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Abstract

Over the past few years, multi-label classification has been
widely explored in the machine learning community. This re-
sulted in a number of multi-label classification methods re-
quiring benchmarking to determine their strengths and weak-
ness. For these reasons, typically, the authors compare the
methods using a set of benchmark problems (datasets) with
regard to different performance measures. At the end, the re-
sults are discussed for each performance measure separately.
In order to give a general conclusion in which the contribution
of each performance measure will be included, we propose a
performance measures fusion approach based on multi crite-
ria decision analysis. The approach provides rankings of the
compared methods for each benchmark problem separately.
These rankings can then be aggregated to discover sets of cor-
related measures as well as sets of evaluation measures that
are least correlated. The performance and the robustness of
the proposed methodology is investigated and illustrated on
the results from a comprehensive experimental study includ-
ing 12 multi-label classification according to 16 performance
measures on a set of 11 benchmark problems.

Introduction
Supervised learning is one of the most widely researched
and investigated areas of machine learning. The goal in su-
pervised learning is to learn, from a set of examples with
known class, a function that outputs a prediction for the class
of a previously unseen example. If the examples belong to
two classes (e.g., the example has some property or not) the
task is called binary classification. The task where the ex-
amples can belong to a single class from a given set of m
classes (m ≥ 3) is known as multi-class classification. The
case where the output is a real value is called regression.

However, in many real life problems of predictive mod-
elling the output (i.e., the target) can be structured, meaning
that there can be more complex output structures such as
vectors of variables with some dependencies among them.
One type of structured output is vector of binary vari-
ables, i.e., the examples can belong to multiple classes si-
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multaneously. This task is known as multi-label classifica-
tion (MLC). The issue of learning from multi-label data
has recently attracted significant attention from many re-
searchers, motivated by an increasing number of new ap-
plications. The latter include semantic annotation of images
and video (news clips, movies clips), functional genomics
(gene and protein function), music categorization into emo-
tions, text classification (news articles, web pages, patents,
emails, bookmarks, ...), directed marketing and others. An
exhaustive list of multi-label applications is presented in
(Gibaja and Ventura 2015).

In recent years, many different approaches have been de-
veloped to solving MLC problems. Tsoumakas and Katakis
(Tsoumakas and Katakis 2007) summarize them into two
main categories: a) algorithm adaptation methods, and
b) problem transformation methods. Algorithm adaptation
methods extend specific learning algorithms to handle multi-
label data directly. Examples include lazy learning (Zhang
and Zhou 2007), neural networks (Crammer and Singer
2003), boosting (De Comité, Gilleron, and Tommasi 2003),
classification rules (Thabtah, Cowling, and Peng 2004), de-
cision trees (Clare and King 2001) (Blockeel, Raedt, and
Ramon 1998) and ensembles thereof (Kocev et al. 2013),
ensembles with label subgroups (RAKEL) (Tsoumakas and
Vlahavas 2007), ensembles of classifier chains (Read et al.
2011) etc. Problem transformation methods, on the other
hand, transform the MLC problem into one or more single-
label classification problems. The single-label classification
problems are solved with a commonly used single-label
classification approach and the output is transformed back
into a multi-label representation. The simplest strategies in-
clude the one-against-all and one-against-one strategies, also
referred to as the binary relevance method (Tsoumakas and
Katakis 2007) and pair-wise method (Fürnkranz 2002) re-
spectively.

Performance evaluation for MLC is a more complex task
than that of classical single-label classification. Due to the
nature of the task: one example can be labelled with mul-
tiple labels. Namely, it is difficult to assess which error is
worse: two instances with two incorrect labels each or four
instances with single incorrect label each. To this end, in
any typical multi-label experiment, it is essential to include
multiple and contrasting measures because of the additional
degrees of freedom that the multi-label setting introduces



(Madjarov et al. 2012).
The relations among the different evaluation measures in

the literature have been theoretically studied and the main
findings can be summarized as follows. To begin with, Ham-
ming loss and subset accuracy have a different structure and
minimization of one may cause a high regret for the other
(Dembczyński et al. 2010). Next, a study on surrogate losses
for MLC showed that none of the convex surrogate loss is
consistent with ranking loss (Gao and Zhou 2013). Further-
more, the F-measure optimality of the inference algorithm
is studied with decision theoretic approaches (Waegeman et
al. 2014). Finally, an investigation on the shared properties
among different measures yielded a unified understanding
for MLC evaluation (Wu and Zhou 2017). All in all, when
benchmarking novel MLC methods, it is necessary to com-
pare their performance with existing state-of-the-art meth-
ods. However, due to the multitude of evaluation measures,
drawing a clear summaries and conclusions is not easy: the
methods have different performance compared to the com-
peting methods on the different evaluation measures. This
makes proving a summary recommendation a complex task.

