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Abstract

Preventable hospital readmissions have been identified as
one of the primary targets for reducing costs and improv-
ing healthcare delivery. However, most data driven studies for
understanding readmissions have produced non-interpretable
black boxes, which precludes them from being used effec-
tively within the decision support systems in the hospitals. A
novel strategy to improve the interpretability of a linear model
by incorporating domain knowledge is proposed here. The
central idea is to exploit the hierarchical relationships among
the features (medical diagnosis codes, in this case) using
a tree-structured sparsity-inducing regularization norm. The
proposed method transforms the hierarchical relations among
features into a graph and then applies graph-guided regular-
ization during the model learning. Additionally, an evaluation
metric is proposed to quantify the interpretability of a linear
model with respect to the domain hierarchy. Results on two
healthcare claims data sets are shown, where a model is learnt
to predict a patient’s risk of readmission, based on the medi-
cal history and other relevant features. Results show that the
proposed method is able to learn a model which can predict
readmission risk with accuracies that are comparable to ex-
isting methods, but produces a highly interpretable output,
which allows medical experts to draw clinically relevant in-
sights and identify key factors associated with hospital read-
missions. Some of these factors conform to existing beliefs,
e.g., impact of surgical complications and infections during
hospital stay. Other factors, such as the impact of mental dis-
order and substance abuse on readmission, provide empirical
evidence for several pre-existing but unverified hypotheses.
The findings of this study will be instrumental in designing
the next generation decision support systems for preventing
readmissions.

1 Introduction
Hospital readmissions are prevalent in the healthcare sys-
tem and contribute significantly to avoidable costs. In United
States, recent studies have shown that the 30-day readmis-
sion rate among the Medicare beneficiaries1 is over 17%,

Copyright held by the author(s). In A. Martin, K. Hinkelmann, A.
Gerber, D. Lenat, F. van Harmelen, P. Clark (Eds.), Proceedings of
the AAAI 2019 Spring Symposium on Combining Machine Learn-
ing with Knowledge Engineering (AAAI-MAKE 2019). Stanford
University, Palo Alto, California, USA, March 25-27, 2019.

1A federally funded insurance program representing 47.2 %
($182.7 billion) of total aggregate inpatient hospital costs in the

with close to 75% of these being avoidable (Mpa 2007),
with an estimated cost of $15 Billion in Medicare spend-
ing. Similar alarming statistics are reported for other private
and public insurance systems in the US and other parts of
the world. In fact, management of care transitions to avoid
readmissions has become a priority for many acute care fa-
cilities as readmission rates are increasingly being used as a
measure of quality (Conway and Berwick 2011).

Given that the rate of avoidable readmission has now
become a key measure of the quality of care provided in
a hospital, there have been increasingly large number of
studies that use healthcare data for understanding readmis-
sions. Most existing studies have focused on building mod-
els for predicting readmissions using a variety of available
data, including patient demographic and social characteris-
tics, hospital utilization, medications, procedures, existing
conditions, and lab tests (Futoma, Morris, and Lucas 2015;
Choudhry et al. 2013; Donze et al. 2013). Other meth-
ods use less detailed information such as insurance claim
records (Yu et al. 2013; He et al. 2014). Many of these meth-
ods use machine learning methods, mainly Logistic Regres-
sion, to build classifiers and have reported consistent perfor-
mance on a variety of clinical data sets. In fact, most papers
about readmission prediction report AUC scores in the range
of 0.65-0.75.

While the predictive models have shown promise, their
moderate performance means that they are still not at a
stage where hospitals could use them as “black-box” de-
cision support tools. Moreover, such models are not easily
interpretable to provide actionable insights to the decision
makers. At the same time, beyond the selection of the initial
set of features to learn from, these solutions do not explicitly
utilize the rich information available in the medical domain.

In this paper, we explore incorporation of one such do-
main information, into the model learning process. Specifi-
cally, we utilize the hierarchical relationships among differ-
ent medical diagnosis codes, available as a taxonomical tree
(See Section 3 for details). The tree structure is utilized as
a regularization penalty, to enforce the model (logistic re-
gression) to learn a sparse solution such that the non-zero
weights are localized within a few sub-trees. The key idea
is that such a solution would be easier to interpret compared

United States (Pfuntner, Wier, and Steiner 2013).



to a solution in which the weights are “scattered” across. A
graphical illustration is provided in Figure 1. The proposed
method falls under the general class of structured spar-
sity regularization based machine learning models (Mosci
et al. 2010), which consists of numerous schemes to ex-
ploit different types of relationships among features, includ-
ing groups (Yuan and Lin 2006), sequential (Tibshirani et
al. 2005), and graphs (Chen et al. 2010). However, regular-
ization methods for scenarios where the features are related
over a tree are sparse, and the existing ones provide an indi-
rect way of capturing the tree structure (Zhao, Rocha, and Yu
2009), which, as observed later in the experiments, makes
them inadequate for the target problem of readmission pre-
diction.

