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Abstract

The social media is a labyrinth of information which when
uncovers, provides a deep insight into the real-world happen-
ings. In this study, we use social media Twitter to create user
groups or clusters using the retweet and reply directed links.
The main idea behind creating the groups is to figure out a
user’s best suited place and to generate crisp clusters. Each
user forms a group and thus numerous overlapping groups
or clusters are created. To get crisp clusters, we present an
algorithm for removing duplicates in cluster configurations
that feature a significant amount of overlapping. The idea pre-
sented in this paper is that we consider numerous overlapping
clusters in a cluster set and proceed in a manner where each
cluster is compared with a set of users. The user set is cre-
ated from these clusters. The proposed algorithm deletes all
duplicates and is compared to a naive algorithm. Moreover, a
modified algorithm is also proposed whereby selected dupli-
cates are kept based on most significant position of the user
among all clusters in the configuration. This does not guaran-
tee that all duplicates will be removed. But, as shown in the
study a majority of duplicates are removed. Both the proposed
and modified algorithm are lot faster than the naive one. This
domain was selected because its a domain where we wish to
identify unique user communities (clusters) and where large
amount of overlap typically exists. After duplicate elimina-
tion, we are left with few clusters which are much bigger in
size than other clusters in the cluster set.

Introduction
Social networking sites generate extensive amounts of data.
It is generally acknowledged that embedded within this
data there is a lot of useful, domain dependent, knowl-
edge (Adedoyin-Olowe, Gaber, and Stahl 2014). The chal-
lenge is to identify and extract this knowledge in a man-
ner whereby it can be meaningfully utilized. One popular
mechanism for attempting to do this is to use data min-
ing technology (Srivastava 2008; Jensen and Neville 2003;
Barbier and Liu 2011). Examples of where data mining
technology has been applied to social network data in-
clude: content analysis (Naaman, Boase, and Lai 2010; Wu
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et al. 2011), identification of influencers (Cha et al. 2010;
Kiss and Bichler 2008), identification of communities (Lee
et al. 2010; Mishra et al. 2007; Zhang and Yu 2015; Duan
et al. 2014; Gregory 2008; Whang, Gleich, and Dhillon
2016), determination of the geographic location of users
(by message contents) (Cheng, Caverlee, and Lee 2010;
Chandra, Khan, and Muhaya 2011) and using user location
in profile (Hecht et al. 2011), sentiment analysis and opin-
ion mining (Kouloumpis, Wilson, and Moore 2011), deter-
mining who is “following” / “friends with” / “connected to”
whom (Brzozowski and Romero 2011; Kwak et al. 2010),
trend identification (Gloor et al. 2009), and “hot spot” de-
tection (Li and Wu 2010) (indicating some natural disaster)
(Kryvasheyeu et al. 2016).

Generally, there are three ways to analyse Twitter data: the
social network analysis, content analysis and context analy-
sis. Many works have been carried out using message con-
tent while valuable retweet information is neglected (Bild et
al. 2015). In this paper, we are considering retweet and re-
ply directed links to identify user groupings or clusters. A
reweet is a forwarded message from a user to his follow-
ers. This is of interest because it tells us who is connected to
whom, or in Twitter jargon who is “following” whom. More-
over, a user in the Twitter network can retweet any other
user’s tweet and this shows the topical interest of the user
who retweets the tweet of another user. This allows us to
group (cluster) users, according to whom they are “follow-
ing”, which in turn is of interest with respect to a variety of
socio-economic applications such as recommending follow-
ers, recommending feeds for tweeting etc. However, unlike
in the case of conventional clustering algorithms, grouping
users in this way typically results in numerous overlapping
clusters (groups of users). Individual Twitter users typically
follow many others, and are typically followed by many oth-
ers. On an average a Twitter user has 208 followers although
the variance is considerable1. Since a user may be following
numerous other users he may belong to different commu-
nities and thus the overlap. Furthermore, Twitter does not
require a user to be a follower of someone to retweet their
content and thus this also increases the chance of overlap-
ping since a single user can retweet many tweets of other

1Twitter statistics and facts (August 2016), http://
expandedramblings.com/index.php/.



users and vice-versa.
Overlapping clusters (user groupings) may not always

be a bad thing; but for many applications, for example so-
cial media user segmentation, we wish to identify “crisp”
clusters, clusters that have a unique membership. More
generally, overlapping clusters are undesirable in that they
“fade” the dissimilarity (distinctiveness) between clusters.
The greater the cluster overlap, the more similar the clus-
ters become, and the differentiation between clusters deteri-
orates. The problem is exacerbated when we have, not two
or three overlapping clusters, but many hundreds with vary-
ing degrees of overlap (similarity) as in the case of Twitter
communities.