Considering this, we propose an approach for experimen-
tal comparison of methods for multi-label classification. It
is developed for making a general conclusion using a set
of user-specified performance measures. For this reason,
the approach follows the idea of PROMETHEE methods,
which are applicable in different domains such as, business,
chemistry, manufacturing, social sciences, agriculture and
medicine (Ishizaka and Nemery 2011; Nikouei, Oroujzadeh,
and Mehdipour-Ataei 2017). Recently, they were also used
in a data-driven approach for evaluating multi-objective op-
timization algorithms regarding different performance mea-
sures (Eftimov, Korošec, and Koroušić Seljak 2018). To the
best of our knowledge, they were not used in the domain
of MLC. The PROMETHEE methodology works as a rank-
ing scheme for transforming the data for each benchmark
dataset instead of using some traditional statistical ranking
scheme (e.g., fractional ranking scheme). Further the ob-
tained rankings that are fused from more performance mea-
sures are involved in a statistical test to provide a general
conclusion from the benchmark experiment.

The main contributions of the paper are:

• A methodology for fusing the various evaluation mea-
sures for the task of MLC.

• The proposed methodology is robust considering the in-
clusion or exclusion of correlated measures.

• We elucidate sets of evaluation measures that should be
used together when assessing the predictive performance.

• We identify the correlated measures for each measure sep-
arately.

In the reminder of the paper, we first present the proposed
method for fusion of the performance measures for MLC.
Then, the experimental design is explained followed by the
results and discussion. Finally, the conclusions of the paper
are presented.

Fusion of performance measures
Let us assume that a comparison needs to be made amongm
methods (i.e., alternatives) regarding n performance mea-
sures (i.e., criteria) on a single multi-label classification
problem (i.e., dataset). Let M = {M1,M2, . . . ,Mm} be
the set of methods we want to compare regarding the set of
performance measures Q = {q1, q2, . . . , qn}. The decision
matrix is a m × n matrix (see Table 1) that contains values
of the performance measures obtained for the methods.

Table 1: Decision matrix

q1 q2 . . . qn
M1 q1(M1) q2(M1) . . . qn(M1)
M2 q1(M2) q2(M2) . . . qn(M2)
...

...
...

...
Mm q1(Mm) q2(Mm) . . . qn(Mm)

For drawing conclusions and making recommendations
on methods’ usage by considering a set of performance
measures, we propose a performance measures fusion ap-
proach that follows the idea of PROMETHEE methodol-
ogy (Brans and Mareschal 2005). More specifically, we ex-
ploit the method PROMETHEE II. It is based on making
pairwise comparisons within all methods for each perfor-
mance measure. The differences between the values for each
pair of methods according to a specified performance met-
ric are taken into consideration. For larger differences the
decision maker might consider larger preferences. The pref-
erence function of a performance measure for two methods
is defined as the degree of preference of method M1 over
method M2 as seen in the following equation:

Pj(M1,M2) =

{
pj(dj(M1,M2)), maximization qj
pj(−dj(M1,M2)), minimization qj

,

(1)
where dj(M1,M2) = qj(M1)−qj(M2) is the difference be-
tween the values of the methods for the performance mea-
sure qj and pj(·) is a generalized preference function as-
signed to that performance measure. There exist six types of
generalized preference functions (Brans and Vincke 1985).
Some of them require certain preferential parameters to be
defined, such as the preference and indifference thresholds.
The preference threshold is the smallest amount that is as-
sumed as preference, while the indifference threshold is the
greatest amount of difference that is insignificant.