The proposed regularization scheme transforms the tree
structure into a weighted graph that uses the “tree-distance”
as the weight of the edge between the corresponding nodes
in a graph, and then employs a graph based penalty to force
the machine learning algorithms to favor solutions in which
the non-zero weights are strongly linked in the graph. The
regularizer is incorporated into a standard logistic regres-
sion classifier, using truncated gradient descent (Langford,
Li, and Zhang 2008) for the optimization step. This is used
to learn a readmission prediction model that uses diagno-
sis codes from a patient’s medical history to predict his or
her readmission risk, as a binary label. Results on two data
sets, extracted from: 1). New York State Medicaid records
(MDW), and 2). MIMIC-III data set (a publicly available
data set), show that the proposed model not only performs
comparably, in terms of accuracy, to classical regularization
schemes such as LASSO and existing tree-based regular-
izer (Zhao, Rocha, and Yu 2009), but learns a sparse model
that is significantly better than others in terms of the inter-
pretability. To this effect, we propose a quantitative metric
to assess the interpretability of a model in which the features
are arranged in a tree structure.

By analyzing the model trained on the MDW data, we
infer several important insights to improve the understand-
ing of readmissions. Some of our findings conform to exist-
ing beliefs, for example, the importance of bacterial infec-
tions during hospital stay. Other findings provide empirical
evidence to support existing hypotheses amongst healthcare
practitioners, for example, the effect of the type of insurance
on readmissions (Hewner et al. 2014). Most interesting find-
ings from our study reveal surprising connections between
a patient’s non-disease background and the risk of readmis-
sion. These include behavioral patterns (mental disorders,
substance abuse) and socio-economic background. For the
result of the analysis of MIMIC-III data, it also has similar
inference. For example, bacterial infections during hospital
stay, chronic circulatory and respiratory system diseases are
important factors to predict readmission. Moreover, profited
by semantic refining ability of tree-based regularization, We
can infer the significant disease classification to readmission
straightforward. For example, class of Diseases Of The Cir-
culatory System and Metabolic Disorders are highlighted for
understanding of readmissions.

We believe that such findings can have a significant im-
pact on how healthcare providers develop effective strate-

(a) No taxonomy-guided regularization

(b) Taxonomy-guided regularization

Figure 1: Two possible linear models for a hypothetical sce-
nario with same sparsity and same model performance. The
data set has seven features (f1 − f7) arranged as leaves of
a tree. The red leaf nodes indicate the features that are non-
zero in the learnt model. The first solution does not provide
an interpretable solution as per the taxonomy. The second
solution, on the other hand is more interpretable.

gies to reduce readmissions. At present, the healthcare ef-
forts in this context have been twofold. First is the effort
to improve the quality of care within the hospital and the
second is to develop effective post-discharge strategies such
as telephone outreach, community-based interventions, etc.
The results from this study inform the domain experts on
both fronts.

The rest of the paper is organized as follows. We review
existing literature on readmission prediction in Section 2.
We describe the data used for our experiments in Section 3
and formulate the machine learning problem in Section 4.
We discuss the classification methodology in Section 5. We
present the algorithm for measurement of model’s inter-
pretability in Section 6. The results are presented in Sec-
tion 7. We discuss the importance of interpretable outcome
by including a real world case study in Section 8.



2015 ICD-9-CM

Infectious & Parasitic Neoplasms . . . Injury & Poisoning

Intestinal Infections

Tuberculosis

Zoonotic Bacterial
Infections

. . .

Malignant (Lip,
Oral Cavity, . . .)

Malignant (Diges-
tive)

. . .

External cause sta-
tus

Activity

Railway Accidents

. . .

Figure 2: A sample portion of ICD9-CM classification. See url2 for complete hierarchy.

2 Related Work
Coincident with the rising importance of readmissions in
reducing healthcare costs, there have been several papers
that use clinical and insurance claims information to build
predictive models for readmissions (Kansagara et al. 2011)
using different machine learning models including Deep
Neural Networks (Jamei et al. 2017; Lin et al. 2018;
Xiao et al. 2018), Logistic Regression (Futoma, Morris,
and Lucas 2015; Choudhry et al. 2013; Donze et al. 2013;
Niu 2013) and Support Vector Machines (Yu et al. 2013).
However, most of these solutions have focused on improving
the accuracy of the predictive model, and not necessarily on
the interpretability of the model to improve the understand-
ing of the readmission problem. Papers that focus on inter-
pretability are limited to identifying the best features that
predict readmission (Jiang et al. 2018) and have typically fo-
cused on a small set of patients or hospitals (Yu et al. 2013;
Amarasingham et al. 2010). In this paper, we are focusing
on a more direct approach that is scalable to any problem
setting.

