Hill, Reichart, and Korhonen 2015)(SL-999), WordSim-
353(Gabrilovich and Markovitch ) (WS-S), MC-30(Miller
and Charles 1991) , RG-65 (Rubenstein and Goodenough
1965), YP-130 (Yang and Powers 2006),SimVerb(Gerz
et al. 2016)(SV) and Rare Word(RW) similarity (Luong,
Socher, and Manning 2013a).
Each dataset contains a list of word pairs with an individual
score generated by humans of how similar the two words
are. We calculate the Spearman correlation between the la-
bels and the scores generated by our method. For similarity,
we use MaxSim as a metric to find the most similar pair
among different senses of a word. The results are outlined
in Table 2.

We observe that the lower performance for Synset(WN),
obtained by concatenating word with sense embeddings to
get word-sense embeddings, is because of the limited num-
ber of synonyms for a synset recorded in WordNet along
with the limited size of the dataset used to learn these em-
beddings.
The average improvement column in the table(Avg Improve-
ment), shows a significant improvement in performance on
splitting senses to sense-forms and grounding(CoKE(Ext-
WN)). The benefits of this approach are reflected mainly
on the SimVerb-3500 dataset. This is not a surprising result
since words tend to have more syntactic forms when they oc-
cur as verbs. With distributional semantics, syntactic forms
of verbs often remain close making it hard to capture differ-
ences. However drastic improvements can be seen through



Vector WS-S RG-65 RW SL-
999

YP MC SV-
3500

Avg Improvement

SG 76.96 74.97 50.33 44.19 55.89 78.80 36.35 -
+Synset(WN) -25.76 -11.85 -28.24 +0.59 +5.41 -11.44 +1.1 -10.02
+CoKE(Ext-WN) -24.64 -7.96 -27.7 +4.04 +11.75 -9.48 +6.71 -6.75
+CoKE(Thes+Ext-
WN)

+0.21 +10.84 +1.72 +17.69 +11.69 +5.98 +13.51 +8.80

Glove 79.43 76.15 45.78 40.82 57.08 78.60 28.32 -
+Synset(WN) -23.05 -10.34 -23.03 +0.48 +0.26 -10.24 +0.47 -9.35
+CoKE(Ext-WN) -22.11 -4.23 -25.38 +6.96 +7.02 -6.19 +8.06 -5.12
+CoKE(Thes+Ext-
WN)

+0.23 +11.6 +1.51 +18.29 +11.8 +7.27 +17.59 +9.75

Table 2: Table showing performance difference using CoKE on similarity tasks. Baselines of scores of original pre-trained
embeddings are included at the top. Synset(WN) indicates concatenation with synset embeddings using senses of a word from
WordNet, CoKE(Ext-WN) represents CoKE obtained using extended-WordNet, and CoKE(Thes+Ext-WN) is CoKE obtained
using the thesaurus augmented version of the extended-WordNet.

Vector WS-R MEN MT-
771

SGS Avg Improvement

SG 61.75 73.59 67.71 56.61 -
+Synset(WN) -12.37 -10.07 -6.15 -13.25 -10.46
+CoKE(Ext-WN) -11.65 -8.38 -5.34 -15.72 -10.27
+CoKE(Thes+Ext-
WN)

+0.13 +0.71 +0.19 +8.51 +2.38

Glove 66.92 79.88 71.57 58.34 -
+CoKE(WN) -6.52 -11.31 -4.54 -14.36 -9.18
+CoKE(EXT-WN) -6.78 -10.64 -3.8 -14.7 -8.98
+CoKE(Thes+Ext-
WN)

+0.2 +0.49 +0.47 +12.92 +3.52

Table 3: Performance differences using CoKE on word relatedness tasks. Baselines of scores of original pre-trained embeddings
are included at the top. Synset(WN) indicates concatenation with synset embeddings using senses of a word from WordNet,
CoKE(Ext-WN) represents CoKE obtained using extended-WordNet, and CoKE(Thes+Ext-WN) is CoKE obtained using the
thesaurus augmented version of the extended-WordNet.

Model ρ x 100
(Jauhar, Dyer, and Hovy 2015) 61.3

(Iacobacci, Pilehvar, and Navigli 2015) , 2015 62.4
(Huang et al. 2012) 62.8

(Athiwaratkun and Wilson 2017) 65.5
(Chen, Liu, and Sun 2014) 66.2
CoKE + SG(Our model) 67.3

Rothe and Schutze (2015) 68.9

Table 4: Comparison of our multi word-sense representations with other state-of-the art representations on the Stanford Con-
textual Word Similarity(SCWS) dataset to evaluate polysemous word similarity.

thesaurus inclusion(CoKE(Thes+Ext-WN)), this is because
using WordNet alone leads to limited lexemes on account
of words being represented by fewer senses as opposed to
a large number of senses captured for a word by word em-
beddings, as a result of being trained on large datasets. On
including a thesaurus and augmenting the synonym set for
synsets in WordNet, we see that the number of senses that
represent a word drastically changes leading to more lex-

emes that closely reflect all possible senses of a word.
We also note that the improvements for WS-S is relatively
lower; we suspect this is because the dataset is designed
based on association rather than similarity alone. We also
observe that as baselines of embedding spaces get higher for
datasets, the performance gains reduces since most of the
information is captured in the embedding spaces. The same
trend is also observed in (Faruqui et al. 2014).