After selecting the preference function for each perfor-
mance measure, the next step is to define the average pref-
erence index and outranking (preference and net) flows. The
average preference index for each pair of methods gives in-
formation of global comparison between them using all per-
formance measures. The average preference index can be
calculated as:

π(M1,M2) =
1

n

n∑
j=1

wjPj(M1,M2), (2)

where wj represents the relative significance (weight) of the
jth performance measure. The higher the weight value of



a given performance measure the higher its relative signifi-
cance. The selection of the weights is a crucial step in the
PROMETHEE II method because it defines the priorities
used by the decision-maker. In our case, we used the Shan-
non entropy weighted method. For the average preference
index, we need to point out that it is not a symmetric func-
tion, so π(M1,M2) 6= π(M2,M1).

To rank the methods, the net flow for each method needs
to be calculated. It is the difference between the positive,
φ(M+

i ), and the negative preference flow of the method,
φ(M−i ). The positive preference flow gives information how
a given method is globally better than the other methdos,
while the negative preference flow gives the information
about how a given method is outranked by all the other meth-
ods. The positive preference flow is defined as:

φ(M+
i ) =

1

(n− 1)

∑
x∈M

π(Mi, x), (3)

while the negative preference flow is defined as:

φ(M−i ) =
1

(n− 1)

∑
x∈M

π(x,Mi). (4)

The net flow of an algorithm is defined as:

φ(Mi) = φ(M+
i )− φ(M−i ). (5)

The PROMETHEE II method ranks the methods by or-
dering them according to decreasing values of net flows.

Shannon entropy weighted method
To calculate the weights of each performance measure,
we use the Shannon entropy weighted method (Boroushaki
2017). For this reason, the decision matrix presented in Ta-
ble 1 needs to be normalized. Depending of the value that is
preferred (smaller or larger), the matrix is normalized using
the following equations:

qj(Mi)
′
=

maxi(qj(Mi))− qj(Mi)

maxi(qj(Mi))−mini(qj(Mi))
, (6)

or

qj(Mi)
′
=

qj(Mi)−mini(qj(Mi))

maxi(qj(Mi))−mini(qj(Mi))
, (7)

where qj(Mi)
′

is the normalized value for qj(Mi). The sums
of the performance measures in all methods are defined as

Dj =

m∑
i=1

qj(Mi)
′
, j = 1, . . . , n. (8)

The entropy for each performance measure is defined as:

ej = K

m∑
i=1

W

(
qj(Mi)

′

Dj

)
, (9)

where K is the normalized coefficient defined as:

K =
1

(e0.5 − 1)m
, (10)

and W is a function defined as:

W (x) = xe(1−x) + (1− x)ex − 1. (11)

The weight of each performance measure used in Equation
2 is calculated using the following equation:

wj =

1
(n−E) (1− ej)∑n

j=1

[
1

(n−E) (1− ej)
] , (12)

where E is the sum of entropies E =
∑n

j=1 ej .

Correlation analysis
The existing literature on evaluation methodology for ma-
chine learning and especially the ones referring to the task
of MLC correctly identify that some of the typically used
measures are correlated among themselves. Furthermore, it
points out that one needs to consider different uncorrelated
measure to get a better insight into the performance of the
evaluated methods. To this end, we perform a correlation
analysis of the proposed methodology to assess its robust-
ness to correlated measures, and as an additional result we
empirically elucidate the correlations among the measures
widely used for MLC.

We used a correlation analysis that considers the abso-
lute values of pairwise correlation.Namely, we performed a
correlation analysis on each dataset starting by calculating a
correlation matrix for each decision matrix presented in Ta-
ble 1. In our case, the correlation matrix is a n × n matrix
showing Pearson correlation coefficients between the perfor-
mance measures (Benesty et al. 2009). The Pearson correla-
tion coefficient is a measure of the linear correlation between
two performance measures. Its value is between -1 and 1. We
then averaged the correlation matrices across datasets. Fur-
thermore, we removed the performance measures that have
the average absolute correlation greater than some threshold
thus obtaining sets of evaluation measures that are least cor-
related. Finally, by applying a threshold on the correlation
coefficients we obtain the measures that are most correlated
among themselves.

