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Abstract

A Systems Engineer’s Virtual Assistant (SEVA) is a novel at-
tempt to bridge the gap between Natural Language Process-
ing (NLP), Knowledge Base (KB) Construction research, and
NASA’s Systems Engineering domain. In this work, we pro-
pose the design of an explainable, human-in-the-loop, and in-
teractive personal assistant system. The assistant will help a
Systems Engineer in their daily work environment through
complex information management and high-level question-
answering to augment their problem-solving abilities. We de-
scribe the fundamental characteristics of the assistant by un-
derstanding operational, functional, and system requirements
from Systems Engineers and NASA’s Systems Engineering
Handbook. The assistant is designed to act as a workbench
to manage dynamic information about projects and analyze
hypothetical scenarios. It is also designed to make logical
inferences and perform temporal reasoning by handling do-
main information and information related to schedule and re-
sources. In addition, the system learns new information over
time by interacting with its user and can perform case-based
reasoning from previous experiences. The knowledge base
design describes a novel hybrid approach to build a domain-
independent common-sense framework with which domain-
specific engineers can attune it and build their projects. Using
these specific objectives and constraints, the architecture of
a personal assistant is proposed. Main contributions of this
design paper are Systems Engineering (SE) domain analysis,
a survey of existing research, preliminary experiments using
the state-of-the-art systems to explore the feasibility, a pro-
posal of a complete architecture with component level detail,
and identification of areas that require further research and
development.

Keywords: Natural Language Processing, Knowledge
Base Construction, Question-Answering, Intelligent Agents,
Explainable AI, Systems Engineering, Ontology

INTRODUCTION
Intelligent personal assistants have drawn attention in recent
years due to their ubiquitous nature of making human lives
easier. However, practical use of such personal assistants by
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individual scientists or engineers, such as those at NASA,
is still very limited due to the risk-averse nature of engi-
neering projects, users’ steep learning curves in studying the
unnecessary details of a new system, and the assistant’s in-
ability to capture the relevant complexity of the domain. In
addition, explainability of answers plays a key role in such
AI systems where trust in the answers is paramount. It is a
dream for most scientists and engineers to have a personal
assistant who takes care of the tedious book-keeping aspects
and assists them in creative problem solving. Systems Engi-
neers (SE) deal with large amounts of information in their
everyday work. Their role in technical project planning re-
quires handling this information and keeping track of diverse
requirements, changing variables, resources, and schedules.
This extensive information assimilation is both tedious and
error-prone. The ability of SEs could be greatly enhanced
by a system that could handle such tasks. SEVA is being de-
veloped with this goal in mind: to assist SEs and enhance
their problem-solving abilities by keeping track of the large
amounts of information of a NASA specific project and us-
ing the information to answer queries from the user.

BACKGROUND AND MOTIVATION
NASA’s state-of-the-art approach to computer-aided Sys-
tems Engineering projects is Model Based Systems Engi-
neering (MBSE). It is a model-centric approach which sup-
ports all phases of SDLC (System Development Life Cycle)
with which SEs can design their large scale projects. Two
key problems that MBSE tackle are collaboration of differ-
ent domains and conversion of documents to digital mod-
els. MBSE also has a similar goal in mind as SEVA: to fa-
cilitate understanding, aid decision-making, examine hypo-
thetical scenarios, and explain, control, and predict events
(Hart 2015). MBSE is expected to solve the problems of
inadequacy in information-capture and dynamic nature of
SE’s design documentations such as System Block Dia-
grams, Electrical Interconnect List, and Mass Equipment
List (Fosse et al. 2014). MBSE aims to tackle the problems
of lack of a common language between different disciplines
using a formal language called SysML. However, systems
such as MBSE present a steep learning curve for new learn-
ers who will need to learn the system or a new language.

On the other end of the learning curve are popular intelli-



Figure 1: Architectural Components

gent assistants such as Siri providing proactive assistance on
a very specific set of contextual tasks such as calling a friend,
sending a message, or making a dinner reservation. These
assistants are not knowledge systems which can assist a user
in complex tasks such as engineering projects or disease di-
agnosis. There is little reason for such assistants to main-
tain large scale ontologies. For example, the rather small
and active ontology maintained by Siri is sufficient enough
to aid its task-based design (Gruber 2009). On the other
hand, large scale knowledge systems such as IBM Watson
perform statistical inferencing to answer a question by in-
gesting millions of documents. The main goal of Watson is
to essentially answer a question. Watson is trained by QA
sessions and answers are returned with probability or confi-
dence (Lee et al. 2016). Watson’s knowledge is a compila-
tion of knowledge from various domain experts. Thousands
of medical books can be ingested by Watson to create a large
scale knowledge system for disease diagnosis. Since Watson
used evidence gathering and scoring algorithms, ontologies
were not essential in the architecture (Ferrucci et al. 2010;
2013). On the other hand, SEVA’s domain is limited and
needs a knowledge base or an ontology which is complete
and can handle changing contextual facts. In addition, the
ability to say ‘I don’t know’ is an essential characteristic of
an explainable system.

The Cyc project tried to perform human-like reasoning
by building a comprehensive system with common-sense
knowledge such as “water makes things wet”, “plants die
eventually”, etc (Panton et al. 2006). The idea was to create a
system that can serve as a foundation to all future expert sys-
tems. However, millions of assertions are hand-coded to the

system and the amount of knowledge required to be learned
was one of the major criticisms of the project (Domingos
2015). In our work, we aim to construct a scalable domain
specific common-sense knowledge base with SE facts.