To derive “crisp” clusters from a set of clusters where one
or more of the clusters overlap it is necessary to remove du-
plicate members from individual clusters, using some crite-
ria, so that each cluster becomes unique; a process known
as duplicate removal. In this paper, we have proposed an al-
gorithm to remove all duplicates from clusters. However by
doing so we may be loosing important information. Ideally
duplicate removal should be conducted in such a way that
information is not lost, or at least the loss is minimized. In
the case where we have many overlapping clusters there is
also a computational overhead involved, thus we wish our
duplicate removal to be conducted in such a way that the
number of comparisons that need to be made is minimized.
In this paper, we thus propose a simple, another algorithm
for the effective derivation of crisp clusters from overlap-
ping clusters derived from Twitter data using the medium of
Retweets. In doing so, we are placing users in groups that is
best suited by hierarchy using the retweet/reply links.

With respect to the work presented in this paper we con-
ceptualize Twitter data in terms of a directed graph where
the vertices represent users and the edges retweets or replies
from one user to another. Generally, it is assumed that a
user “retweets” another user if there is something interesting
(topical) in a received tweet. Clusters representing commu-
nities can then be generated starting with an individual “tar-
get” user, vertex in the graph, and proceeding in a breadth
first manner, level-by-level, up to some pre-specified maxim
level (distance from start) l. At each level the vertices are
added to the clustered representing the target user. In this
manner a set of clusters, a cluster configuration, can be pro-
duced; one cluster for each target user in given set of tweets.
However, the resulting set of clusters will feature significant
overlap which makes interpretation difficult (as discussed
above). Note that clustering users using retweets and replies
is different from using Follow links; Follow links are his-
torical in nature, whilst retweet and reply links are current.
Hence clusters generated using retweet and reply links tend
to be much more current (topical) than clusters generated
using Follow links.

Related Work
Distinguishing overlapping clusters is difficult due to much
similarity between the clusters. Our work on overlapping
clusters is based on retweet or reply network (Paul, Dutta,
and Coenen 2016; Lussier and Chawla 2011) of social me-
dia, Twitter. In our case, majority of duplicates are removed

to get unique groups or communities where overlapping is
minimized. Our problem is for exact duplicate removal. In
social media a user has followers and friends. Tweets gener-
ally flow from a user to the followers and friends. The social
followers graph and other communities using followers and
friends are well studied. But the retweet network where there
is a directed edge between two users from source to des-
tination, has received not much attention (Bild et al. 2015).
Size, noise and dynamism are dominant research issues with
social media (Adedoyin-Olowe, Gaber, and Stahl 2014). A
user may be present in different social groups or communi-
ties, that makes overlapping clusters.

Many works have been carried out to detect community
clusters in social media (Lee et al. 2010; Mishra et al. 2007;
Zhang and Yu 2015; Duan et al. 2014; Gregory 2008;
Whang, Gleich, and Dhillon 2016; Goldberg et al. 2010;
Arora et al. 2012; Hou et al. 2015; Dreier et al. 2014;
Lancichinetti and Fortunato 2009). Social networking com-
munities are highly overlapped as a node is present in more
than one community. The benchmark algorithms to detect
communities work better when overlapping is minimized
(Lee et al. 2010). In the paper (Zhang and Yu 2015) the
authors detect community for emerging networks using a
closeness measure “intimacy”. In our case, we have clus-
ter nodes through retweet or reply links. After duplicate re-
moval we get some unique cluster communities. Unique in
the sense is that it does not follow the complete commu-
nity definition (Arora et al. 2012) in the social network. In
the paper (Duan et al. 2014), author has used correlation
analysis to connect to modularity based methods (Shiokawa,
Fujiwara, and Onizuka 2013; Clauset, Newman, and Moore
2004) for community detection.