Finally, the hierarchical relationship has never been ex-
ploited for building predictive models for readmission.
Singh, et. al, (Singh et al. 2014) have presented a similar
approach in the context of predicting disease progression,
however, the authors focus on using the disease hierarchy
to come up with new features that are fed into the classi-
fier. Additionally, there is no standard of measurement for
interpretability of prediction model especially for structured
based, while we propose a general methodology to address
the problem.

3 Data
For the experiments, we explored two different data sets that
consist of healthcare insurance claims and electronic health
records (EHR).

The fist dataset is obtained from the New York State Med-
icaid Data Warehouse (MDW). Medicaid is a social health

2http://www.icd9data.com/2015/Volume1/
default.htm

care program for families and individuals with low income
and limited resources. We analyzed four years (2009–2012)
of claims data from the MDW. The claims correspond to
multiple types of health utilization including hospitaliza-
tions, outpatient visits, etc. While the raw data consisted of
4,073,189 claims for 352,716 patients, we only included the
patients in the age range 18–65 with no obstetrics related
hospitalizations. The number of patients with at least one
hospitalization who satisfied these conditions were 11,774
and had 34,949 claims.

For each patient we have information of patient’s admis-
sion medical history extracted from four years of claims data
represented as a binary vector that indicates if the patient
was diagnosed with a certain disease in the last four years.

The second dataset is Multi-parameter Intelligent Moni-
toring in Intensive Care (MIMIC-III) public dataset (John-
son et al. 2016). This data is a large, freely-available
database comprising de-identified health-related data asso-
ciated with over forty thousand patients who stayed in crit-
ical care units of the Beth Israel Deaconess Medical Center
between 2001 and 2012.

While the database includes information such as demo-
graphics, vital sign measurements made at the bedside (one
data point per hour), laboratory test results, procedures,
medications, caregiver notes, imaging reports, and mortality
(both in and out of hospital), we focus on admission records
to extract the medical codes as part of each patient’s history.

According to the dataset we retrieved from the MIMIC-
III dataset, there are 46516 patients in total with 3996 of pa-
tients flagged as readmissions. The medical history for each
patient consists of 6783 diagnosis codes.

Diagnosis Codes
Disease information is encoded in insurance claims and
medical records using diagnosis codes. The International
Classification of Diseases (ICD) is an international stan-
dard for classification of disease codes. The data used in
this paper followed the ICD-9-CM classification which is a
US adaptation of the ICD-9 classification. Conceptually, the
ICD-9-CM codes are structured as a tree (See Figure 2 for a



sample) with 19 broad disease categories at level 1. The en-
tire tree has 5 levels and has total of 14,567 diagnosis codes.
While the primary purpose of ICD taxonomy has been to
support the insurance billing process, it contains a wealth of
domain knowledge about the different diseases.

Readmission Risk Flag
For each patient in the above described cohort, we assign a
binary flag for readmission risk. The readmission risk flag
is set to 1 if the patient had at least one pair of consecu-
tive hospitalizations within 30 days of each other in a single
calendar year, otherwise it is set to 0.

4 Problem Statement
Given a patient’s disease history, we are interested in pre-
dicting the readmission risk (binary flag) for the patient. The
problem formulation is different from many existing stud-
ies (Futoma, Morris, and Lucas 2015), where the focus is
on assigning a readmission risk to a single hospitalization
event. Our focus is on understanding the impact of socio-
economic and behavioral factors on a readmission.

We denote each patient i as a vector xi consisting of
11,881 elements for the MDW dataset and 6,873 elements
for the MIMIC-III admission dataset corresponding to the
number of disease codes showed in data respectively. Note
that while ICD-9-CM classification contains 14,567 codes,
only 11,881 and 6,783 codes are observed in each data set
used in this paper. We selected patients that age in between
18 and 65 and excluded pregnancy related diseases. All el-
ements in the vector are binary. The readmission risk flag
is denoted using yi ∈ {0, 1} where 1 indicates readmission
risk.

From machine learning perspective our task is to learn a
classifier from a training data set 〈xi, yi〉Ni=1 which can be
used to assign the readmission risk flag to a new patient rep-
resented as x∗. Note that the input vector xi is highly sparse.
For example, in the NY Medicaid dataset, on average, there
are only 36 non-zeros out of total 11,884 possible codes.