The MIT Programmer’s Apprentice Project (Rich and
Waters 1987; Brooks 1997), which ran in 1970s and 80s,
shares a similar spirit with SEVA. The goal was to study
knowledge representation formalism and reasoning in the
context of programming. The work realized the importance
of personal assistants performing mundane tasks and incre-
mental development of knowledge (Rich and Waters 1987)
which is also relevant in SEVA. Our work combines a gener-
alist (SE) with a specialist (SEVA) such that the specialist’s
knowledge base acts as a dynamic workbench for the gener-
alist.

OPERATIONAL CONCEPT
SEVA has 3 main categories of questions from which its ex-
ternal interface requirements are based from: 1) Relational,
2) Recall, and 3) Hypothetical. Relational questions deter-
mine the existence of links between entities. In ontological
terminology, links are verbs/predicates that connect subjects
and objects. The answer can be ‘Yes’, ‘No’, or ‘Unknown’.
For example, questions such as “Is Neon a noble gas?” or
“Can Aerogel capture a Niacin molecule moving at 5km/s?”
fall into this category. Recall, the next type, determines what
entity another entity is linked to. For example, questions
such as “What is the total mass of the spacecraft?” or “When
is the vibration test for the flight Main Electronics Box?” fall
into this category. Hypothetical questions are “what-if” sce-
narios. For example, questions such as “What will be the



mass of Instrument X if component C is removed?”.
Apart from direct recall of information and storage, four

major capabilities of this virtual assistant are defined based
on the various scenarios encountered by an SE: A) perform
reasoning tasks, B) handle temporal (time-related) infor-
mation, C) answer hypothetical (what-if) questions, and
D) learn from “experience”.

Reasoning
An ontology describes concepts, properties, and relation-
ships in formal languages such as first-order logic, descrip-
tion logic, or horn clauses. Using reasoning skills on its on-
tology, SEVA will be able to create new, indirect, or derived
information that are dependent on the existing knowledge.
Primary form of reasoning is related to the idea of taxo-
nomic or is-a relationship between two concepts (Walton
2007). For example, assume SEVA has the following infor-
mation in its knowledge base: {Neon is a noble gas} and
{Noble gases are odorless}. From this information, an in-
ference engine can deduce that {Neon is odorless}. SEVA’s
ontology consists of specific axioms from Description Logic
and rules defining the complexity and explainability of the
domain that is represented. The terms “reasoning engine”
and “inference engine” are used interchangeably throughout
this paper.

Time
SEVA handles three categories of time: 1) time-tagging in-
formation, 2) processing time-related information, and
3) knowledge of tense. Every information in the assistant’s
knowledge base has to be time-tagged. This helps the assis-
tant in answering questions such as “What was the mass of
the nephelometer instrument three days ago?” or “When was
the test schedule changed for the second stage cryocooler?”.
The primary objective of time-tagging is to help the engineer
to temporarily track the change log history of all elements
of a project or task. Alternatively, processing time-related
information simply means to understand temporal informa-
tion in a sentence such as 06:23:43 for time, 07/11/2018 for
date, and to understand intervals of time such as ‘three hours
ago’ or ‘due in 5 hours’. Understanding tense is an obvious
capability necessary to perform the above two tasks, which
means to know grammatical terms such as is, was, ago, had,
initial, etc.

Hypothetical Mode
In hypothetical mode, an SE can ask ‘what if’ questions.
By entering the hypothetical mode, the user can temporar-
ily modify the information in the knowledge base. ‘What-
if’ questions such as “What is the Technology Readiness
Level(TRL) of instrument X, if it has been to space?” are a
combination of two tasks: 1) perform temporary updates
on the knowledge base and 2) ask questions as usual. In the
example, the knowledge base will be temporarily updated
with a new information: {Instrument X has been to space}.
The SE then asks the question {What is the TRL of instru-
ment X?} After exiting this mode, the knowledge base will
be restored to its original form without the temporary up-
dates. Hypothetical mode helps the SE in decision-making,

design support, and in analyzing various scenarios or hypo-
thetical models.

Experience
Two reasons for unsuccessful querying are 1) the entities
or concepts in the question are unknown to SEVA and 2)
entities are known but there is not enough information to
answer the question. In the first case, SEVA asks the SE a
series of questions to better understand the original question
and to fill the knowledge base with necessary information to
answer the question. For example, when the SE asks “What
is the mass of Neon?” and SEVA’s knowledge base has no in-
formation about ‘Neon’, it will respond by inquiring “What
is Neon?”. The second case is a logical problem that applies
to relational questions where the ontology is missing the
predicate link. Assume that the entities ‘mass’ and ‘neon’
are in SEVA’s knowledge base. Suppose the SE asks “What
is the mass of instrument X?” SEVA understands every en-
tity in the question but has no link connecting them. There
are two ways to provide the unknown information: 1) help
the system to derive the answer by creating a logical case
through interaction (eg: “mass of an instrument is the sum
of its components”) or 2) provide the answer directly (eg:
“mass of instrument X is 5kg”). This type of user-assistant
interaction constitutes an ‘Experience’ and can be used if
similar cases appear in future question-answering sessions.
A key aspect of SEVA’s architecture is that an ‘Experience’
is context-driven; it is a function of questions, statements,
and rules or logic from the user. The type of learning we aim
to provide SEVA with is case-based contextual awareness.