Although there are number of works using seed expan-
sion(Lee et al. 2010; Whang, Gleich, and Dhillon 2016) for
detecting overlapping communities but there is no clear un-
derstanding which technique is most suitable for a partic-
ular domain (Kloumann and Kleinberg 2014) and the per-
formance of community assignment algorithms (Lee et al.
2010). The paper (Lee et al. 2010) introduced a greedy
clique expansion algorithm removing near duplicate com-
munities using distinct cliques as seed. In (Conover et al.
2011) the authors have used network of retweets and men-
tion network to find political alignment. Cluster analysis of
these networks reveal clear segregation. Our approach, fo-
cuses on exact duplicate removal in overlapping clusters to
get “crisp” cluster communities by finding a suitable posi-
tion of a user in the group.

Scope of The Work
The work presented in this paper is directed at deriving crisp
clusters from overlapping clusters by finding a user’s best
suited position. Some or many clusters are overlapping de-
pending upon the level of hierarchy. Number of overlap-
ping clusters increases as well as the similarity between the
clusters, by going up the level. At each level different clus-
ter sizes are chosen by certain threshold. The problem ad-
dressed here is removal or elimination of duplicates among
overlapping clusters. The first algorithm deletes all duplicate
users among the clusters. The algorithm gradually creates a



set of unique users by comparing a user from this set with
another user from the clusters and simultaneously removes
user from the cluster. The second algorithm is the modifi-
cation of the first algorithm where selected duplicates with
certain criteria are not removed since removing all dupli-
cates will eventually means loss of information. The algo-
rithms are compared with the Naive algorithm with much
improved time complexity.

Problem Formulation
As noted above the overlapping clusters of interest, with re-
spect to the work presented in this paper, are clusters of Twit-
ter users. The clusters are formed using retweet and repliy
links between users. The links are traversed in breadth first
search manner. The sideway links within same layer or level
are not taken. Given a retweet graph G = {V,E} where V
is the vertex or user node and E is the directional edge. A
user Ui is connected to another user Uj if Uj has retweeted
or replied to user Ui, note that the relationship is unidirec-
tional (as opposed to bidirectional). So, there is an edge E
between Uj to Ui. Thus, starting from a given user we can
place this user and all its immediate neighbours into a sin-
gle cluster (where a neighbouring users is one connected di-
rectly to the current user by a retweet or reply). If two users
are “connected” they are in the same cluster. We can then
proceed to the immediate neighbours of the seed user plus
one, and so on to some predefined maximum “level” l. If we
assume a set ofm Twitter users U = {U1, U2, U3, .., Um} =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and the following set of
connections {11 → 1, 8 → 1, 8 → 2, 9 → 2, 2 → 11, 3 →
11, 6 → 8, 12 → 8, 10 → 9, 2 → 5, 5 → 10} (where
Uj → Ui indicates a Retweet/Reply from user Uj to user
Ui); then we would get clusters of the form shown in Fig-
ure 1 assuming l = 2 (the root is at level 0, the “base level”).
The figure shows three clusters with respect to users 1, 2 and
10. The clusters in this case are C1 = {1, 2, 3, 6, 8, 11, 12},
C2 = {2, 6, 8, 9, 10, 12} and C10 = {2, 5, 10}. A user ap-
pears in a cluster only once; there is no duplicity within a
cluster. Each user is allowed to form a cluster and is called
”root user”.
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Figure 1: Example clusters for users

From the above simple example we can see a substan-
tial overlap. Note that each user in each cluster is marked
with its “level of appearance” (neighbourhood level). Where
a user has several level associated with it the level nearest
the root is chosen (the closer to the root the more significant
a user is deemed to be). Thus, given a real Twitter data set,

we can expect extensive overlap. For the purpose of the pro-
posed algorithm all the cluster formation in the cluster set is
used. Moreover, experiments are also performed by select-
ing the largest clusters (in terms of number of members) de-
fined using a threshold τ . For a given maximum level l, the
τ value is such adjusted that it gives top 0.25%, 0.5%, 1.0%,
2.0%, 4.0% etc clusters of the total number of clusters. The
selected value of τ thus dictates a minimum clusters size be-
low which clusters are not considered for duplicate removal.
The clusters are collection of ”users” or ”members”. We will
use these words interchangeably.