5 Methodology
We use a logistic regression (LR) model (Cox 1958) as the
classifier, which, is the most widely used model in the con-
text of readmission prediction (Futoma, Morris, and Lucas
2015). The LR model, for binary classification tasks, com-
putes the probability of the target y to be 1 (readmission
risk), given the input variables, x as:

p(y = 1|x) =
1

1 + exp(−β>x)
(1)

Where β is the LR model parameter (regression coeffi-
cients). We assume that x includes a constant term corre-
sponding to the intercept.

The model parameter β are learnt from a training data set
(〈xi, yi〉Ni=1) by optimizing the following objective function:

β̂ = arg min
β

N∑
i=1

log(1 + exp(−yiβ>xi)) + λΩ(β) (2)

where the first term refers to the training loss and the second
terms is a regularization penalty imposed on the solution; λ
being the regularization parameter.

Existing Regularization Schemes
L1 Regularizer Different forms of regularization penal-
ties have been used in the past, including the widely used
l1 and l2 norms (Tibshirani 1994). While l2 norm (Ω(β) =
‖β‖2 = (

∑
j β

2
j )1/2) is typically used to ensure stable re-

sults, l1 norm (Ω(β) = ‖β‖1 =
∑

j |βj |) is used to promote
sparsity in the solution, i.e., most coefficients in β are 0.

However, l1 regularizer does not explicitly promote struc-
tural sparsity. Given that the features used in predicting read-
mission risk have a well-defined structure imposed by the
ICD-9 standards, we explore regularizers that leverage this
structure for model learning:

Sparse Group Regularizer This regularizer (also referred
to as Sparse Group LASSO or SGL) assumes that the input
features can be arranged into K groups (non-overlapping or
overlapping) (Bach 2008). The SGL regularizer is given by:

Ω(β) = α‖β‖1 + (1− α)

K∑
k=1

‖βGk
‖2 (3)

where βGk
are the coefficients corresponding to the group

Gk. The above penalty function favors solutions which se-
lect only a few groups of features (group sparsity). For the
task of readmission prediction, we divide the features corre-
sponding to all numbers of diagnosis codes included into 19
non-overlapping groups, based on the top level groupings in
the ICD-9-CM classification (See Table 1).

Tree Structured Group Regularizer This regularizer,
also referred to as Tree Structured Group LASSO (TSGL),
explicitly uses the hierarchical structure imposed on the fea-
tures. The TSGL regularizer is given by:

Ω(β) =

D∑
i=0

Ni∑
j=1

‖βGi
j
‖1 (4)

where G denotes the tree constructed using the hierarchy of
the diagnosis codes. Gi

j denotes the jth node in the tree at
the ith level. Thus G0

1 denotes the root level, and so on.

A Novel Sparse Tree-Structure Regularizer
The TSGL regularizer, discussed above, treats the tree struc-
ture as a special overlapped group, which ignores the hidden
relationship between nodes at different levels. To overcome
this deficiency, we propose a different way to exploit the tree
structure. The new regularization penalty is defined as:

Ω(β) = λ1

m∑
i=1

m∑
j=1

Dij(βi − βj)2 + λ2‖β‖1 (5)

Where the βi and βi are coefficients of features i and j, re-
spectively and Dij is the tree distance between features i
and j and will be introduced in next subsection. The first
penalty term ensures that the selected features are closer to
each other in the taxonomy tree while the second term, ‖β‖1,
ensures the overall sparsity of the solution.



1 Infectious And Parasitic Diseases
2 Neoplasms
3 Endocrine, Nutritional And Metabolic Diseases, And

Immunity Disorders
4 Diseases Of The Blood And Blood-Forming Organs
5 Mental Disorders
6 Diseases Of The Nervous System And Sense Organs
7 Diseases Of The Circulatory System
8 Diseases Of The Respiratory System
9 Diseases Of The Digestive System

10 Diseases Of The Genitourinary System
11 Complications Of Pregnancy, Childbirth, And The

Puerperium
12 Diseases Of The Skin And Subcutaneous Tissue
13 Diseases Of The Musculoskeletal System And Con-

nective Tissue
14 Congenital Anomalies
15 Certain Conditions Originating In The Perinatal Pe-

riod
16 Symptoms, Signs, And Ill-Defined Conditions
17 Injury And Poisoning
18 Supplementary Classification Of Factors Influencing

Health Status And Contact With Health Services
19 Supplementary Classification Of External Causes Of

Injury And Poisoning

Table 1: Top level disease groups in the ICD-9-CM classifi-
cation

Distance Matrix for Tree The distance between any two
nodes in the tree, Dij is defined in terms of the length of the
path between the two nodes. If the node i is an “ancestor” of
node j, or vice-versa, the distance is defined as:

Dij = (li − lj)2 (6)

where li denotes the level or the number of steps from the
root for node i. If the nodes i and j do not share any ancestral
relationship, then the distance is defined as:

Dij = ((li − lc)2 + (lj − lc)2)3 (7)

where c is the node that is the nearest common ancestor for
nodes i and j. The cubic power is used to sharply increase
the weight with the number of levels to go up by to find
the common ancestor. Thus, Dij will be largest for two leaf
nodes whose common ancestor is the root node.