Nature of Input & Querying
SEVA takes input from various sources including operations
manuals and projects. In this work, we restrict to Natural
Language text as input. Other types of inputs are left as fu-
ture work. There are 4 types of interaction types in SEVA: 1)
information given to the assistant that undergoes natural lan-
guage processing and subsequently added to its knowledge
base, 2) basic user commands to enter and exit hypothetical
mode, undo an operation, etc., 3) a successful query where
the assistant responds with an answer, and 4) an unsuccess-
ful query (due to unknown concepts) which is tackled by
using interactive dialogues and case-based reasoning from
experience.

Common-Sense Knowledge
Creating a Common-Sense AI is an important and chal-
lenging task in AI research today. Several research have
explored this topic, inspiring ones being projects such as
Mosaic Common Sense Knowledge Graphs and Reasoning
(Zellers et al. 2018) and Aristo System (AI2 Allen Insti-
tute for Artificial Intelligence ). SEVA aims to construct a
targeted common-sense knowledge base which is explain-
able, can be trusted, and is carefully populated from trusted
sources. This limits the usage of big data on semantic web
including the usage of DBpedia (Lehmann et al. 2015). In
addition to domain specific entities, common-sense knowl-
edge also includes verb usages, reasoning tasks, and rules



that are collected from Systems Engineers, Handbooks, and
the Web (limited).

SYSTEM CONCEPT
Based on the defined operations concept, primary functional
requirements are derived - ability to 1) Ingest information as
text, 2) Store information in an ontology, 3) Perform reason-
ing on the ontology, 4) Respond to interactive queries, 5) En-
ter hypothetical mode, 6) Understand time and schedule, 7)
Manage a Dynamic Ontology, 8) Save specific interactions
as ‘Experience’, 9) Connect knowledge base with endowed
models outside the system.

Requirements 1-8 will be described along with experi-
ments in the upcoming sections. 9 is outside the scope of
this paper, and for this purpose, we define three generic
components: 1) Monitor, 2) Logicker, and 3) Inter-Module
Communication Protocol. ‘Monitor’ encompasses method-
ologies that can oversee, monitor, and assist in debugging
the rest of the architecture. It acts as the central link between
the system and the endowed models located outside. Archi-
tectural components for SEVA are depicted in Figure 2.

Inter-module Communication Protocol (ICP) in Figure 2
depicts the underlying API (Application Program Interface),
the methodology by which each module will communicate
with one another. For example, it addresses the type and the
format in which the NLP module should produce output in
order to pass it to the ontology module.

The endowed models represent knowledge that are not in-
nate to SEVA. The design does not aim to include all possi-
ble knowledge but rather to have the ability to access any
outside knowledge when needed. Monitor encompasses a
special component called ‘Logicker’ that makes this knowl-
edge transfer possible. This means that SEVA may not know
how to solve ‘orbital mechanics’ or ‘flight dynamics’ prob-
lems until 1) an experience occurs, 2) the user teaches it or
3) it endows the knowledge base with an orbital mechanics
or flight dynamics module through Logicker. It is key to sep-
arate such functionalities from essential capabilities such as
elementary math functions (arithmetic, logic, or relational
operations) which will be included in SEVA’s fundamental
capability.

The architecture based on the aforementioned functional
requirements is shown in Figure 1. Individual components
and experiments will be described in the following sections.

NATURAL LANGUAGE PROCESSING
(NLP Module)

The NLP module converts raw text into information that can
be represented in the form of an ontology. The NLP func-
tions are divided into 4 tasks: 1) analyze the linguistic struc-
ture of the domain, 2) extract entities and relations, 3) extract
contextual rules, and 4) interact with the ontology to perform
entity linking and verb normalization.

Triple extraction or relation extraction is a well known
AI technique to populate knowledge bases. In recent years,
Open Information Extraction (Open IE) has received signif-
icant attention as compared to traditional IE systems due
to the ability to extract domain independent triples on a

Figure 2: System Concept

large scale. In addition, extractions are learned by using
hand-crafted rules or automatically created training data
without using any annotated treebanks. Extractors such as
AI2 Open IE or Open IE 4.x (Etzioni et al. 2011), Stan-
ford Open IE (Angeli, Premkumar, and Manning 2015), and
ClausIE (Del Corro and Gemulla 2013) have shown sig-
nificant progress in Open IE research and quality in their
extractions. Open IE is particularly important in extracting
relations for common-sense knowledge bases as shown in
works such as (Mishra, Tandon, and Clark 2017) to per-
form question-answering on elementary science knowledge
which is a part of Aristo (AI2 Allen Institute for Artificial In-
telligence ), an intelligent system, to perform QA about sci-
ence. Our goal is to target it to Systems Engineering domain
and address the challenges. An existing challenge for Open
IE is unavailability of labeled corpus for evaluation which
is addressed in works like (Stanovsky and Dagan 2016) and
(Stanovsky et al. 2018). We create a baseline rule-based ex-
tractor and evaluate our system based on a manually con-
structed corpus.

Systems Engineering Domain Analysis
Question-Answer Types: QA pairs are collected from do-
main experts to understand the type of questions and an-
swers that matter for individual systems engineers through-
out a mission’s life cycle. For an elementary knowledge rep-
resented as a [subject-predicate-object] triple, we categorize
questions as follows:

1. [S-P-?]: [subject-predicate-?] questions that are looking
for objects in sentences. Example: ‘What is the mass of
STI?’