Problem: Given a set of n overlapping clusters C =
{C1, C2, C3, . . . , Cn}, with maximum level l, delete all du-
plicates in clusters.

In this paper we propose using an ”empty bucket” cluster
and set of n overlapping clusters. Initially ”Empty bucket”
is empty. Starting from the first cluster in the set the mem-
bers are compared to the ”empty bucket” which is gradually
populated by the members from the clusters. The common
or duplicate users are deleted from the clusters and the non-
duplicate members are added to the ”empty bucket”. The
”empty bucket” will contain only unique members.

Given C = {C1, C2, C3, C4, . . . , Cn} and E = {} where
Ci={U1, U2, U3, U4, . . . , Um}. If Ci ∩ E = Cs. The dupli-
cates in Cs are deleted from the cluster. If Ci - E = Cu. The
uncommon members Cu are added to the ”empty bucket”.
If Ci ∩E = φ. The cluster members are added to the empty
bucket.

Problem: Given a set of n overlapping clusters C =
{C1, C2, C3, C4, . . . , Cn}, with maximum level l, delete
least significant duplicate users.

Select a level l and τ to adjust the number of top
clusters. Given an empty bucket E = {} and C =
{C1, C2, C3, C4, . . . , Cn}. The first step is to populate the
bucket with most significant user Uk. By doing so the algo-
rithm reads all the clusters once. Suppose users in clusters
is given by Ui and users in empty bucket is Ue. The empty
bucket is filled in the following fashion.

1. If Ui = Ue and Ui (level) < Ue(level). Replace Ue by Ui.
2. If Ui 6= Ue. Put Ui in E.
3. If E ={}. Put Ui in E

In the second step, the bucket with most significant users
are compared with all the clusters once. The duplicates are
deleted from the clusters in the following manner.
1. If Ui = Ue and Ui (level) > Ue(level) and Ui (level) 6= 0.

Delete Ui from the cluster.
2. IfUi = Ue andUi (level) =Ue(level). SetUe (level) =−1.

To make sure that all the duplicates with this condition is
deleted except one.

The Proposed Algorithm
In this section the proposed duplicate removal algorithm
is presented. Recall, with respect to the forging, that using
some maximum level l we generate a cluster set C describ-
ing social media (Twitter) users. The set C will include one
cluster per user and thus feature numerous overlapping clus-
ters. Only those users who have got even a single retweet or



reply message are selected to create cluster. Others are ig-
nored. Each cluster member (user) is associated with a level
of appearance. If a user has several levels associated with it
the level nearest to root (target user) will be used. We have
experimented with all the selected users that form clusters.
Yet, we have shown the use of threshold τ . In case we have
even larger data, τ can be used. In that case only the clusters
who’s size (in terms of number of members) as defined by
the threshold τ are selected. Most of the clusters are over-
lapping.

The pseudo for the first algorithm is given in Algorithm 1.
The input is a set of clusters C, generated using some max
level l and pruned using the threshold τ . The output is the
cluster set C ′ with all duplicates removed.

Algorithm 1 Delete User Without Condition
INPUT: A Cluster set C, generated using max level l, and
pruned using τ and an empty bucket set
OUTPUT: The Cluster set C ′ with all duplicates removed

1: for each user Ui in cluster Ci do
2: for each user Ue in Bucket do
3: if Bucket is Empty then
4: put Ui in Bucket
5: else
6: if Ui == Ue then
7: Delete user Ui in Cluster Ci

8: else
9: Put Ui in Bucket

10: end if
11: end if
12: end for
13: end for
14: Return C ′

The above algorithm given in Algorithm 1 deletes all the
duplicates in the clusters by populating an empty bucket
and comparing users in clusters with the bucket users. The
bucket size is the total number of distinct users in the cluster
set. Here, the bucket uses only the user and not the level of
its appearance. In this algorithm the initial generated clusters
will be bigger in size than the later ones because initially the
bucket is empty. Nevertheless all the duplicates are removed
from the cluster set but with a cost. The level of appearance
of a user is not used and thus the information in the clusters
will be less.

The next algorithm is the modification of the above Algo-
rithm 1 which has two parts: These are discussed in further
detail in the following two subsections, Sub-sections and .

Generating Most Significant User Bucket
This sub-section generates a set of most significant user
bucket E′. A user Ui is more significant if it appears near
to the root than the user further away from the root.

