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Abstract

We study the optimisation of similarity measures in tasks
where the computation of similarities is not directly visible to
end users, namely clustering and case-based recommenders.
In both, similarity plays a crucial role, but there are also other
algorithmic components that contribute to the end result.
Our suggested approach introduces a new form of interaction
into these scenarios that make the use of similarities trans-
parent to end users and thus allows to gather direct feedback
about similarity from them. This happens without distracting
them from their goal – rather allowing them to obtain better
and more trustworthy results by excluding dissimilar items.
We then propose to use the feedback in a way that incorpo-
rates machine learning for updating weights and decisions
of knowledge engineers about possible additional features,
based on insights derived from a summary of user feedbacks.
The reviewed literature and our own previous empirical in-
vestigations suggest that this is the most feasible way – in-
volving both machine and human, each in a task that they are
particularly good at.

Introduction
In many sub-disciplines of artificial intelligence, the no-
tion of similarity plays an important role. This is true for
instance in clustering (Strehl, Ghosh, and Mooney, 2000)
where items are grouped by similarity and in case-based rea-
soning (CBR) where knowledge is re-used by transferring
insights from similar previous cases (Cunningham, 2009).
More precisely, CBR usually structures cases into a problem
and a solution part and, given a current problem, retrieves
past cases with a similar problem description in order to ap-
ply (parts of) their previous solution to the current problem.

In this paper, we study possibilities for improving similar-
ity measures for both clustering and case-based reasoning.

Regarding CBR, we will focus more specifically on an
important application area, namely business recommenders.
These are systems that can take over the role of business con-
sultants (or support them in doing their job) by analysing a
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situation and supporting business decisions by giving appro-
priate recommendations.

Business recommenders are different from other recom-
menders in certain respects (see Witschel and Martin, 2018;
Felfernig and Burke, 2008) obviously, in business scenar-
ios, the utility of recommendations is defined by business
requirements, rather than by a person’s preferences or taste.
In addition, business recommenders are typically invoked
much more rarely than recommenders that consumers use to
find products (books, music, movies etc.) of their taste. This
implies that a business recommender cannot gather large
amounts of information (a profile) about a user – rather,
users need to describe their context and requirements in the
form of a query when accessing the recommender. Finally,
the collection of requirements or context variables can be
rather complex, going beyond simple key-value pairs.

All in all, these differences rule out the most popular ap-
proaches to building recommender systems, namely collab-
orative filtering – which relies on large numbers of user rat-
ings and assumes that items do not have an internal struc-
ture – and content-based filtering, which constructs user
profiles from a repeated interaction between user and sys-
tem. Instead, case-based recommenders have been proposed
(Bridge et al., 2005), which proceed by constructing a de-
scription of the business problem at hand, retrieve cases with
a similar problem description and combine elements of their
solution. While the retrieval part of this approach is not only
applicable in business scenarios, but also for e.g. consumers
in e-commerce – who may want to express certain require-
ments that they would like a product to meet (Smyth, 2007)
– the combination step is usually obsolete in e-commerce,
but not in business recommenders.

In summary, the case-based recommender is a special
case of a classical CBR system, where a combination
of solution elements from retrieved cases is performed
automatically – as opposed to many CBR applications
where case combination and adaptation is done manually.

Clustering and case-based (business) recommenders have
thus one thing in common: although similarity is a very im-
portant ingredient for both of them, the result of the similar-
ity computation is not directly visible to the user. In cluster-
ing, the user sees a grouping of similar elements; in a case-
based recommendation, the user sees the recommended so-



lution elements that have been taken from cases with similar
problems. In both methods, there is something in between
the similarity computation and what the user sees – in clus-
tering, it is the clustering algorithm, in case-based recom-
menders, it is the step that selects and combines solution
elements from previous similar cases.

Why is this problematic? In many areas where functions
are used to score or rank items, such as, e.g. information
retrieval, users can see and rate the output of applying
the function directly. This allows to learn good functions
by training learning algorithms with the (implicit) feed-
back of users (Li, 2011). This has also been studied for
classical CBR scenarios (Stahl, 2001; Lamontagne and
Guyard, 2014). However, as argued above, when applying
similarity functions in clustering or case-based (business)
recommenders, this is not possible since the similarity
computation is (partly or fully) hidden from the user.