2. [S-?-O]: [subject-?-object] questions that have Yes/No an-
swers showing whether there exists the given predicate
link between the subject and the object. Example: ‘Is STI
an instrument?’

Refer to Table 2 to see sample SE questions about SEVA
Testing Instrument (STI).

Assumptions on Grammatical Constructs: We assume
that the SE text is free of grammatical errors and that en-
gineers converse with the system in grammatically correct



Input Sentence Stanford Open IE ClausIE AI2 Open IE SEVA-TOIE

STI, an instrument,
has a 2500 pixel
CCD detector

(“STI” “has” “2500 pixel
CCD detector”)
incomplete/ missing infor-
mation: “STI is an instru-
ment”

(“STI” “is” “an instru-
ment”)
(“STI” “has” “a 2500
pixel CCD detector”)

(STI; has; a 2500 pixel
CCD detector)
(STI; [is]; an instrument)

(STI; has; CCD detector)
(STI; is-a; instrument)
(CCD detector; has-
property; 2500 pixel)

STI is an instru-
ment with a TRL
value of 5

(“STI” “is” “instrument”)
(“STI” “is instrument
with” “TRL value of 5”)
(“instrument” “is with”
“TRL value of 5”)
(“STI” “is instrument
with” “TRL value”)

(“STI” “is” “an instru-
ment with a TRL value of
5”)
(“STI” “is” “an instru-
ment”)

(STI; is; an instrument
with a TRL value of 5)
(STI; is an instrument
with; a TRL value)

(STI; is; instrument)
(instrument; has-property;
TRL value)
(TRL value; has-value; 5)

STI is scheduled for
acoustic testing on
July 3, 2015 from
2:00PM to 6:00PM.

produced 13 triples
(“STI” “is” “scheduled”)
(“STI” “is scheduled for”
X)
X = various combinations
of remaining sentence

(“STI” “is scheduled”
“for acoustic testing on
July 3 2015 from 2:00
PM”)
(“STI” “is scheduled”
“for acoustic testing on
July 3 2015 to 6:00 PM”)
(“STI” “is scheduled”
“for acoustic testing on
July 3 2015”)

(STI; is scheduled; for
acoustic testing)
incomplete/ missing infor-
mation: “on July 3, 2015
from 2:00PM to 6:00PM”

(STI; is; scheduled)
(scheduled; for; testing)
(testing; has-property;
acoustic)
(testing; has-value; 3 2015
July)
(scheduled; from; 2:00
PM)
(scheduled; to; 6:00 PM)]

Table 1: Comparison of output from state-of-the-art Open Information Extractors and SEVA-TOIE. Red colored extractions are
incomplete, incorrect, or noisy; Blue colored extractions need to be further granularized for ontology population.

SE Question Answer
What is the mass of STI? 56kg
When is acoustic testing scheduled
for STI?

07-10-2018
10:00AM

Where is STI located? GSFC Building 28
Is STI an instrument? Yes
Can Aerogel capture a Niacin
molecule moving at 5km/s

No

Table 2: Sample SE QA

English. We analyze the grammatical constructs of SE text
from the handbook (2017) and domain expert. We expect
that engineering manuals, in general, are less likely to use
pronouns such as I, YOU, HE, SHE, WE, YOU, WHO, and
their object pronouns. However, pronouns such as IT, ITS,
THERE, THAT, THEY, THESE, THOSE, ONE, ONES, IT-
SELF, WHAT, and WHICH are prevalent. Coreference reso-
lution, associating these pronouns to its subject/object, is an
essential task of the NLP module. However, we do not ad-
dress this task in the evaluation and is left as future work. In
a sentence, we focus on nouns, verbs, adjectives, and adver-
bials to study the phrase structure of the SE text. Our eval-
uation consists of only simple independent sentences in SE
domain.

SEVA-TOIE
SEVA Targeted Open Information Extractor (TOIE) extracts
simple essential relations from SE Text. A Systems Engi-
neer was tasked with constructing a set of project specific

Figure 3: Dependencies produced by Stanford CoreNLP

sentences. The context in which these sentences are pro-
duced are instrument descriptions and instrument develop-
ment meetings. Compound sentences are broken down and
complex sentences are excluded. Our data set includes only
independent sentences that do not require co-reference reso-
lution. A snippet is shown in Table 3.

Sample Sentences in the Data Set
STI is SEVA Test Instrument. STI, an instrument, has a
2500 pixel CCD detector. STI has a length of 200 cm. STI
is an instrument with a TRL value of 5. The spacecraft
shall provide a direct Earth entry capability for 11500
m/s. The system shall have a 1.4 factor of safety. STI
is scheduled for acoustic testing on July 3, 2015 from
2:00PM to 6:00PM.

Table 3: Data Set Snippet

The relations extracted are of type: {is− a, transitive−
verb, has− property, has− value}. This is implemented
by pattern matching on the dependency tree produced by
the Stanford dependency parser, phrase chunking, and oc-
casionally splitting at prepositions. Apart from subjects



(nsubj) and objects (dobj), the algorithm primarily focuses
on a subset of universal dependencies: case, nmod, com-
pound, amod (De Marneffe and Manning 2008). The im-
plementation uses NLTK(Bird, Klein, and Loper 2009),
Stanford Core NLP(Manning et al. 2014), and Stanford
POS Tagger(Toutanova et al. 2003). The results from the
base line model are used to evaluate powerful state-of-
the-art OpenIE systems such as Open IE Standalone by
AI2 (Michael Schmitz 2017), Stanford Open IE (Angeli,
Premkumar, and Manning 2015), and ClausIE (Corro and
Gemulla 2013). A Systems Engineer performed the evalua-
tion based on three criteria: meaningfulness, completeness,
and minimality of the extracted triples.