The above Algorithm 2 generates a set of users E′ which
are most significant in nature.E′ contains users with its most
significant position given by level. An user appearing clo-
sure to the root is considered more significant than a user

Algorithm 2 Bucket with Most Significant Users
INPUT: A Cluster set C, generated using max level l, and
pruned using τ and an empty bucket set E
OUTPUT: A Bucket set E′ with most significant users Ue

1: for each user Ui in cluster Ci do
2: for each user Ue in Bucket do
3: if Bucket is Empty then
4: put Ui in E
5: else
6: if Ui == Ue and Ui 〈level 〉 < Ue 〈level 〉

then
7: Replace Ue by Ui

8: else
9: put Ui in E

10: end if
11: end if
12: end for
13: end for
14: Return E′

appearing further away from the root. This, E′ is the set of
distinct users with its most significant position. The level of
a user is considered for comparing significance. The clusters
are traversed only once. Initially the bucket set E is empty.
When the algorithm reads the first user in the first cluster,
the bucket is populated. After that, one by one all the users
in all the clusters are read. The user Ui in clusters is com-
pared to Ue of the bucket set E with their level (position
of appearance from the root). The nearest user is the user
which is closer to the root. In the algorithm 2 line 6:9 shows
the comparison. The user Ui with the less value i.e nearest
to the root replaces user Ue from the bucket. The algorithm
continues till all the clusters are read.

Duplicate Removal With Condition
The output from the Algorithm 2 is input for the third al-
gorithm. Each user Ui in the cluster set is compared to the
bucket set E′ user Ue. All the users those are least signifi-
cant and level 6= 0 are deleted from the clusters. If a user
is present in both the cluster and the bucket set with same
level then the user is kept in at least one cluster. All other
duplicates are deleted.

Evaluation
For the evaluation presented in this section the Geo-tagged
Microblog data set2 available from the ARK data repository
held at the University of Washington was used. The dataset
holds 377616 Tweets covering all US states and the Dis-
trict of Columbia (Eisenstein et al. 2010). The dataset fea-
ture 9477 users. From this data set four cluster sets were
generated using a range of values for l, the maximum dis-
tance from the root, {6, 7, 8, 9}. The users who did not get
any retweet or replied messages from any other user or

2http://www.ark.cs.cmu.edu/GeoTwitter.



Algorithm 3 Duplicate Removal
INPUT: A Cluster set C, generated using max level l, and
pruned using τ and Bucket set E′

OUTPUT:: The set C ′ with most duplicates removed

1: for each user Ui in cluster Ci do
2: for each user Ue in Bucket do
3: if Ui == Ue and Ui 〈level 〉 > Ue 〈level 〉 then
4: Delete Ui from cluster
5: if Ui == Ue and Ui 〈level 〉 == Ue 〈level 〉

then
6: Set Ue〈level 〉 == −1
7: end if
8: end if
9: end for

10: end for
11: Return update C ′

self within that time period are not considered for cluster-
ing.This produced cluster sets comprised of 7123 clusters
(|C| = 7123) respectively. Since there are total 9477 users
and the generation of clusters is around 7123, the remaining
2354 are single users with no retweet or reply messages from
anyone or self. 7123 number of clusters also contains single
user cluster like users who have retweeted themselves.These
are 2262 single user clusters out of 7123 clusters. Further, in
7123 clusters total distinct users are 7576 in number. Thus,
1901 users neither received any retweet or reply message nor
they have sent any in the same time period to other users.
As l increases the average number of members per cluster
in the four different cluster sets also increases, and conse-
quently the clusters become more diverse but feature greater
numbers of duplicates.