In this position paper, we argue for new ways of interac-
tion between users and both clustering algorithms and case-
based (business) recommenders that allow gathering directly
similarity-related feedback from users (and learn from it)
while maintaining their focus on the utility of the end re-
sult. We will thus be able to exploit human knowledge about
the similarity in two ways: firstly to adapt certain parts of
the similarity function (mainly weights) automatically in-
stead of engineering them manually. Secondly, we suggest
exploiting the feedback also to support knowledge engineers
in extending the similarity function, e.g. by including more
attributes.

Related Work
Clustering and CBR have quite different types of similarity
measures.

In clustering, the data objects to be clustered are usu-
ally described by vectors which often comprise a certain
type of variable – demanding similarity measures for vec-
tors of binary (Choi, Cha, and Tappert, 2010; Lesot, Rifqi,
and Benhadda, 2009), categorical (Boriah, Chandola, and
Kumar, 2008) or numerical variables (Lesot, Rifqi, and Ben-
hadda, 2009). Challenges begin to appear when objects are
described by a mixture of variable types (Cheung and Jia,
2013). Especially for categorical attributes, since the over-
all similarity of objects is based on a combination of local,
per-attribute similarities, the question arises how much each
local similarity should contribute to the global similarity.
Similarly, when both categorical and numerical variables are
present, it must be decided how contributions of both should
be combined and weighted (Cheung and Jia, 2013).

In CBR, the situation is often different because cases can
have a complex structure – i.e. they cannot be represented
simply by key-value pairs, but must be characterised by rela-
tions to other objects. These relations can be n:m, i.e. a case
might be related to several objects of a certain kind, whose
number can deviate from case to case. For instance, one may
wish to characterise the case of a company by the IT systems
that the company runs – obviously, this is not a simple at-
tribute of a company, but an n:m relation between companies

and IT systems. A common way to represent such case struc-
tures is to use graphs or ontologies (Martin, 2016; Martin
et al., 2017; Martin and Hinkelmann, 2018). Corresponding
similarity measures have been developed (Witschel et al.,
2015; Ontañón and Plaza, 2012; Hefke et al., 2006). Just like
similarity measures used in clustering, both simple attribute-
based and relational case representations lead to the question
of adequate weights when combining local attribute-level or
relation-level similarities into a global similarity.

Identifying the attributes that should characterise data ob-
jects or case content, the selection of the similarity functions
and the definition of the view-point specific importance of
the characterisation items expressed by weights is a task
where human knowledge and experience are needed (Stahl,
2002; Martin, 2016; Martin and Hinkelmann, 2018).

Most approaches to automatically learning aspects of
similarity in CBR focus on learning the weights that are used
to combine local similarities into a global similarity (Stahl,
2001; Lamontagne and Guyard, 2014). In order to do so,
user feedback about the utility of retrieved or ranked items
is gathered and then used to update weights using either a
form of gradient descent (Lamontagne and Guyard, 2014;
Stahl, 2001), Bayesian inference (Abdel-Aziz, Strickert, and
Hüllermeier, 2014) or genetic algorithms (Jarmulak, Craw,
and Rowe, 2000).

In (Lamontagne and Guyard, 2014), feedback is dis-
tinguished into relevance feedback – i.e. binary feedback
about the utility of retrieved cases – and ranking feedback
– i.e. a specification of a desired ranking by the user. Stahl
(2001), on the other hand, argues that users will not be able
to specify either absolute utility or full rankings, but rather
only “to compare the utility of two given cases”. Such “case
order feedback” is then employed for learning.

In clustering, learning similarity metrics directly from
pairs of objects labelled as either similar or dissimilar (Ying
and Li, 2012) or from relative comparisons (in the form “A
is closer to B than to C”) (Schultz and Joachims, 2004) has
been quite extensively studied. However, such studies all
focus on objects represented by purely numerical attributes.

Despite all these efforts, to the best of our knowledge,
there is no suitable approach to learn similarity metrics for
either clustering or CBR that a) works in tasks where simi-
larities are used, but not directly visible to users, b) works
for object representations that are relational and/or using
mixed attribute types and c) works in a way that exploits
both the strengths of machine learning – in e.g. adapting
weights based on feedback – and of humans, in e.g. identify-
ing the right attributes to describe and compare data objects
or cases.