Basic dependencies produced by Stanford CoreNLP
(Manning et al. 2014) for the sentence “STI, a satel-
lite, has a 2500 pixel CCD detector” is shown in Fig-
ure 3. Pattern matching based on the dependency tree
triples with the help of noun/verb phrase chunking pro-
duces SEVA-TOIE triples [(STI; has; CCD detector), (STI;
is-a; satellite), (CCD detector; has-property; 2500 pixel)]
that are granular enough to populate SEVA’s knowledge
base. The ‘appos’ dependency defines the subject ‘STI’ pro-
ducing the “is-a” relationship. The object “detector” ac-
companied with compound modifier nouns and the cardi-
nal number are broken down accordingly to produce the
“has-property” triple. “is-a” relationship is produced from
cop and appos. [S-P-O] triple is produced from nsubj-
VerbPhrase-dobj pattern. Both has-property and has-value
relations are produced from amod and nmod-case. S-P
triple is produced from nsubj/NN - CD pattern. Compound
words can be both split and joined accordingly to make
the triple granular using compound/nmod/CD. Noun and
verb phrases can be extracted using simple chunkers such
as NP : < DT >? < JJ.∗ > ∗(< NN.∗ > + < IN >)?
< NN.∗ > + and V P : < V B.∗ > +(< .∗ >?(< IN > |
< V BG >))? < TO >? < V B.∗ > ∗

Results & Research Challenge: Although powerful for
large scale extractions, Table 1 shows that the extractions
produced by the state-of-the-art systems can be noisy, in-
complete, and need to be granularized in order to be put
to practical knowledge base construction. Stanford Open IE
uses distant supervision to train a classifier that generate
clauses and uses hand-crafted patterns to produce triples.
The extractor performed well at breaking down triples but
sometimes produced triples in large quantities including
noisy and incomplete ones. ClausIE uses hand-crafted rules
for both clause generation and clause-type detection. The ex-
tractor often produced correct results. However, minimality
of triples was the biggest concern. Open IE 4.x uses boot-
strapping approach and training data to learn patterns. This
system maintained a good balance between the number of
extractions, minimality, correctness, and completeness. The
task identified for future research is to extract high accuracy
targeted triples on a large scale that are granular enough to
be used to populate a knowledge base using the SE in the
loop. This will make use the existing systems in addition to
SEVA’s internal extraction methodology.

Open IE can be customized to the SE domain by identi-
fying the linguistic structure of the domain language which

can be accompanied by tasks such as parts-of-speech tag-
ging and semantic role labeling. A sentence represented us-
ing a constituency parser, such as (Zhu et al. 2013), can
be used to extract sub-phrases from sentences or a depen-
dency parser, such as Stanford Neural-network parser (Chen
and Manning 2014), can be used to see the relation between
words. A semi-supervised grammar induction can be used to
address domain specific idioms, common-sense knowledge,
and abbreviations. (Klein 2005) and (Spitkovsky 2013) are
some relevant research that address unsupervised parsing
and grammar induction.

Types of Input
We define three types of input informantion that is rep-
resented by SEVA’s knowledge base: 1. Project Specific
Knowledge, 2. Common-Sense knowledge, and 3. Rela-
tional knowledge. Project specific knowledge comes from
the engineer, meetings, and project documents. Common-
Sense knowledge comes from the SE Handbook and other
trusted sources. Relational knowledge consists of relational
phrases, verbs, and their axiomatic relationships. This is
closely connected to the ABox, TBox, and RBox knowledge
population which will be described in the ontology section.
Various sources of knowledge in SEVA are shown Figure 4.

Verbs, Vocabulary, and Relations
For successful ontological reasoning, the relations and the
axioms in the ontology need to be well defined. For ex-
ample, automatically constructing axiomatic relationships
such as inverse-of (eg: partOf ≡ hasComponent−) re-
quires semantic understanding of words and phrases. Cur-
rently, these axiomatic relationships are constructed manu-
ally in the ontology. In this context, our future work will
focus on using WordNet (Miller 1995) for synonyms and
vector models for word and phrase representation such as
Word2Vec (Mikolov et al. 2013) to extract deeper under-
standing of relational phrases, their synonyms, antonyms,
and other common-sense domain specific semantic relation-
ships.