To analyze the operation of the proposed algorithm we
generated cluster sets with different values for l={6, 7, 8, 9}.
Total number of clusters generated is 7123 and the total
number of distinct users for all levels is 7576. The results
are presented in Table 1, Table 2, Table 3 and Table 4. In
the tables the “Num. of Clusters” column indicates the num-
ber of clusters retained after application of the τ threshold
value. Here τ is set to 100% to generate clusters with min-
imum size of one user. The “Num. of Distinct Users” col-
umn gives the number of distinct users in the retained clus-
ter set. This is also the bucket set generated. The following
two columns give the number of duplicates before and after
the proposed duplicate removal process was applied, and the
last column compares the run time of Naive algorithm with
proposed and modified algorithm. From, the tables it can be
seen that in all cases the proposed algorithm eliminates all
the duplicates featured in each of the cluster sets. To high-
light the advantages that can be gained using the proposed
approach its operation was compared with a naive approach
where we compare every cluster in the cluster set C with ev-
ery other cluster in C and remove all duplicates. Moreover,
the modified algorithm retains certain duplicates and its run-
time is also compared. Number of duplicates retain in the
modified algorithm is shown in the tables. Figure 2 shows

the comparison of run time of the proposed and modified
algorithm with the naive algorithm.

Adding further to the evaluation process, τ is used for
different levels {6, 7, 8, 9}. To explore how the threshold τ
effects the process we considered setting τ to a range of
values in terms of the percentage of top clusters to be re-
tained {0.25%, 0.5%, 0.75%, 1.0%, 2.0%} in the cluster set.
Table 5 shows the result of different τ values for level 9 only.
Figure 3 shows the run time of naive, proposed and modified
algorithm by setting different τ values. In level 9 there are
total 7123 clusters. τ is set such that we get certain percent-
age of top clusters. Thus in the column ”Number of Clus-
ters”, is the top clusters, each with minimum size greater
than the numbers mentioned in the column ”Minimum Size
of Clusters”.

Figure 2: Comparison of runtime of naive algorithm with
proposed and modified algorithm for different levels=
6, 7, 8, 9. τ is set to 100%

Figure 3: Comparison of runtime of naive algorithm with
proposed and modified algorithm at level 9 with different τ
values

Analysis and Observation
The challenge of duplicate removal in large cluster configu-
rations that feature a significant amount of overlap, as in the
case of user communities extracted from social media net-
works (such as Twitter), is the resource required to remove
all duplicates. Furthermore, it becomes more complicated if
selected duplicates are to be retained due to its properties.
In the proposed algorithm a cluster set is read only once and



Algorithms Num. Num of Num. Duplicates Num. Duplicates Percentage of Run Time in
of Clusters Distinct Users Before Elimination After Elimination Duplicates Retained Seconds

Naive 7123 7576 165185 0 0.0 308.593
Proposed 7123 7576 165185 0 0.0 97.593
Modified 7123 7576 165185 8638 5.22 150.766

Table 1: Runtime compared between Naive, Proposed and Modified Algorithms where l = 6 and minimum size of each cluster
is 1, τ = 100%

Algorithms Num. Num of Num. Duplicates Num. Duplicates Percentage of Run Time in
of Clusters Distinct Users Before Elimination After Elimination Duplicates Retained Seconds

Naive 7123 7576 246524 0 0.0 451.328
Proposed 7123 7576 246524 0 0.0 139.297
Modified 7123 7576 246524 9152 3.71 217.938

Table 2: Runtime compared between Naive, Proposed and Modified Algorithms where l = 7 and minimum size of each cluster
is 1, τ = 100%

Algorithms Num. Num of Num. Duplicates Num. Duplicates Percentage of Run Time in
of Clusters Distinct Users Before Elimination After Elimination Duplicates Retained Seconds

Naive 7123 7576 359383 0 0.0 672.281
Proposed 7123 7576 359383 0 0.0 202.313
Modified 7123 7576 359383 9588 2.66 310.383

Table 3: Runtime compared between Naive, Proposed and Modified Algorithms where l = 8 and minimum size of each cluster
is 1, τ = 100%

Algorithms Num. Num of Num. Duplicates Num. Duplicates Percentage of Run Time in
of Clusters Distinct Users Before Elimination After Elimination Duplicates Retained Seconds

Naive 7123 7576 510768 0 0.0 1019.141
Proposed 7123 7576 510768 0 0.0 302.985
Modified 7123 7576 510768 9898 1.93 453.328

Table 4: Runtime compared between Naive, Proposed and Modified Algorithms where l = 9 and minimum size of each cluster
is 1, τ = 100%

Number Minimum Num of Number of Number of Number of RunTime RunTime RunTime
of Size of τ Distinct Duplicates Duplicates After Duplicates After in in in