The data matrix consisting of the distances between all
pairs of leaf nodes (features) from the MIMIC-III data set is
shown in Figure 3.

Optimization To solve the optimization problem in (2) us-
ing the regularization penalty defined in (5), we first convert
the first penalty term (tree structure sparsity) into a graph
constraint as:

m∑
i=1

m∑
j=1

Dij(βi − βj)2 = β>Lβ (8)

where L is a m×m matrix, such that:

Lij =

{
0 if i = j

−Dij otherwise
(9)

Figure 3:D)ij values for all feature pairs in MIMIC-III data.

The revised objective function for the regularized LR model
can be written as:

β̂ = arg min
β

N∑
i=1

log(1 + exp(−yiβ>xi))

+λ1β
>Lβ

+λ2‖β‖1

(10)

Truncated Gradient Descent Note that the objective
function and the tree penalty term have a convex form such
that one can calculate the gradient of the objective function
with respect to the weight vector, β, and use that within a
gradient descent algorithm. However, due to the presence
of the l1 term (‖β‖1), a direct gradient descent formula-
tion is not possible. We employ Truncated Gradient De-
scent (Langford, Li, and Zhang 2008) which has been shown
to be effective in learning solutions under l1 regularization
penalties.

The idea behind truncated gradient descent is to ignore
the l1 term when calculating the gradient, and round small
coefficients (that are not larger than a small threshold) to
zero after every k online steps, i.e., at every kth step:

β(t) = T0(β(t−1) − η∇J) (11)

Where ∇J is the gradient without the l1 penalty term and
T0 defined by:

T0(βj , θ) =

{
0 if |βj | < θ

βj otherwise
(12)

That is, we first apply the standard gradient descent rule,
and then round small coefficients to zero to enforce the l1
sparsity.



6 A Quantitative Measure for
Interpretability

In classical sparsity inducing models, sparsity is measured
using the number of non-zero coefficients or weights. While
this is reasonable for settings with “flat” structure, e.g.,
LASSO or Group LASSO, this does not reveal the true in-
terpretiveness of a solution, in the context of a tree structure.
For instance, Figure 1 illustrates how two solutions with
same number of non-zero coefficients can have different in-
terpretability.

We propose a novel measure to assess the interpretive-
ness of a solution. The proposed measure is calculated in a
bottom-up fashion, starting from the leaf nodes. For the ith
node in the tree, we define the purification noise, Pi as:

Pi = Ei +
∑
j∈Ci

Pj (13)

where Ci is the set of non-leaf children of node i and Ei is
the Shannon Entropy of the current ith node by measuring
the information loss of all leaf child nodes, i.e., children that
are actual features:

Ei = −pi log2(pi) (14)

where pi is the fraction of leaf children of node i with a non-
zero coefficient. Starting from the parents of the leaf nodes,
the purification noise is recursively computed, and finally
the purification noise for the root node, i.e., Proot is treated
as the overall purification noise for the entire solution.

7 Results
In this section we present our findings by applying logis-
tic regression classifier for the task of readmission predic-
tion on the MDW data and MIMIC-III data described ear-
lier. We first compare the performance of the different reg-
ularization strategies to the classification task using the area
under the ROC-curve (AUC) for each classifier as our evalu-
ation metric due to the imbalance of data. We also compare
the different strategies to report the purification noise (inter-
pretability score) value for each solution. For each strategy,
we run 10 experiments with random 80-20 splits for train-
ing and test data, respectively. The optimal values for the
regularization parameters for each strategy are chosen using
cross-validation. We use the MATLAB package, SLEP (Liu,
Ji, and Ye 2009), for the Tree Structured Group Regulariza-
tion experiments. The proposed regularization method was
developed in Python.

7.1 Comparing Different Regularization
Strategies

Here we compare the performance of different regulariza-
tion methods discussed in Section 5. The results are summa-
rized in Table 2 and Figure 4.