Experimental design
The data used to evaluate the performance of the fusion
method is taken from (Madjarov et al. 2012). In that study,
12 MLC methods are compared according to a set of 16
performance measures separately. The methods are divided
into three groups using the base machine learning algo-
rithm:(1)SVMs (BR (Tsoumakas and Katakis 2007), CC
(Read et al. 2011), CLR (Park and Fürnkranz 2007), QWML
(Mencı́a, Park, and Fürnkranz 2010), HOMER (Tsoumakas,
Katakis, and Vlahavas 2008), RAkEL (Tsoumakas and Vla-
havas 2007), ECC (Read et al. 2011), (2) Decision trees
(ML-C4.5 (Clare and King 2001), PCT (Blockeel, Raedt,
and Ramon 1998), RFML-C4.5 (Breiman 2001), RF-PCT
(Kocev et al. 2013)), and (3) Nearest neighbors (ML-kNN
(Zhang and Zhou 2007)).

The evaluation measures of predictive performance are di-
vided into two groups (Madjarov et al. 2012; Tsoumakas and
Katakis 2007): bipartitions-based and rankings-based. The
bipartitions-based evaluation measures are calculated based
on the comparison of the predicted relevant labels with the
ground truth relevant labels. This group of evaluation mea-
sures is further divided into example-based and label-based.



The example-based evaluation measures ((Hamming loss,
accuracy, precision, recall, F1 score and subset accuracy))
are based on the average differences of the actual and the
predicted sets of labels over all examples of the evaluation
dataset. The label-based evaluation measures (micro preci-
sion, micro recall, micro F1, macro precision, macro recall
and macro F1), on the other hand, assess the predictive per-
formance for each label separately and then average the per-
formance over all labels. The ranking-based evaluation mea-
sures (one-error, coverage, ranking loss and average preci-
sion) compare the predicted ranking of the labels with the
ground truth ranking.

Using the set of performance measures, the methods are
compared using 11 MLC benchmark datasets: emotions,
scene, yeast, medical, enron, corel5k, tmc2007, mediamill,
bibtex, delicious, and bookmarks. A detailed explanation of
the implementation of the methods, definitions of the perfor-
mance measures, and the basic statistics of the datasets are
given in (Madjarov et al. 2012).

We selected and tested two generalized preference func-
tions defined in Equation 1. First, a usual preference function
is used for each performance measure, so we do not need to
select the preference and indifference thresholds. The usual
preference function is presented in Equation 13. Using this
preference function, we can only say if there is a difference
or not, but we do not take into account the difference value.

p(x) =

{
0, x ≤ 0

1, x > 0
, (13)

Second, a V -shape generalized preference function is
used for each performance measure, in which the threshold
of strict preference, q, is set to the maximum difference that
exists for each preference measure on a given benchmark
problem. The V -shape preference function is presented in
Equation 14. Using this preference function, all difference
values are take into account using a linear function.

p(x) =


0, x ≤ 0
x
q , 0 ≤ x ≤ q
1, x > q

, (14)

According to the value of each performance measure that
is preferable (smaller or larger), the 16 performance mea-
sures can be split into two groups: (1)Minimization (Ham-
ming loss, One error, Coverage, Ranking loss) and (2) Max-
imization (Precision, Accuracy, Recall, F1 score, Subset ac-
curacy, Macro precision, Macro recall, Macro F1, Micro pre-
cision, Micro recall, Micro F1, Average precision).

Results and discussion
We compared the 12 MLC methods using the set of 16
performance measures on each dataset separately by using
the performance measures fusion ranking. We performed
the analysis for the two preference functions (usual gener-
alized and V -shaped preference generalized function. The
latter was used with different threshold of strict preference
for each performance measure. The threshold of strict pref-
erence for each performance measure was estimated on each

dataset separately and it was set as the maximum difference
that exists from all pairwise comparisons of the values be-
tween the methods regarding the performance measure on
that dataset.

The performance measures fusion rankings of the meth-
ods obtained using the usual generalized preference function
are presented in Table 2, while the rankings obtained using
the V -shape generalized preference function are presented
in Table 3. Comparing the rankings from the tables, both
generalized preference functions yield equal ranking only
on the bookmarks dataset. The main reason for this is the
size of the bookmarks dataset. Namely, most of the methods
were not able to return a result given the experimental set-
ting as provided in the study by (Madjarov et al. 2012). This
in turn means that the preference functions are calculated on
small number of different values for the performance mea-
sures (the experiments that did not finish on time were given
the equally worst performance as stipulated by (Madjarov et
al. 2012)). For all other datasets, the rankings of the meth-
ods differ. For example, let us focus on the delicious dataset,
for which the rankings only for two methods differ. In the
case of usual generalized preference function the RFML-
C4.5 is ranked as the second and the RF-PCT is ranked as
the first, while in the case of the V -shape generalized pref-
erence function they swap their rankings, the RFML-C4.5 is
ranked as the first and the RF-PCT as the second. So, to un-
derstand why this happens, we will analyze the performance
measures fusion approach on the delicious dataset.