Rule Extraction
Extracting rules in desirable forms such as horn clauses
or description logic from text or triples is another essen-
tial NLP task for Ontological reasoning. Currently, rules
are added manually using Semantic Web Rule Language
(SWRL) (Horrocks et al. 2004) to SEVA’s OWL ontology.
Our goal is to assemble the grammatical structure from
parsing, concepts, and relationships into clauses or rule-like
structure. Some relations in the knowledge base need to be
more restricted and better formulated as rules. Rules also
fit better for Closed-World Assumption scenarios. Logic
extraction from text requires unsupervised deep semantic
parsing mentioned in works such as (Poon and Domin-
gos 2009; Schoenmackers et al. 2010; Jha and Finegan-
Dollak 2011). Example Text: Aerogel can capture a niacin
molecule that has speed less than 5m/s. A rule that is ide-
ally extracted from the given text: hasSpeed(X,Y ) ∧
(Y < 5m/s) ∧ NiacinMolecule(X) ∧ Aerogel(Z) ⇒
canCapture(Z,X)



Figure 4: Types of Input Knowledge

Table 4: SEVA DL Example

Assertion Box (ABox) Terminology Box (TBox) Relational Box (RBox)
Spacecraft(DiscoveryShuttle)
implies that “Discovery Shuttle is an
instance of Spacecraft”
partOf(StarTracker, DiscoveryShut-
tle))
implies that “StarTracker is a part of
Discovery Shuttle”

Conduit ≡ Pipe
implies “same-as” relationship
MassSpectrometer v Spectrometer
implies “sub-class” relationship

partOf ◦ partOf v partOf
represents transitive property of the
role
partOf ≡ hasComponent−

represents inverse property of two
roles

Time Information
SEVA gives special consideration for time entities as they
are significant in scheduling and maintaining a dynamic
knowledge base with temporal reasoning. The result of pass-
ing the sentences “STI is scheduled for acoustic testing on
July 3, 2015 from 2:00PM to 6:00PM. The instrument is
scheduled for vibration testing on July 3, 2015 at 4:30PM
for 3 hours.” to the off-the-shelf 7-class Stanford Named
Entity Tagger (Surdeanu et al. 2011) produces time and date
tags shown in Figure 5. However, it failed to tag “2:00PM”
and “6:00PM”. In addition, ”3 hours” also need to be se-
mantically understood in context. Both supervised or unsu-
pervised approaches to construct a model that is trained on
the SE text to detect various time entities are proposed. This
includes making use of the Stanford NER to improve its re-
sults in tagging time entities in the SE domain.

KNOWLEDGE BASE (ONTOLOGY Module)
With the help of the NLP module, the ontology module links
the subjects and objects identified to the concepts and in-
stances already present in the ontology. Relations are cre-

Figure 5: 7-Class Stanford Named Entity Tagger used for
Date/Time

ated by normalizing the verbs to its root form. For our base-
line, we choose a Semantic Web based approach to building
SEVA’s ontology. This provides extensibility and access to
vast knowledge of information. Usage of resources such as
DBpedia will be replaced with a SE specific common-sense
ontology in the future.

Semantic Web and Web Ontology Language
(OWL)
The idea of semantic web framework is to establish a com-
mon representation of data on the web that can be used uni-
versally. SEVA uses OWL 2’s built-in set of specifications
called Resource Description Framework (RDF) (Klyne and
Carroll 2003); essentially a set of RDF triples. The knowl-
edge representation language is Description Logic (DL), a



Figure 6: Ontology snippet for “STI has high angular reso-
lution”

decidable fragment of First-Order Logic, and rules which
corresponds to OWL 2 DL and OWL 2 RL (Motik et al.
2009) respectively. Description Logic (Krötzsch, Simancik,
and Horrocks 2012) provides the formal semantics for de-
signing ontologies in OWL. DLs consist of concepts, roles,
and individuals. Ontological axioms define the expressive-
ness and the types of knowledge it can represent. SEVA’s de-
sign uses a popular expressive fragment of DL called SROIQ
(Horrocks, Kutz, and Sattler 2006) ontology as it fits the
types of knowledge SEVA likes to store and reason from in
its knowledge base. An snippet of SEVA’s knowledge base
is shown in Table 4.

Knowledge created in the ABox is instantiations of con-
cepts in the TBox or relations between already constructed
instances. This is typically received from project specific
documents. On the other hand, TBox consists of concepts
and their relationships. This knowledge is received from
both project specific documents as well as guidelines, SE
Handbook, and common-sense knowledge. RBox focuses
on axiomatic relationships between relations and is respon-
sible for ontological reasoning along with is-a relationships.
This information cannot be found in documents and need
to be constructed automatically or manually. This verb-
oriented knowledge is considered common-sense knowl-
edge which is constructed specifically for the SE domain.

Knowledge Representation Example
Next, we describe a representation example that shows the
complexity of our knowledge base construction and popula-
tion process. Consider a seemingly simple example “STI has
high angular resolution”. SEVA-TOIE produces two triples
[(‘STI’, ‘has’, ‘angular resolution’), (‘angular resolution’,
‘has-property’, ‘high’)].

Knowledge Base Construction: This phase gives context
by constructing the TBox concepts and relations, and neces-
sary instantiations in the ABox. This needs to be performed
prior to passing the aforementioned example sentence. The
knowledge “STI is an instrument” or Instrument(STI) must
pre-exist along with the concept of “angular resolution”
such that the entities can be linked.

Figure 7: Sample OWL Ontology in Protege

Knowledge Base Population: This phase populates the
ABox. When there are only predefined named entities and
relations in the TBox, this step can be generally replaced
by the methodologies of Named Entity Recognition cus-
tomizing to the domain and Relation Extraction from tem-
plates and by training a model (Surdeanu et al. 2011). How-
ever, Open IE extracts triples with no pre-specified tem-
plates or vocabulary from arbitrary text. Refer to Figure 6
which shows the snippet of ontology structure for the ex-
ample sentence. A sample OWL Ontology constructed is
shown in Figure 7 using Protege OntoGraf visualizer. (Noy
et al. 2003; Falconer 2010). Current implementation consid-
ers only a few hand picked structures. Our goal is to auto-
matically, and through human-in-the-loop process, construct
such domain specific and common-sense ontology structures
which will later help in the creation of a dynamic and ex-
plainable knowledge base.