For the MIMIC-III data set, the best performance, in terms
of AUC is obtained using the classical, l1 and l2 regulariza-
tions. However, the interpretability is highest for the pro-
posed tree-structured measure, followed by the earlier pub-
lished TSGL algorithm. On the other hand, the results for

Table 2: Comparison of Different Regularization Strategies

MIMIC-III
LR (l2) LR (l1) TSGL SparseTree-based

AUC 0.87 0.88 0.73 0.71
Purification
Noise

194.85 194.86 67.40 30.12

MDW
LR (l2) LR (l1) TSGL SparseTree-based

AUC 0.67 0.68 0.70 0.62
Purification
Noise

716.48 289.49 134.63 21.69

the MDW data set show that the tree based regularizations
perform on par with the classical methods. However, the in-
terpretability is significantly higher for the proposed tree-
based regularization scheme. The l2 regularizer, for obvious
reasons, does not produce a sparse solution (194.85 of MDW
and 716.48 of MIMIC-III), while the other three regularizers
induce significant sparsity. However, the structured regular-
izers are able to achieve significantly low structured sparsity
(30.12 of MDW and 21.69 of MIMIC-III) which is consis-
tent with the ICD-9-CM hierarchy.

Effect of Regularization Parameter, λ1 The role of the
regularization parameter, λ1, in (10) is to control the penalty
on the tree-structure of the solution. Figure 4 shows how
the AUC score and the interpretability score vary with λ1.
By increasing λ1, we note significant improvement of per-
formance by leveraging more prior hierarchical information
as well as outstanding decrease on purification noise, which
indicates highly interpretability.

Figure 4: Performance as a function of the regularization pa-
rameter λ1 in MIMIC-III dataset



2015 ICD­9­CM
Diagnosis Codes

(580­629)  
Diseases Of The
Genitourinary
System

(460­519) 
 Diseases Of The
Respiratory System

(390­459)  
Diseases Of The
Circulatory System

 

(280­289)  
Diseases Of The Blood And
Blood­Forming Organs

(240­279)  
Endocrine, Nutritional And
Metabolic Diseases, And
Immunity Disorders

(420­429)  
Other Forms Of
Heart Disease 

(451­459)  
Diseases Of Veins
& Lymphatics, &
Other Diseases Of

Circulatory
System 

(410­414)  
Ischemic Heart

Disease

411  
Other acute and
subacute forms of
ischemic heart

disease

414  
Other forms of
chronic ischemic
heart disease

(760­779) 
Certain Conditions
Originating In The
Perinatal Period

 

(800­999) 
 Injury And
Poisoning

(V01­v91)  
Supplementary Class Of
Factors Influencing Health
Status & Contact With

Health Services 

... ... ... ... ... ...

(270­279)  
Other Metabolic
Disorders And

Immunity Disorders 

276  
Disorders of fluid

electrolyte and acid­
base balance 

...

... 272  
Disorders of lipoid

metabolism 

272.0  
Pure hyperchol­
esterolemia 

272.4  
Other and
unspecified

hyperlipidemia 

...

276.0
Hyperosmolality

and/or
hypernatremia 

276.1
Hyposmolality

and/or
hyponatremia 

276.2  
Acidosis 

276.3  
Alkalosis 

276.8
Hypopotassemia 

276.7
Hyperpotassemia 

276.5  
Volume depletion

disorder 

276.51
Dehydration 

276.52
Hypovolemia 

411.1 
Intermediate
coronary
syndrome 

414.00 
Coronary

atherosclerosis
of unspecified
type of vessel,
native or graft 

414.01 
Coronary

atherosclerosis
of native

coronary artery 

427 
Cardiac

dysrhythmias 

427.31 
Atrial fibrillation 

428 
Heart failure 

428.22 
Chronic systolic
heart failure 

428.23 
Acute on

chronic systolic
heart failure 

428.30 
Diastolic heart

failure,
unspecified 

428.32 
Chronic diastolic
heart failure 

428.33 
Acute on

chronic diastolic
heart failure 

...

...

... ...

...

453  
Other venous
embolism and
thrombosi 

458 
Hypotension

453.8 
Acute venous
embolism &
thrombosis of
other specified

veins 

458.9 
Hypotension,
unspecified 

...

...

(764­779)  
Other Conditions
Originating In The
Perinatal Period 

765 
Disorders relating
to short gestation

and low
birthweight 

770 
Other respiratory
conditions of fetus
and newborn

765.18 
Other preterm
infants, 2,000­
2,499 grams 

770.6 
Transitory
tachypnea of
newbor 

...

...