When different generalized preference functions are used,
it follows that the methods have different net flows. The net
flows are dependent from the positive and negative flows,
which are related to the average preference index. Fur-
thermore, the average preference index depends from the
weights of the performance measures and the selected gen-
eralized preference function. In our case, using the Shan-
non entropy weighted method, the result is that all perfor-
mance measures are uniformly distributed on each dataset,
so they all have the same influence on the end result, wj =
w, j = 1, . . . , n, for both versions of the performance fu-
sion approach. The weight for each performance measure is
estimated according to the entropy it conveys. Having this
result, it follows that the difference between the rankings
in both versions comes from the selection of different gen-
eralized preference functions. For this reason, in Figures 1
and 1, the average preference indices, π(RF -PCT,Mi)
and π(RFML-C4.5,Mi) used for calculating the positive
flows, obtained on the delicious dataset, are presented. Us-
ing this figure, we can see that the average preference indices
obtained using the usual generalized preference function
between the RFML-C4.5 and each of the methods: CLR,
QWML, PCT, RAkEL, and ECC, are the same with the av-
erage preference indices obtained between the RF-PCT and
each of the methods: CLR, QWML, PCT, RAkEL, and ECC.
However this is not a case when the V -shape generalized
preference function is used. In this case, the same above-
mentioned average preference indices obtained for RFML-
C4.5 are greater than the same average preference indices
obtained for RF-PCT.

We inspect the results more closely by inspecting a pair-



Table 2: Performance measures fusion rankings using the usual preference generalized function.

Dataset B
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R
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T

emotions 7.00 10.00 8.00 11.00 5.00 3.00 4.00 12.00 6.00 9.00 2.00 1.00
scene 2.00 3.00 5.00 7.00 6.00 11.00 12.00 9.00 1.00 4.00 10.00 8.00
yeast 2.00 4.00 1.00 6.00 3.00 11.00 12.00 8.00 9.00 5.00 10.00 7.00
medical 8.00 5.00 3.00 1.00 2.00 4.00 12.00 10.00 7.00 9.00 11.00 6.00
enron 2.00 7.00 1.00 9.00 4.00 10.00 12.00 11.00 8.00 5.00 6.00 3.00
corel5k 4.00 5.00 1.00 2.00 3.00 9.00 11.00 7.00 12.00 10.00 8.00 6.00
tmc2007 3.00 1.00 4.00 5.00 6.00 11.00 12.00 10.00 7.00 9.00 8.00 2.00
mediamill 4.00 5.00 11.00 10.00 6.00 12.00 7.00 3.00 9.00 8.00 2.00 1.00
bibtex 2.00 1.00 3.00 4.00 5.00 10.00 11.00 8.00 12.00 7.00 9.00 6.00
delicious 4.00 3.00 10.50 10.50 5.00 7.00 8.00 6.00 10.50 10.50 2.00 1.00
bookmarks 9.00 9.00 9.00 9.00 9.00 2.00 5.00 3.00 9.00 9.00 4.00 1.00