Table 5: Accuracy differences on sentiment analysis and classification tasks of CoKE, CoVE, CoVE+CoKE , ELMo,
CoKE+ELMo with GLoVE as baseline.

Dataset GloVe CoKE CoVE CoKE(+CoVE ) ELMo CoKE(+ELMo)
SST-2 85.99 85.72 88.18 89.41 88.02 89.32
SST-5 50.19 50.56 51.4 50.97 51.62 51.60

TREC-6 89.90 91.53 90.56 91.15 91.59 92.78
TREC-50 83.84 85.5 84.59 85.46 84.31 84.249

Table 6: CoKE improves performance when used alone as well as when used with a disambiguation system. Note, CoVE and
ELMo are only used for disambiguation, their representations aren’t included with CoKE

Word Relatedness Integration of our vectors also shows
improvements in word relatedness tasks. As our benchmark,
we evaluate on WS-R (relatedness) , MTurk(771) ((Halawi
et al. 2012)), MEN((Bruni et al. 2012)), and on SGS130
( (Szumlanski, Gomez, and Sims 2013)) which includes
phrases. We evaluate the performance of our method against
standard pre-trained word embedding using Spearman cor-
relation. We use AvgSim as our metric to measure related-
ness and report scores Table 3.
The baselines we use are the same as for word similarity
as described above. We notice how performance improve-
ments through sense-form splitting are not as drastic as for
word similarity. This could be on account of word related-
ness tasks more frequently checking for relatedness of ob-
jects rather than verbs; sense-form splitting is more benefi-
cial to verbs than nouns on account of more varying forms
of words as verbs.
We are not sure why the overall performance gains are not
as high as for similarity, but the scores do reflect gains as
opposed to retrofitting directly to lexicons which leads to a
serious drop in relatedness. The big performance gains on
SGS (Szumlanski, Gomez, and Sims 2013) is due to phrases
present in the dataset. By using a thesaurus and WN, we
learn multiple phrasal representations not found in the orig-
inal word embedding space.

Word Similarity for Polysemous Words We use the
SCWS dataset introduced by (Huang et al. 2012), where
word pairs are chosen to have variations in meanings for pol-
ysemous and homonymous words. We compare our method
with other state-of-the-art multi-prototype models.We find
that our model performs competitively with previous mod-
els. We use the Skip-Gram(SG) word embedding with our
method to allow for fair comparison, since previous work
uses Skip-Gram for retrofitting to WordNet.The Spearman
correlation between the labels and scores are indicated in
Table 4.

Extrinsic Evaluation
A lot of the prior work on obtaining sense embeddings show
performance improvements in intrinsic tasks, but leave out
testing them on downstream tasks. It is thus difficult to judge
the effectiveness of these representations. To bridge this
gap, we run experiments on two tasks(Sentiment Analysis
and Question Classification) across 4 datasets to provide
some insight on the usefulness of our representations.

Datasets For sentiment analysis we use the Stanford Sen-
timent Treebank dataset(Socher et al. 2013). We train seper-
ately and test on the Binary Version(SST-2) as well as the
five class version(SST-5). For question classification, we
evaluate performance on the TREC(Voorhees 2001) ques-



tion classification dataset which consists of open domain
questions and semantic categories.

Performance Comparisons We first run experiments on
CoKE by representing words as an average of their respec-
tive sense embeddings. It is a known fact that words are a
weighted sum of their senses. Thus the intuition of using
averaged embeddings is that having grounded word-sense
representations should lead to better word representations
through averaging.

Recent trends have also lead to an increasing interest
in transfer learning for obtaining superior word represen-
tations. CoVE (McCann et al. 2017) and ELMo (Peters et
al. 2018) show significant improvements in extrinsic tasks.
CoVE uses word representations learned from a machine
translation system in combination with GloVE embeddings.
ELMo, on the other hand, uses a language model to obtain
contextualised word representations. As shown by (Peters et
al. 2018), these systems inherently act as word sense disam-
biguation and representation systems. They give word rep-
resentations conditioned on the context it occurs in and per-
form on par with state-of-the-art word sense disambiguation
systems, but it is unclear how informative the sense repre-
sentations are. We thus hypothesise that the systems can ben-
efit by using better sense representations.
Due to the promising performance of CoVE and ELMo as
word sense disambiguation systems and increasing interest
in using them in NLP tasks, we use them as disambiguation
systems in our experiments to sense tag the four benchmark
datasets. To get the disambiguated sense tags using CoVE
or ELMo, we use the same approach as outlined in (Peters
et al. 2018). We compute each word’s representation in OM-
STI using CoVE or ELMo and then use the average of all
the representations obtained for a sense to get its respective
sense representations. To disambiguate a sentence, we then
run the sentence through the CoVE or ELMo architecture
to get word representations and then tag the word by taking
the nearest neighbour sense from the corresponding CoVE
or ELMo computed sense representations. For ELMo, we
use the last layer and the pre-trained version made available
publicly.
In our experiments, we use the CoKE word-sense em-
beddings obtained by using GLoVE with the thesaurus
and extended-WordNet for grounding.We pick CoKE with
GLoVE embeddings to be fair in comparison with CoVE
which is obtained by concatenation with GLoVE embed-
dings.
We thus compare performance using GLoVE, CoVE and
ELMo independently, using an average of CoKE rep-
resentations to get word representations, and also using
ELMo/CoVE as disambiguation systems with sense-tagged
words represented with CoKE embeddings(CoKE+(CoVE),
CoKE(+ELMo)). Note if a word is not sense-tagged we use
vanilla GLoVE vectors concatenated with an unknown vec-
tor.