Ontology Compartments
SEVA’s ontology is divided into Base ontology and
Custom ontology. Custom ontology consists of do-
main specific concepts and instantiations, mostly
the TBox and ABox axioms. Instrument(STI) and
partOf(MassSpectrometerMS81Z,STI) fall in to cus-
tom ontology. Population of a custom ontology is easily
performed as long as a solid base ontology is available.
This means that if a framework of concepts and relations
is available, their instances and relations can be added
without any ambiguity. Base ontology contains the essential
ingredients or building blocks for a common-sense ontology
upon which a SE can build their customized ontology. It
consists of basic axioms and rules that govern the ontology.
It predominantly describes relationships and properties
of predicates or RBox axioms such as partOf ◦ partOf
v partOf representing transitive property or partOf
≡ hasComponent− describing inverse relationship. It
also contains the TBox and ABox information that are
common-sense knowledge such as SE guidelines, syn-
onyms, and abbreviations. Example: Conduit ≡ Tube and
isAbbreviationFor(SLS, SpaceLaunchSystem).



Figure 8: Ontology Compartments

Research Challenge identified for this step is to automat-
ically construct the base ontology. A challenging aspect of
this step, in order to have an explainable system, is to de-
fine what constitutes the input for the base ontology. Using
the massive information available on the web is neither a
scalable nor a trustable solution. Using the NASA SE Hand-
books is a good first step. However, common-sense science
and math knowledge is assumed which needs to be learned
as a prerequisite. Essentially, we need to scale and define
what common-sense knowledge is for the SE domain and
identify the sources such that the knowledge is complete and
scoped for a personal assistant’s knowledge base.

Dynamic Knowledge
SEs deals with constantly changing information including
project specifications, time, events, and schedule. New infor-
mation will need to be added and old information will need
to be updated. Ontology consistency needs to be checked
on each update. Multiple versions of the ontology need to be
maintained in order to perform temporal reasoning, schedul-
ing, and undo operation. SEVA is designed as a dynamic
work bench for the SE. Guidelines for a dynamic ontology
is presented in works such as (Pittet, Nicolle, and Cruz 2012;
Plessers, De Troyer, and Casteleyn 2007). To aid user friend-
liness, SEVA’s design follows that newer information over-
rides older conflicting information. SE will be called in the
loop only if the conflicting information contains a Base on-
tology entity or if the user has made some pre-existing spec-
ifications. For example, the user is notified only if there
is a conflict in logic or reasoning process but not a mass
update. The dynamic nature is closely associate with the
ability to handle time. Representing time in ontology and
intelligent systems have been studied by works such as
(Allen 1991; Batsakis, Stravoskoufos, and Petrakis 2011).
Research Challenege identified for this step is to construct
a knowledge base that handles dynamic information and can
perform temporal reasoning.

Recent developments in Knowledge Graph Identifica-
tion research by jointly performing Entity Resolution, Node
Labelling, and Link Prediction while enforcing ontologi-
cal constraints in works such as (Pujara and Getoor 2014;
Pujara et al. 2013; Choudhury et al. 2017) using Proba-
bilistic Soft Logic is another direction for SEVA’s Dynamic
Knowledge Base Construction. These works show the im-
portance of identifying the facts that may require revision
due to the varying degrees of confidence in the extractions
produced by the Open IE systems.

REASONING ENGINE
The primary function of this module is to perform infer-
ence on the ontology. TBox inferences include subsumption,
consistency, satisfiability, equivalence, and disjoint check-
ing. Whereas ABox inferences include instance checking
and retrieval (Walton 2007). SEVA’s design considers mul-
tiple options for reasoners depending on the design choices
for Knowledge Base construction:

1. Using an OWL 2 RL Reasoner throughout: This op-
tion suggests the use of an RL reasoner for both TBox
and ABox reasoning. This is less expressive but runs in
polynomial time. Some example reasoners are BaseVI-
Sor (Matheus et al. 2006), ELLY (Siorpaes and Winkler
2010), Jena (Jena 2014), and Logic Programming ap-
proaches to RL using SWI-Prolog (Walton 2007).

2. Using a DL Reasoner for TBox reasoning and an RL Rea-
soner for ABox: TBox has more of static information. So
using more expressive and computationally complex DL
reasoner for TBox reasoning gives extensibility to SEVA
in the future. Some DL reasoners are FaCT++ (Tsarkov
and Horrocks 2006), RACERPRO (Haarslev et al. 2012),
Pellet (Sirin et al. 2007), and Hermit (Shearer, Motik, and
Horrocks 2008). An example of this kind of implementa-
tion is DLEJena which uses Pellet for TBox reasoning and
Apache Jena for ABox reasoning (Meditskos and Bassili-
ades 2010).

3. Using a DL Reasoner for TBox and non-OWL rule-based
reasoner for ABox: A conversion from OWL to rules tai-
lored to the rule-engine is required in this case. For exam-
ple, a conversion of OWL to Jess rules is required when
using Jess rule engine (Friedman-Hill and others 2008).
The choices can be evaluated only after the dynamic na-

ture of the knowledge base is addressed. For the baseline
implementation in OWL and Protege, we use off-the-shelf
Pellet reasoner.