Table 3: Performance measures fusion rankings using the V -shape preference generalized function.
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scene 2.00 1.00 4.00 7.00 6.00 11.00 12.00 8.00 3.00 5.00 10.00 9.00
yeast 2.00 4.00 1.00 9.00 3.00 12.00 11.00 6.00 8.00 5.00 10.00 7.00
medical 10.00 9.00 2.00 1.00 4.00 3.00 12.00 6.00 7.00 8.00 11.00 5.00
enron 1.00 10.00 2.00 7.00 4.00 8.00 12.00 11.00 9.00 6.00 5.00 3.00
corel5k 4.00 5.00 1.00 2.00 3.00 10.00 9.00 7.00 11.00 12.00 6.00 8.00
tmc2007 3.00 2.00 4.00 6.00 5.00 11.00 12.00 10.00 7.00 8.00 9.00 1.00
mediamill 4.00 5.00 12.00 11.00 7.00 10.00 6.00 3.00 8.00 9.00 2.00 1.00
bibtex 2.00 1.00 3.00 4.00 5.00 10.00 11.00 7.00 12.00 8.00 9.00 6.00
delicious 4.00 3.00 10.50 10.50 5.00 7.00 8.00 6.00 10.50 10.50 1.00 2.00
bookmarks 9.00 9.00 9.00 9.00 9.00 2.00 5.00 3.00 9.00 9.00 4.00 1.00
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Figure 1: Average preference indices for RFML−C4.5
and RF-PCT obtained on the delicious dataset using
the usual preference function (π(RFML-C4.5,Mi) and
π(RF -PCT,Mi)).
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Figure 2: Average preference indices for RFML−C4.5
and RF-PCT obtained on the delicious dataset using
the V -shape preference function(π(RFML-C4.5,Mi) and
π(RF -PCT,Mi)).



wise comparison with the ECC method. Using the usual gen-
eralized preference function, we can see that π(RFML-
C4.5, ECC) == π(RF -PCT,ECC), while if the V -
shape generalized preference function is used π(RFML-
C4.5, ECC) > π(RF -PCT,ECC). Having the weights
uniformly distributed, all of them have the same value, w,
the Equation 2 is transformed into:

π(M1,M2) =
1

n
w

n∑
j=1

Pj(M1,M2). (15)

Using the usual generalized preference function, we can
see that both methods, RFML−C4.5 and RF−PCT, win
against ECC according to all performance measures, but
using it we only count wins and losses without taking
into account how large are the wins of RFML−C4.5 and
RF−PCT against ECC. By using the usual generalized pref-
erence function the performance measures fusion approach
behaves as majority vote in the case when the influence
of each performance measure is uniformly, which happens
in our case. However, using the V -shape generalized pref-
erence function, the information of how large is the win
is also taken into account. Both methods also win against
ECC in all performance measures, but here the magnitude
of the wins are also considered, which results in different
average preference indices. So it follows that RFML-C4.5
(
∑n

j=1 Pj(RFML − C4.5,M2) = 13.63) has greater av-
erage preference index than the average preference index of
RF-PCT (

∑n
j=1 Pj(RFML− C4.5,M2) = 12.43).

After describing the inner working of the proposed
method for a single dataset in detail, the obtained rank-
ings for each dataset could be further used with some sta-
tistical test to provide a general overall conclusion of the
benchmarking of the MLC methods. The Friedman test was
selected as an appropriate test for use. The p-value for
the rankings obtained with the usual generalized preference
function is 0.0005, while the p-value for the rankings ob-
tained using the V -shape generalized preference function is
0.0061. In both cases, the null hypothesis is rejected, so there
is a difference between the methods according to the set of
16 performance measures compared on a set of 11 bench-
mark datasets. To further check where the difference comes
from, the Nemenyi post-hoc test (all vs. all) was used with
a significance level of 0.05. In the case of usual generalized
preference function, the difference come from the pairs of
methods (RF-PCT, PCT) and (BR, PCT), while in the case
of the V -shape generalized preference function, there is only
a difference in the pair (RF-PCT, PCT). This implies that the
differences in the rankings of the methods are very small.

We next focus on assessing the robustness of the proposed
methodology w.r.t. the presence of correlated measures. Re-
call that some of the evaluation measures for MLC are cor-
related among themselves. For this reason, we performed a
correlation analysis to investigate whether the method rank-
ings will be disturbed by removing the correlated measures.
We performed this analysis using the results from the V -
shape generalized preference function. We investigate three
predefined correlation thresholds: 0.7, 0.8, and 0.9. The ex-
act values of the thresholds were selected for illustrative pur-

poses. . The performance measures that are not removed for
each predefined threshold are (i.e., the least correlated):
• 0.7: coverage, macro precision, micro precision, micro re-

call, subset accuracy.
• 0.8: hamming loss, macro precision, micro precision, mi-

cro recall, precision, ranking loss, subset accuracy.
• 0.9: average precision, hamming loss, macro precision,

micro precision, one error, precision, recall, ranking loss,
subset accuracy.
The rankings obtained for each predefined threshold are