A Novel Similarity Engineering Process
This section presents a novel method for developing simi-
larity functions including weights, based on earlier findings
from practice and related work.



Central insights and assumptions
Considering the characteristics of case-based (business) rec-
ommenders and clustering algorithms, as described in the
Introduction and related work from the previous section, a
suitable solution for learning similarity metrics will be based
on the following insights:
• Insight 1: It is a cognitively intensive task for humans to

build an initial case characterisation in case-based recom-
menders, because, firstly, cases can have a complex struc-
ture and secondly, the characterisation needs to be gener-
alised (Martin, 2016).

• Insight 2: Humans are not good at estimating weights,
e.g. for weighted-sum global similarity functions. Hav-
ing them do so forces them to make subjective decisions
that can hardly be justified by any concrete experience or
explicit knowledge Stahl (2002).

• Insight 3: It is a challenging task for humans to derive
from the individual mental similarity models a unified
similarity model, which can be used for a configuration
of a case-based recommender. This configuration of a
consolidated mental similarity model is made by deter-
mining global and local similarity functions and assign-
ing weights, which requires profound expert knowledge
(Martin, 2016).

• Insight 4: Both case-based recommenders and clustering
algorithms represent situations in which the result of sim-
ilarity computation is not directly visible to humans. The
utility of the results that the user does see (recommenda-
tions and clusters) depends also on other algorithmic com-
ponents. This makes it impossible to use the feedback of
humans regarding the utility of these results directly for
the tuning of the similarity measure (see argumentation in
the Introduction).

• Insight 5: However, humans are assumed to be capable of
providing feedback regarding either relative comparisons
Stahl (2002); Schultz and Joachims (2004) or – in a binary
form – regarding the utility or relevance of retrieved items
(Lamontagne and Guyard, 2014).

• Insight 6: Algorithms for learning of similarity measures
usually focus on weight adaptation. It is hard to design
them to identify and suggest missing attributes, i.e. at-
tributes that should be additionally incorporated into a
similarity measure. This is typically still a human task.
In summary, these insights suggest that a manually crafted

similarity function can suffer mainly from two flaws: firstly,
because of the difficulty to model similarity as a whole (see
insights 1 and 3), similarity functions may not include some
of the attributes that would be necessary to accurately define
what makes two objects similar (resulting in insight 6). Sec-
ondly, because humans are not good at specifying weights
(see insight 2), similarity functions may have suboptimal
weights. Our new approach for engineering similarity func-
tions attempts to remove both flaws.

The new similarity engineering process
Below, we describe a novel procedure for engineering sim-
ilarity functions – as a joint venture between machine and

human. The approach is inspired by an interaction mech-
anism described in one of our previous works (von Rohr,
Witschel, and Martin, 2018). In that work, the goal was to
estimate the effort of new projects based on previous expe-
rience. As shown in Figure 1, we built a system that per-
formed the retrieval step of CBR and then learned a regres-
sion model from the n most similar cases to predict the effort
for new projects. Here, the – otherwise usually invisible –
result of the similarity computation in the retrieval step was
made visible to the users, allowing them to discard projects
considered dissimilar to the new one. This, in turn, led to a
different recommendation.

Based on this idea, we propose the following proce-
dure for learning similarity functions in case-based recom-
menders; an overview is given in Figure 2.

1. User involvement: Suppose that a case-based recom-
mender, given a user query q, retrieves a set C of the n
cases that are most similar to q. Assume further that the
recommender combines the solutions of the cases in C
into a new solution. What we propose is to show the cases
c ∈ C to the user and allow him/her to remove ones that
are not considered similar to q, see Figure 1. This will lead
to a different recommendation outcome – i.e. it gives the
user more control over how recommendations are derived.
As our experiments in (von Rohr, Witschel, and Martin,
2018) have shown, this is something that users feel con-
fident to do and that even increases their trust in the final
recommendations. As the figure also indicates, the user is
also able to access a complete description of the case (in
this case a project) via a link before deciding whether or
not to exclude it. We suggest to always incorporate this
possibility, i.e. making full case information available to
users via a link.