Open/Close World Assumption & Explainability
If something is not known to be true, an open-world assump-
tion (OWA) assumes incomplete information, and thus the
assistant responds with “I don’t know” as the answer, while
a closed-world assumption (CWA) assumes complete infor-
mation, thus the assistant responding with “false” as the an-
swer. Formal definitions of these two assumptions can be
found in (Russell and Norvig 2003). OWA is best seen in
large systems such as semantic web where it is not feasible
to incorporate all possible information in the ontology. How-
ever, some predicates are better represented by the CWA.



For example, “is X partOf Y ”? If the user has never men-
tioned that “thrusters are part of the spacecraft”, is it rea-
sonable to assume they are not? This means that SEVA’s
knowledge base should support an open world assumption
in general but certain predicates should also be allowed to
have closed world property. Works such as (Damásio et al.
2006) and (Knorr 2011) study this type of integration. Base
ontology in Figure 8 will integrate OWA and CWA to the
predicates. This will in turn impact the choice of reasoning
engines for SEVA as most rule-like knowledge formalisms
supports CWA while Description Logic support OWA.

For every NASA Engineer who deals with mission criti-
cal information, their personal assistant needs to be highly
trustable in its information assimilation task. Completeness
of the knowledge base and the type of assumptions men-
tioned above play an important role in explaining how the as-
sistant came to an answer. Probability of any answer should
be ideally one and the system should be able to show the
reasoning steps by which the answer is obtained.

QUESTION-ANSWERING
SEVA adopts the knowledge-based paradigm (Jurafsky and
Martin 2017) for question answering by building a seman-
tic representation of the question. NLP module is needed
for parsing, extracting relations from the query, or extract-
ing rules in some form of query language such as SPARQL
(Walton 2007) using the same OIE paradigm. An example of
the DL query in the ontology shown in Figure 7 is [hasAn-
gularResolutionScale value HIGH] producing STI as the re-
sult.

Querying on an ontology link which consists of Subject-
Predicate-Object can be of two forms: a) asking for the ob-
ject and b) asking for the predicate. Possible responses with
an Open World assumption can be a) an answer which is
contextually correct according to SEVA, b) a logical conver-
sation with the user to understand the missing link or predi-
cate, or c) an interaction or instructions to the user to teach
SEVA about a missing concept.

Capturing Experience
Capturing Experience is a process by which the assistant
is taught logically how to arrive at the conclusion or can
be viewed as an algorithm being taught to the assistant for
case-based reasoning. It can use an existing algorithm to
solve a similarly appearing problem with the guidance of the
SE. The following scenario represents the “Unknown due to
OWA” answer type where SEVA linguistically understands
the question being asked, however does not poses enough in-
formation to answer it. It then interacts with the user to learn
logic. The conversation between the user and SEVA shows
an example of how an experience is captured into a case.

User: Can Aerogel capture a Niacin molecule moving at
3km/s?
SEVA: “I don’t know”
User: Start a rule.
SEVA: Enter the necessary conditions.
User: Depth of Aerogel times density of Aerogel divided
by density of niacin molecule should be greater than 8mm.

Speed of niacin molecule should be less than 5km/s.
SEVA: Rule Saved! No, Aerogel cannot capture a niacin
molecule moving at 3km/s.

Through such an interactive session, SEVA lets user cre-
ate custom rules. Creating contextual awareness is done
through identifying structure of queries and applying case-
based reasoning such as in (Kolodner 1992) with the SE’s
assistance at each learning step. For example, from the query
- Can Aerogel capture a Niacin molecule traveling at speed
100m/s?, a model can be extracted and can be applied to a
different but structural similar question Can Titanium cap-
ture an Inositol molecule moving at 2 km/s?. The user is re-
quired in the process to confirm whether SEVA can use the
same logic (or reasoning) to answer the question and also to
teach SEVA about Titanium if needed.

CONCLUSION AND FUTURE WORK

This work introduced SEVA - a vision of a Systems Engi-
neer’s personal assistant. It described SEVA’s architectural
design - the big picture, motivation, and its technical plausi-
bility. SEVA is a single-user system designed to assist SEs
in their day-to-day activities. The work designed the archi-
tecture for a framework with specific goals and constraints
within the context of a NASA SE who deals with risk-averse
complex engineering projects. SEVA makes it easier for the
SE to focus on the creative problem solving by taking care of
all the tedious book-keeping and potentially error-prone in-
formation assimilation. SEVA is a trustable and explainable
system with a domain independent SE framework that grows
by human-in-the-loop learning and becomes user-specific or
domain-specific over time. The work discussed how SEVA
performs natural language processing, information manage-
ment, reasoning, learning, and question-answering. We de-
scribed what SEVA is and what it is not, as well as the tools
with which such an implementation is feasible and the areas
that require further research and development.

We designed the overall architecture and implemented
a baseline Open Information Extractor and a Knowledge
Base Module for SEVA. Several sub-components are pro-
vided with high-level descriptions including the research
challenges and implementation directions. Detailed imple-
mentation and technical evaluation of these modules are cur-
rently in progress and are left as future work.

Although SEVA is designed for a SE, the idea is ex-
tensible to all domains where personal assistants (ones
which can grow alongside the user) are needed. Thus,
extending the idea to other domains is a future direction.
Interconnectedness of different domains and different engi-
neers add complexity to any project. We envision multiple
SEVAs each belonging to a specific engineer filling the gap
of information assimilation and distributed coordination.
Application of assistants in such collaborative settings is
another area of future work.
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