765.19 
Other preterm
infants, 2,500
grams and over 

765.27 
33­34 completed

weeks of
gestation 

765.28 
35­36 completed

weeks of
gestation 

770.81 
Primary apnea
of newborn 

770.89 
Other respiratory
problems after

birth 

(580­589)  
Nephritis, Nephrotic
Syndrome, And
Nephrosis 

584 
Acute kidney
failure 

585 
Chronic kidney
disease (ckd)

584.5 
Acute kidney
failure with

lesion of tubular
necrosis 

585.6 
End stage

renal disease 

...

...

584.9 
Acute kidney
failure,

unspecified 

585.9 
Chronic kidney

disease,
unspecified 

(990­995)  
Other And

Unspecified Effects
Of External Causes 

995 
Certain adverse
effects not
elsewhere
classified 

...

(996­999)  
Complications Of
Surgical And
Medical Care,
Not Elsewhere
Classified 

995.91 
Sepsis 

995.92 
Severe sepsis 

...

996 
Complications
peculiar to

certain specified
procedures 

996.62 
Infection and
inflammatory
reaction due to
other vascular

device,
implant, and

graft 

997 
Complications
affecting

specified body
system not
elsewhere
classified 
997.1 
Cardiac

complications,
not elsewhere
classified 

998 
Other

complications
of procedures
not elsewhere
classified 

998.59 
Other

postoperative
infection 

...

(V40­V49)  
Persons With
A Condition
Influencing
Their Health
Status 

(V50­V59)  
Persons

Encountering
Health

Services For
Specific

Procedures
And Aftercare 

V44 
Artificial
opening
status 

V44.0 
Tracheostomy

status 

V44.1 
Gastrostomy

status 

V58 
Encounter for
other and
unspecified
procedures
and aftercare 

V58.61 
Long­term
(current) use

of
anticoagulants 

V58.67 
Long­term
(current) use
of insulin 

...

Figure 5: Non-zero features learnt using the proposed regularization from MIMIC-III data set

7.2 Qualitative Interpretation of the Solution

Figure 5 provides a graphical illustration of the non-zero
features learnt by the proposed model. The red nodes de-
note the actual diagnosis codes that had non-zero weights.
The blue nodes are the ancestors of the selected leaf nodes.
We first note that the model consists of only 87 (out of
11567) features or disease codes. Additionally, the 87 codes
are concentrated within a few higher level disease cate-
gories. Since the sub-trees containing the non-zero fea-
tures are relatively dense, it is easy to summarize them
with a higher order disease category. For instance, one can
determine that Disorders of fluid electrolyte
and acidbase balance is an important factor in de-
termining readmissions, which has been confirmed in actual
clinical studies (Badawi and Breslow 2012). Similarly, preg-
nancy related complications are an important factor in deter-
mining readmissions.

On the other hand, a similar visualization for l1 regular-
ization shows a highly non-interpretable result, as seen in
Figure 6. For instance, consider the feature - Isolated
tracheal or bronchial tuberculosis ...,
which has a non-zero weight. It is unclear why only that

diagnosis code is selected whereas the other 35 siblings
(other forms of tuberculosis) are ignored.

8 Discussion
Section 7 shows that leveraging the hierarchical informa-
tion in the ICD-9CM classification improves the predictive
capability of logistic regression while gaining better inter-
pretability. In this section, we demonstrate the necessity
of high level interpretation to a medical record prediction
model from the healthcare perspective. The focus is to show
that an interpretable decision support tool for readmission
risk prediction can be effective, as shown in the following
real world case study.

As shown in Figure 5, the model is well-informed by
the ICD-9-CM hierarchy. Interpretable learning grants the
model the ability to conclude high-level important category
that are more understandable to the healthcare providers in
the medical facilities. For example, the result of proposed
model suggests 428-Heart Failure as a important disease cat-
egory results in readmission instead of extremely specific
ICD-9-CM disease code like 428.33-Acute on Chronic Di-
astolic Heart Failure. The high level important concept ab-



2015 ICD­9­CM
Diagnosis Codes

(390­459)  
Diseases Of The
Circulatory System

 

(451­459)  
Diseases Of Veins &
Lymphatics, & Other

Diseases Of
Circulatory System 

(800­999) 
&nbsp;Injury
And Poisoning... ...