Clusters clusters Users before Elimination Elimination Seconds Seconds Seconds
Elimination Naive, Proposed (Modified) Naive Proposed Modified

18 750 0.25% 1687 12847 0,0 719 2.938 2.015 2.578
36 700 0.5% 1846 25751 0,0 1359 6.594 4.484 5.172
71 661 1.0% 1900 49434 0,0 1504 15.063 8.281 10.109

142 560 2.0% 2006 92265 0,0 3790 33.0 17.297 20.140
283 445 4.0% 2196 162289 0,0 3496 75.563 34.000 35.828
355 400 5.0% 2263 192506 0,0 3849 97.422 38.672 46.547
427 371 6.0% 2336 220116 0,0 3967 119.328 45.265 49.859
499 342 7.0% 2422 245718 0,0 4186 144.797 49.875 59.390
571 312 8.0% 2472 269115 0,0 4292 171.89 56.907 67.344
714 268 10.0% 2562 310420 0,0 4203 203.563 67.406 78.719

Table 5: Runtime compared between Naive, Proposed and Modified Algorithms where l = 9 and minimum size of each cluster
is set using τ



Level Cluster Size Cluster Size Cluster Size Cluster Size
Less Than 50 Between 50 and 100 Between 100 and 200 Above 200

6 7108 11 04 0
7 7103 13 06 01
8 7098 15 07 03
9 7094 19 07 03

Table 6: Cluster Size After Elimination

all the duplicates are removed. The proposed algorithm does
not take care of the appearance of a user or member by level.
Since, a cluster is generated for each user starting from the
root, it is better to keep the root of the cluster. Moreover, our
intuition say that certain duplicates will enrich the clusters.
To accomplish this, we modified the proposed algorithm to
keep selected duplicates. A user closer to the root user is
more similar to it. The modified algorithm reads the clus-
ter set two times. First, the algorithm reads the cluster set to
generate a set of users by level and in the second pass, all the
clusters are read and compared to the set of users by selec-
tion conditions. This set consists of most significant distinct
user. Those members fail the conditions are deleted. From
Table 1, Table 2, Table 3 and Table 4 it is observed that as the
level l increases the number of duplicates also increases but
the percentage of duplicates deleted decreases drastically as
shown in column ”Percentage of Duplicates Retained”. For
level 6 the percentage of duplicates retained is 5.22% where
as for the level 9 the figure is 1.93%.

In the Table 5, top 10% of the clusters gives us 33% of
total users in the cluster set which is around 7576. Moreover,
after duplicate removal majority of clusters left is of size less
than 50. For example, at level 6, out of 7123 clusters only
15 clusters are of size more than 50. If we bifurcate further
then in this only 4 clusters are there which go beyond 100
in size. This is listed in the Table 6 for other levels. Thus,
the root users in the big clusters are those who got retweet
and reply messages from maximum other users directly or
through chain of other users. We can see these users as the
most prominent users in the cluster set. In general, an in-
fluencer spreads message to maximum members. But in our
case, the root users are those who got maximum retweets
or reply messages. Thus “crisp” clusters are generated for a
cluster set where overlapping is minimized.

Conclusion
Here, we demonstrated methods to eliminate duplicates
among numerous overlapping clusters formed using retweet
and reply message links among users using Twitter data.
The retweet and reply network among users are highly over-
lapping. The overlapping clusters fade dissimilarity. To get
some good clusters or dissimilar clusters to lessen the sim-
ilarity, elimination of duplicates is necessitated. Our meth-
ods work much better than the naive algorithm. Moreover,
using this method we can selectively delete duplicates much
faster. This study also shows the generation of ”crisp” clus-
ters and among them a few prominent clusters, that is, the
clusters which are much bigger than other clusters in the set
after duplicate elimination. The retweet/reply network clus-

ters represent active users in the cluster configuration if we
do not consider the clusters with one member only.

In the future, there are few inroads that open up with this
study. The bucket set can be converted into knowledge set of
individual distinct users which can learn by reading differ-
ent clusters. Thus, the properties of users will be enhanced
and also the clusters. The use of τ can be used for much big-
ger data set for close approximation. Another future work of
the study is to investigate how physical distance matters be-
tween users i.e users who are retweeting the post of another
user. Furthermore, a more detailed study of most prominent
clusters in the cluster set will open up new avenues.
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