2. Assuming that the similarity function used in step 1 was
initially designed by humans and initialised with some
human-estimated weights for combining attribute-level
local similarities, we can now use the user feedback from
step 1 to adapt these weights (remember that we assumed
that humans are not good at estimating weights). For in-
stance, as suggested in (von Rohr, Witschel, and Martin,
2018), the adaptation might be based on an evolutionary
algorithm, using the average precision of a case ranking
as a fitness function. This means that the algorithm learns
weights in a way such that the final scores of cases se-
lected/accepted by humans will be higher than the scores
of rejected cases. If this is the case consistently, then the
average precision will be optimal. Further details can be
found in (von Rohr, Witschel, and Martin, 2018).

3. In a final step, after a certain number of users have used
the recommender in the way described in step 1, we sug-
gest to gather the data and display it to a knowledge engi-
neer. More precisely, the system should show a summary
of the interactions where users excluded cases. Among
those, most attention should be given to those interac-
tions where the excluded cases were almost identical to
other, not excluded cases in the same ranking. Such sit-
uations will help the knowledge engineer to identify fur-
ther attributes that might be relevant to describe cases. To



Figure 1: A screenshot of a case-based recommender with explicit similarity feedback from (von Rohr, Witschel, and Martin,
2018)

understand the rationale behind this, let us assume that
e.g. projects are described by three attributes, namely a
purpose (a1, free text), a client name (a2) and a num-
ber of requested features (a3). Let us further assume that
the recommender retrieves 3 cases, A, B and C, in the
retrieval step, ranks them in that order and that they all
have identical values for a2 and a3 and nearly identical
values for a1. Finally, let’s assume that the user, having
had a close look at the complete textual description of
all three projects (which we assume to convey more in-
formation than the three attributes), decides to exclude B.
Obviously, this decision can only be explained by a differ-
ence between the projects that is not conveyed by any of
the attributes a1, a2, a3. A human knowledge engineer, by
studying such an example, may be inspired to include an
additional attribute into the computation of similarity that
will allow ranking A, B and C correctly by establishing
the difference between them that led the user to exclude
B, but not A and C.

Figure 2: An overview of the suggested approach for simi-
larity metric engineering

We need to show how our approach can be adapted to
clustering. For this, we only need to adapt step 1: instead
of recommendations and their “explanation”, the user of a
clustering algorithm will see groups of elements. We rec-
ommend that, as in the recommendation scenario, the user
should be able to access detailed descriptions of each clus-
ter member. In addition, the system should show pairwise
links between all cluster members and allow the user to re-
move them, as shown in Figure 3. Again, when a user has
finished analysing a cluster, such feedback will result in a
re-clustering and an updated result.

As an example and to motivate this, consider a very
popular application area of clustering in business, namely
customer segmentation. Segments identified by a clustering
algorithm will be used to address segments in a different
way, e.g. in marketing campaigns. A user (e.g. a member of
the marketing department of a company) studying the result
in Figure 3 might feel that customers 1 and 2 should not be
treated in the same way. Being able to express this concern
will result in re-clustering (and thus hopefully in a better
segmentation) and increase the trust of the user towards that
re-clustered result.

Steps 2 and 3 will then work analogously – feedback
about pairwise similarity or dissimilarity can be exploited
to automatically update weights, whereas situations, where
pairs of objects with near-identical feature values are marked
as dissimilar, may inspire a human knowledge engineer to
introduce additional features.

Obviously, the approach will not be suitable for very large
clusters. For these, some “typical” cluster members (e.g.
ones close to a centroid) might be selected and displayed.

Discussion and Conclusion
We argue that this approach is suitable because it assigns
tasks to both the machine and the human that each of them is
good at: the machine uses the feedback to learn weights, the
human to engineer additional features, based on examples of



Figure 3: An interaction concept for similarity feedback in
clustering – showing a cluster with three members and an
interaction where the user declares objects 1 and 2 as dis-
similar

failed differentiation.
We furthermore claim that humans who use the rec-

ommender will be willing to provide such feedback in
step 1, especially because it allows them to improve the
resulting recommendations, to gain more control and more
trust in the result – something that we have already shown
empirically in (von Rohr, Witschel, and Martin, 2018).
Thus, we have found a way to gain explicit feedback about
similarity, without distracting the human from the goal to
receive useful recommendations.
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