Other 14 categories
not selected 

012.23 
Isolated tracheal or
bronchial tuberculosis,
tubercle bacilli found
(in sputum) by
microscopy 

455.7 
Unspecified
thrombosed
hemorrhoids 

(001­139)  
 Infectious And
Parasitic Diseases

 

(010­018) 
Tuberculosis 

090­099

012 
Other respiratory
tuberculosis 

Other 35 codes not
selected  

090 
Congenital syphilis 

Other 9 categories
not selected 

090.2 
Early congenital

syphilis, unspecified 
Other 12 codes not

selected  

455 
Hemorrhoids 

Other 8 categories
not selected 

Other 10 codes not
selected  

(710­739)  
Diseases Of The
Musculoskeletal
System And

Connective Tissue 

(710­­719)  
Arthropathies And
Related Disorders 

(725­­729)  
Rheumatism,

Excluding The Back 

720­724 

730­739 

717 
Internal

derangement of
knee 

718 
Other derangement

of joint 

719 
Other and
unspecified

disorders of joint 

Other 8 categories
not selected 

717.40 
Derangement of
lateral meniscus,
unspecified 

Other 19 codes not
selected  

718.42 
Contracture of joint,

upper arm 

Other 88 codes not
selected  

718.90 
Unspecified

derangement of joint,
site unspecified 

719.44 
Pain in joint, hand 

Other 89 codes not
selected  

Text

728 
Disorders of muscle
ligament and fascia 

Other 4 categories
not selected 

728.83 
Rupture of muscle,
nontraumatic 

Other 22 codes not
selected  

(805­­809)  
Fracture Of Spine

And Trunk 

(960­­979)  
Poisoning By Drugs,
Medicinals And
Biological
Substances 

Other 22 categories
not selected 

805 
Fracture of

vertebral column
without mention of
spinal cord injury 

Other 4 categories
not selected 

805.14 
Open fracture of
fourth cervical
vertebra 

Other 25 codes not
selected  

969 
Poisoning by
psychotropic
agents 

Other 19 categories
not selected 

969.6 
Poisoning by

psychodysleptics
(hallucinogens) 

Other 19 codes not
selected  

Other 8 categories
not selected 

Other 8 categories
not selected 

Other
15 categories
not selected 

Figure 6: Non-zero features learnt using the l1 regularization from MIMIC-III data set

straction makes it easier to focus on important aspects while
removing excessive attention from specific disease codes,
that may distract the healthcare staff from the key factors
during the post-discharge phase.

Case Study: M.J. was a 55-years-old white male
with medical history of Hypertension, Coronary
Artery Disease and High Cholesterol, and came to the
emergency department with left flank pain on 7/1/2018.
He was admitted to the hospital for left kidney stone
and treated with intravenous fluid and pain medica-
tion. M.J. was also found of left hydro nephrosis due to
obstructing kidney stone and M.J. underwent urology
surgery to have the stone removed on 7/4/2018. How-
ever, his hospital course was complicated with sepsis
(urinary tract infection) and electrolyte imbalance (hy-
perkalemia) due to acute renal injury. M.J. finished the
course of antibiotics for urinary tract infection and his
renal function was back to the baseline. After a 2-week
hospital stay, the patient was debilitated so he was dis-
charged to a skilled nursing facility on 7/14/2018 for
rehabilitation.

On 7/21/2018, M.J. was found unresponsive and

pulse-less by the staff in the skilled nursing facility. He
was resuscitated by emergency medical services and re-
admitted to the intensive care unit for cardiac arrest
due to electrolyte imbalance (hyperkalemia). Staff re-
ported that he was not eating or drinking since being
discharged to the skilled nursing facility on 7/14/2018.
During the ICU, M.J. developed multi-organ failure
and died in the intensive care unit on 7/31/2018.

Given the patient’s medical history in the above case study,
the proposed model would assign a readmission risk to the
patient. But at the same time, the model would provide addi-
tional factors that could be true for the patient. For instance,
electrolyte imbalance would be a factor for readmission,
along with the other chronic diseases. The discharge staff
would include that in the notes to ensure that it is monitored
in rehabilitation phase and possibly save the patient’s life.

9 Conclusions
In the last decade, there have been numerous studies that
link factors pertaining to a patient’s hospital stay to the risk
of readmission. However, most studies have been on a fo-
cused cohort, limited to one or few hospitals. We show here



that similar results can be achieved using claims data, which
has fewer elements but provides a large population coverage;
the entire state of New York for this study and the wide pop-
ulation coverage of MIMIC-III. Even with the large volume
of data, the predictive algorithms are not accurate enough to
be used as decision making tools. However, model interpre-
tation can reveal insights which can inform the strategies for
reducing and/or eliminating readmissions.

A patient’s disease history is typically expressed using di-
agnosis codes, which can take as many as 18000 possible
values, with many more possibilities in the next generation
ICD-10 disease classification. With so many possible fea-
tures, ensuring model interpretability is a challenge. How-
ever, using structured sparsity inducing models, such as the
one proposed here, one can ensure that the truly important
factors can be identified within the hierarchy.
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