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Motivations: A central challenge for AI is how to combine
most effectively two core areas: knowledge representation &
reasoning (KRR) and machine learning (ML). ML can pro-
vide capabilities for acquiring knowledge from data at rel-
atively low cost in human labor. Adding KRR to ML can
provide the ability to combine heterogeneous forms and/or
multiple sources of knowledge (both human crafted and ma-
chine learned), and then use this combination to recommend
or make decisions. When the form of KRR is highly explain-
able, it can provide significantly more trustability to AI sys-
tems, helping to meet the rapidly rising demands of users.
KRR also offers further advantages in interpreting context-
specific ML results. Significantly, KRR can be essential for
complying with organizational policies, ethics, and pertinent
legal regulations; and for applying human social and experi-
ential knowledge.

Problem Addressed: KRR systems of various kinds have
advanced rapidly in the past 5–10 years. In particular, a class
of recent logic programming systems, called Rulelog sys-
tems, semantically extend database logic and provide high
expressiveness together with strong explainability (Grosof
2013; Andersen et al. 2013). These systems support logi-
cal functions and higher-order syntax, defeasibility (a.k.a.
exceptions, argumentation, and defaults), constraint-based
reasoning, and reactivity. Further, they provide a variety of
semantically meaningful forms of bounded rationality to en-
force query termination. Unlike logic programming systems
based on answer set programming (ASP), these Rulelog sys-
tems are based on the three-valued well-founded seman-
tics, which offers much better scalability than ASP. No-
table Rulelog systems include ErgoAI, Flora-2, and XSB.1
However, until recently Rulelog systems such as these have
lacked the sort of quantitative uncertainty reasoning that is
needed to reason productively and efficiently using results
from a wide variety of ML approaches.
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Approach and its Features: The PLOW system seeks to
address this lack by offering several flavors of uncertainty,
each with a solid semantic and proof-theoretic basis. These
encompass both Bayesian and non-Bayesian kinds of prob-
ability. Specifically, PLOW includes the following three fla-
vors, all within a single system:

• Bayesian Probability-based Semantics are based on the
distribution semantics (Sato 1995) for probabilistic logic
programs, using the syntax of Logic Programs with Anno-
tated Disjunctions (LPADs) (Vennekens, Verbaeten, and
Bruynooghe 2004). The probabilistic semantics supported
include:

– The full distribution semantics, which extends logic
programs with full Bayesian reasoning. (In fact logic
programs under the full distribution semantics are
strictly more powerful than Bayesian nets.) However,
like probabilistic reasoning in general, probabilistic
logic programming can have a high computational cost
(cf. (Riguzzi and Swift 2018) for an overview).

– The restricted distribution semantics. For applications
that don’t need the generality of the full distribution se-
mantics, PLOW also offers an implementation of the
restricted distribution semantics, which makes the as-
sumption of the independence of probabilistic choices
made within a derivation, along with an assumption
of the exclusivity of the probabilistic choices of mul-
tiple derivations of a given subgoal (Sato, Kameya, and
Zhou 2005).

• T-norm based Semantics. A variety of fuzzy logics are
based on different T-norms (cf. (Klement, Mesiar, and
Pap 2004) for an overview). T-norms originally were for-
mulated when studying probabilistic metric spaces. Log-
ics based on T-norms have proven to be well-suited for
reasoning with vague concepts (such as whether a given
person is tall), and with reasoning over knowledge that
is based on similarity or relevancy measures. Reasoning
about such statements often requires the use of a quan-
titative strength that is not probabilistic in the Bayesian
sense.

• Lattice-based Semantics. Lattice-based semantics have
formed the basis of various multi-valued logics as well as
possibilistic logics (Dubois, Lang, and Prade 1994). Such



logics have been used to capture both contradictory ev-
idence and qualitative measures of belief (e.g., unlikely,
possible, likely and so on).

Each of these three approaches can be brought to bear
when combining ML with reasoning. The case for proba-
bilistic semantics is perhaps the most obvious. Results of
some statistical learning techniques, such as linear/quadratic
discrimination analysis, have formal probabilistic proper-
ties. Results of other types of (machine) learning, such as
neural networks with a softmax output, are often also inter-
preted probabilistically. Each of these results can be propa-
gated through (deductive) reasoning under a probabilistic se-
mantics. However, there are situations in which probabilis-
tic reasoning is not suitable, either because of its high com-
putational complexity, or when ML results are quantitative
but not clearly probabilistic (such as similarity scores ob-
tained by word embeddings e.g., (Mikolov et al. 2013)). For
such cases, reasoning with T-norms may be more appropri-
ate. And finally, there may be applications where ML results
need to be transformed into qualitative measures to be used
or interpreted: in such casees lattice-based semantics can be
helpful.

PLOW has been implemented as a package of the XSB
system2, and supports a general logic programming frame-
work for KRR that includes:

• Fully recursive rules that include logical functions along
with both default and explicit negation (also known as
negation-as-failure and strong negation, respectively).

• The ability to specify the strength of quantitative rules via
a variety of functions of the strength of their bodies, in-
cluding strength boosting, strength decay, sigmoid, and
rectified linear functions.

• Evaluation of these rules according to the three-valued
Paraconsistent Well-Founded Semantics (Damásio and
Pereira 1998), a kind of (unprioritized) defeasibility.

Discussion: An important limitation of PLOW is that it
does not support general reasoning-by-cases (i.e., inferring
disjunctions), since it is based on the well-founded seman-
tics. By contrast, some other approaches to probabilistic log-
ical KRR do support general reasoning-by-cases, via extend-
ing first-order classical logic (FOL) or using ASP.

On the other hand, PLOW has several advantages com-
pared to other approaches to probabilistic logical KRR.
First, PLOW’s support for the well–founded semantics,
strong negation and other features provides a basis for the
full support of much, perhaps even all, of Rulelog’s ap-
proach to KRR. Second, PLOW offers multiple flavors of
probability under one roof; it has more flexible expressive-
ness in that regard than any previous logic programming sys-
tem of which we are aware. This is useful not only for ap-
plication system builders but also to facilitate study of these
probability flavors at the level of KRR algorithm design and
theory. Third, PLOW offers several kinds of relatively scal-
able probabilistic reasoning: not only restricted distribution

2A development version of PLOW is available at
https://github.com/theresasturn/plow.

semantics, but also T-norm based and lattice based. Scalabil-
ity is a major challenge in probabilistic logical KRR; many,
if not most, of other approaches that provide medium or high
expressiveness in the non-probabilistic logical aspect suffer
from intractable computational complexity. Finally, in terms
of pragmatic consideration of interoperability: Since PLOW
is implemented using XSB, it inherits XSB’s database, web,
Java, C, Python and other interfaces.
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