Training Details To test for performance of different
embeddings on datasets, we implement a single-layer
LSTM(Hochreiter and Schmidhuber 1997) with a hidden

size of 300 and run our experiments. Parameters were fine-
tuned specifically for each task and embedding type.

Results As shown in Table 6. using CoKE shows more
significant improvements with Classification as opposed
to Sentiment Analysis. This is an expected outcome since
our approach focuses on ontology grounding without
considering polarity of words which is the primary goal
of Sentiment Analysis. On the other hand, Classification
as a task is more sensitive to representations that cater to
similarity and relatedness between sentences. Significant
improvements can be seen on classification tasks even by
using averaged CoKE embeddings without disambiguation.

Qualitative Analysis
In this section, we look at some visualisations of senses
induced and show how they are easily interpretable. Since
sense tags have lexical mappings to an ontology, they can be
looked up to find meanings. Moreover, the semantic distribu-
tion of the word-senses also plays a role in obtaining mean-
ingful sense clusters. We analyse two things 1) Sense clus-
ters induced 2) How using different sense forms affect rep-
resentations and sense interactions in their respective word
forms. For all our analysis, we use the concatenated version
of CoKE + GLoVE embeddings and use Principle Compo-
nent Analysis to perform dimensionality reduction.

Sense Clusters
We look at the sense clusters formed by our word specific
senses embeddings for the word “rock”.

The clusters for the word ”rock” is depicted in Figure 2.
The multiple fine-grained word-sense embeddings for the
word “rock” cluster to form 5 basic senses. We see three
distinct clusters that dominate. “Cluster#2” can be inter-
preted as all synsets that speak of rock as a ”substance”. In,
“Cluster#3”, the synsets cluster together to speak of rock as
“music”. An interesting property can be observed compar-
ing “Cluster#1” and “Cluster#5”. The senses found in both
of these clusters interpret “rock” as “movement/motion”.
However, the two distinct clusters also capture the kind of
motion. For instance ,the senses roll.v.13 and rock.v.01
in “Cluster#5” map specifically “sideways movement”.
While the senses in “Cluster#1” map to glosses “sudden
movements”(convulse , lurch,move , tremble) and “back
and forth movements(wobble , rock)”. Another interesting
property is depicted by “Cluster#4”, although they are more
synonymous in meaning to rock as a “substance”, the senses
for gravel cluster very closely to senses mapping to gloss
“jerking” movements capturing deeper relations between
senses.

Sense Forms
In this section, we analyse how different sense-form repre-
sentations interact for synonyms within a synset. We do so
by considering the word-forms “plan” and “planning” both
of which are synonyms of their respective sense-forms of



Figure 2: Sense clusters for the word ”rock”, visualized using PCA.

Figure 3: a) Interactions between different senses of the word ”plan” b) Interactions between different senses of the word
”planning”

“mastermind.v.01” (Gloss: plan and direct, a complex un-
dertaking).

In order to observe the difference in sense-form relation-
ships of word-forms, we consider only common synsets in
“plan” and “planning” for visualisation and observe the in-
teractions with each other. For the word “plan” as shown
in Figure 3.a), we observe that the synset “mastermind” is
closer in proximity to synsets that map to words like “plan”,

“sketch”, “prepare”. In contrast, the same synset in the em-
bedding space for ”planning” as shown in Figure 3.b) in-
teracts closely with synsets that are analogous to “project
planning”, “scheduling”, “organising”. This shows how us-
ing different sense-form representations, leads to different
and unique interactions among the same group of synsets
for each word.



Conclusion
In our work, we explore the possibility of obtaining multi
word-sense representations and sense induction to embed-
ding spaces by using distributional semantics and a knowl-
edge base. The prototypes allow ease of use with WSD sys-
tems, can easily be used in downstream applications since
they are portable and are flexible to use in a wide variety
of tasks. Previous work on obtaining sense representations
falls under three distinct clusters - Unsupervised methods,
Supervised resource-specific methods and ontology ground-
ing. By using pre-trained unsupervised embeddings, super-
vised sense embeddings and jointly grounding them in an
ontology, ours is the first approach that lies in the intersec-
tion of all three approaches. The code and vectors will be
made available publicly as well.
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