further tested with the Friedman test. In all cases the p-
values is smaller than 0.05, so the null hypothesis is rejected
and the Nemenyi test was used to get the source of the dif-
ference. In all cases there are no big differences in the re-
sults from the post-hoc test. When the correlation threshold
is set at 0.9, the difference comes from the pairs of methods:
(RF-PCT, PCT), (RF-PCT, ECC), and (RF-PCT, RAkEL);
in the case of 0.8 from the pairs of methods (RF-PCT, PCT)
and (RF-PCT, ECC); and in the case of 0.7 from the pairs
of methods (RF-PCT, PCT), (RF-PCT, ECC), and (RF-PCT,
RAkEL). If we compare these results with the result ob-
tained when all performance measures are used, there are not
big changes, the quesition that arises is only if there is a sta-
tistical significance between the pairs (RF-PCT, ECC), and
(RF-PCT, RAkEL), which can be further explored within an
one vs all analysis.

However, in a lot of papers authors are also interested
in the practical significance of the results. The rankings for
each method across the datasets for each predefined thresh-
old are thus averaged (Table 4). Next, we check for statis-
tical difference between them using the Friedman test. The
p-value is 0.935, so it follows that there is no difference be-
tween the average rankings that are obtained for each prede-
fined correlation threshold. Also, for each predefined thresh-
old, we ranked them starting from the best till the worst
method according to its average ranking (Table 5). Form
here, it follows that there is no big differences regarding the
correlation threshold that is used. Notwithstanding, the dif-
ference for the HOMER method is noticeable. This is due
to the fact that HOMER performs better on the correlated
measures (thus its high score). Conversely, CC seems that it
performs worse on the correlated measures.

Furthermore, to quantify the robustness, the absolute dif-
ference between the rankings obtained on each dataset for
each predefined threshold and the rankings obtained us-
ing all performance measures are calculated. Next, for each
method, the average absolute difference is calculated across
datasets to investigate how much the methods change their
ranking (Table 6). Using these results, it follows that the
rankings are robust to the correlated measures, they can vary,
but with a very small differences.

Finally, we use the aggregated correlation matrix across
datasets to elucidate the correlated measures. The results are
given in Figure 3. The results show a large group of inter-
connected measures. We can note that accuracy, F1 score
and micro F1 are connected with most measures (each has
8 connections). The least connected are the ranking based
measures.



Figure 3: Correlation between performance measures. Red edges are for correlation greater than 0.9, blue and red edges are for correlation
greater than 0.8, and green, blue, and red edges correspond to correlation more than 0.7. The evaluation measures Hamming loss, one-error
and micro precision are not correlated with the other measures.

Table 4: Average rankings for each method across datasets.

0.7 0.8 0.9 All
BR 4.82 4.82 4.45 4.45
CC 5.09 5.18 5.45 5.36
CLR 5.14 5.32 5.23 5.23
QWML 6.77 6.77 6.41 7.05
HOMER 6.27 6.55 6.73 5.09
ML-C4.5 8.27 8.09 7.91 7.91
PCT 9.09 9.00 9.27 9.27
ML-kNN 6.91 6.91 6.91 7.18
RAkEL 8.41 7.95 8.50 8.23
ECC 8.59 8.59 8.59 7.95
RFML-C4.5 5.45 5.45 5.36 6.27
RF-PCT 3.18 3.36 3.18 4.00

This is the first attempt at treating the versatile results of
MLC experiments in an unified way. More specifically, most
of the works in the area report performance along many in-
dividual measures and making general conclusions in such
a setting is heavily impaired. This is evident also in the ex-
tensive experimental comparison performed by (Madjarov et
al. 2012), where the results are extensively discussed along
multiple evaluation measures. We consider the results from
this study to evaluate and illustrate our method because it
is the most extensive and most complete study for MLC. We
could easily use also other experimental results, but there are
not many that follow the same experimental design and have
the results readily publicly available.

The potential for practical use of the proposed method is

Table 5: Practical rankings for each method across datasets.

