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Abstract
In our poster, we will introduce new datasets in propositional
logic and first-order logic that can be used for learning to rea-
son, and present some initial results on systems that use this
data.

Introduction
There is a growing research interest in incorporating learn-
ing in reasoning systems. Such efforts fall largely into two
different areas that we term Area I and Area II. We give
a quick overview of what a reasoning system does before
describing these two areas.

In general, a reasoning system can be modeled as a search
through some space. This search usually relies on a number
of hand-written heuristics. Theorem provers make this quite
explicit, as one can specify these heuristics as an end-user.
For instance, in first-order resolution theorem provers, the
goal is to find a sequence of resolution operations using an
initial set of clauses C that results in an empty clause. At
any point in the search, the prover has to choose a set of
clauses from an overall set of clauses it has derived. The-
orem provers use heuristics such as the size of a clause,
the complexity of a clause, age of a clause etc. to choose
a clause.

Efforts in Area I, such as (Kaliszyk, Chollet, and Szegedy
2017), revolve around selecting or computing an appropriate
set of heuristics using some form of learning while not tam-
pering with the rest of the search process. Efforts in Area
II aim to learn a function from scratch that does the entire
search. While there has been quite significant progress in
Area I, there has been very little progress in Area II. We feel
that one of the main reasons for this state of affairs, is that
there is no standard dataset that can be leveraged for Area II.
Datasets for Area I are built up with learning heuristics as a
goal and are not ideal for Area II systems.

In our poster, we will discuss new datasets in proposi-
tional logic and first-order logic that can be used for learning
to reason and present some initial results based on this data.
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Why New Datasets?
Existing datasets that can be used for learning to reason
are either too complex or do not show much variation in
the samples. For example, the Mizar repository (Naumow-
icz and Kornilowicz 2009) has more than 50, 000 reason-
ing problems (theorems in a first-order logic) and have been
used in Area 1, but these problems are too complex to be
useful in bootstraping a learning system from scratch. On
the other hand, simpler toy datasets such as the deduction
task in bAbI (Weston et al. 2015) do not show that much
variation. For example, figures 1a and 1b show answers
and full proofs to two different questions in the bAbI dataset
represented in the Slate proof assistant system (Bringsjord
et al. 2008). Both the proofs can be obtained by applying
the resolution inference rule twice. Moreover, the proofs are
structurally similar and can be generated by switching con-
stant symbols in a first-order proof. In fact, the entire dataset
in the bAbI deduction task follows this one single proof pat-
tern. Ideally, we want a dataset that has problems of varying
levels of complexity.

The Problem
We present an abstract version of the problem we seek to
solve. Assume that we have a formal logic F ≡ 〈L, I,⊥〉,
where L is the language of the formal logic, I is the infer-
ence system and ⊥ ∈ L. Any set of formulae Γ in the lan-
guage L can be consistent, Γ 6`I ⊥, or inconsistent Γ `I ⊥.
Any reasoning problem Γ ` φ can be posed as a consis-
tency problem Γ +¬φ `I ⊥ if certain conditions C1, C2 are
satisfied by I (Boolos, Burgess, and Jeffrey 2003).

C1 The deduction theorem Γ + φ ` ψ ⇒ Γ ` φ→ ψ.

C2 The law of excluded middle. {} ` φ ∨ ¬φ.

In fact, resolution-based theorem provers such as Vam-
pire (Kovács and Voronkov 2013) function in this manner
by searching for a proof of ⊥ from Γ +¬φ in order to prove
Γ ` φ. Therefore, reasoning in logics with C can be reduced
to consistency checking.

We pose the learning problem as a standard classifica-
tion task. Let con(Γ) ∈ {0, 1} denote whether Γ is con-
sistent con(Γ) = 1 or not con(Γ) = 0. Given a training
data Dtrain of sentences and their consistency information,



(a) bAbI 1 Emily is a cat. Cats are afraid of wolves. What is emily
afraid of?

(b) bAbI 2 Winona is a sheep. Sheep are afraid of mice. What
is winona afraidof?

Figure 1: bAbI problems

{〈Γ1, con(Γi)〉 |1 ≤ i ≤ n }, the goal is to learn a function
that approximates con and is evaluated on a test set Dtest.

Preview: Data and Data Generation
We look at two different formal logics: propositional cal-
culus and first-order logic. We randomly generate sen-
tences and their consistency labels. The generation process
is slightly different for the two different logics.

Propositional Logic
For propositional logic, we generate formula in conjunctive
normal form. Each formula φ is the form of a disjunction
l1 . . . li . . . ln. Each literal l is an atom P or its negation P .
We generate a radom set of formulae Γ by randomly gener-
ating u clauses c1, c2, . . . , cu where each clause has v ran-
dom literals drawn from a set of w atomic propositions. For
each such random set of sentences, we run a theorem prover
to check whether the sentence is consistent or not. Using
this method, we have three distinct datasets for propositional
logic with u, v, w = 3, u, v, w = 4 and u, v, w = 5.

First-order Logic
First-order Logic Due to the expressivity of first-order
logic, naı̈ve random generation of formulae can quickly lead
to very difficult to solve problems or degenerate problems
that do not have real-world analogs but are also difficult to
solve. For instance, biconditionals such as φ ↔ φ, where

φ has two or more nested quantifiers, can cause some state-
of-the-art theorem provers into running for an unbounded
amount of time. To address this, we use sorted first-order
logic with a given set of relation, function, and constant sym-
bols, along with certain complexity constraints. The sorts
prevent us from generating nonsensical formulae. Given a
sorted signature σ, we generate a certain number of unique
formulae Γ and apply first-order natural deduction inference
rules till we have a proof ρ of a certain complexity. One such
problem and a corresponding proof in an imaginary mechan-
ical domain is given below. See Figure 2.

Sample FOL Problem

1. If gear x is connected to
gear y and gear y is con-
nected to gear z, then
gear x is connected to
gear z.

2. If gear x and gear y are
connected, and gear x is
broken, gear y is broken
too.

3. Gear 1 is connected to
gear 2.

4. Gear 2 is connected to

gear 3.

5. Gear 3 is enclosed by
box 1.

6. All boxes are con-
nected.

7. Lever 1 either fixes or
breaks all gears.

8. Lever 1 breaks gear 1.

9. If x encloses y and y is
broken, x is broken.

Question: Is box 20 broken? Answer: Yes

Figure 2: Proof for the Sample FOL Problem A resolution
proof for the sample FOL problem given above.
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