0.7 0.8 0.9 All
BR 2.00 2.00 2.00 2.00
CC 3.00 3.00 5.00 5.00
CLR 4.00 4.00 3.00 4.00
QWML 7.00 7.00 6.00 7.00
HOMER 6.00 6.00 7.00 3.00
ML-C4.5 9.00 10.00 9.00 9.00
PCT 12.00 12.00 12.00 12.00
ML-kNN 8.00 8.00 8.00 8.00
RAkEL 10.00 9.00 10.00 11.00
ECC 11.00 11.00 11.00 10.00
RFML-C4.5 5.00 5.00 4.00 6.00
RF-PCT 1.00 1.00 1.00 1.00

enormous. From a user perspective, the proposed method
takes as input the tables with the results does the necessary
calculations and outputs the overall rankings of the meth-
ods across the different evaluation measures. This is very
convenient considering the number of evaluation measures
typically used for MLC. This way benchmarking of new
methods for MLC can be performed with a great ease. More-
over, it provides the user a nice overview of the methods per-
formance: The proposed methodology shows its robustness
on correlated measures and also defines sets of performance
measure that are not correlated and can be further included
in individual analyses.

We need to mention that the proposed methodology can
easily consider also other performance measures such as



Table 6: Average absolute difference between the rankings
obtained for each predefined threshold and the rankings ob-
tained using all performance measures across datasets.

(0.7, All) (0.8, All) (0.9, All)
BR 0.91 0.91 0.91
CC 0.64 0.91 1.18
CLR 1.00 1.00 0.55
QWML 0.64 0.64 0.82
HOMER 1.18 1.64 1.64
ML-C4.5 0.73 0.55 0.36
PCT 0.18 0.27 0.00
ML-kNN 0.64 0.64 0.64
RAkEL 0.36 0.82 0.45
ECC 1.00 1.18 1.00
RFML-C4.5 0.82 0.82 0.91
RF-PCT 0.82 0.64 0.82

running times and memory consumption.

Conclusions
In this paper, we propose an approach for fusing multiple
evaluation measures for MLC into an overall assessment of
performance. The benefit of using this approach is manifold.
First, it is designed for making a general conclusion using a
set of performance measures. Second, it avoids the compar-
ison according to multiple performance measures separately
and then reporting on the results in a biased manner. Third,
it is robust to inclusion of correlated evaluation measures.
Finally, it gives lists of evaluation measures that are corre-
lated among themselves thus avoiding comparisons only on
correlated measures.

For future work, we plan to extend this approach by in-
vestigating different preference functions and selecting the
best suitable one for each performance measure regarding its
properties. Next, we will investigate the building of hybrid
methods (mix of more generalized preference functions) that
can be used for experimental comparison of methods for
MLC. Finally, we will extend the experimental study by in-
cluding more datasets and methods.
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2012. An extensive experimental comparison of methods for
multi-label learning. Pattern recognition 45(9):3084–3104.
Mencı́a, E. L.; Park, S.-H.; and Fürnkranz, J. 2010. Effi-
cient voting prediction for pairwise multilabel classification.
Neurocomputing 73(7-9):1164–1176.
Nikouei, M. A.; Oroujzadeh, M.; and Mehdipour-Ataei, S.
2017. The promethee multiple criteria decision making
analysis for selecting the best membrane prepared from sul-
fonated poly (ether ketone) s and poly (ether sulfone) s for
proton exchange membrane fuel cell. Energy 119:77–85.



Park, S.-H., and Fürnkranz, J. 2007. Efficient pairwise clas-
sification. In European Conference on Machine Learning,
658–665. Springer.
Read, J.; Pfahringer, B.; Holmes, G.; and Frank, E. 2011.
Classifier chains for multi-label classification. Machine
learning 85(3):333.
Thabtah, F. A.; Cowling, P.; and Peng, Y. 2004. MMAC: A
New Multi-class, Multi-label Associative Classification Ap-
proach. In Proc. of the 4th IEEE International Conference
on Data Mining, 217–224.
Tsoumakas, G., and Katakis, I. 2007. Multi-label classifica-
tion: An overview. International Journal of Data Warehous-
ing and Mining (IJDWM) 3(3):1–13.
Tsoumakas, G., and Vlahavas, I. 2007. Random k-labelsets:
An ensemble method for multilabel classification. In Euro-
pean conference on machine learning, 406–417. Springer.
Tsoumakas, G.; Katakis, I.; and Vlahavas, I. 2008. Effective
and efficient multilabel classification in domains with large
number of labels. In Proc. ECML/PKDD 2008 Workshop on
Mining Multidimensional Data (MMD08), volume 21, 53–
59. sn.
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