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Abstract Robots need advanced perceptive systems to interact with
the environment and with humans. Integration of different perception
modalities increases the system reliability and provides a richer envir-
onmental representation. The article proposes a general-purpose archi-
tecture to fuse semantic information, extracted by difference perceptive
modules. Therefore, the article describes a mockup implementation of
our general-purpose architecture to fuse geometric features, computed
from point clouds, and Convolution Neural Network (CNN) classifica-
tions, based on images.

Keywords: robot perception, multimodal perception, multimodal fu-
sion, late fusion, semantic perception.

1 Introduction and Background

Multimodal perception gained much attention both for its bioinspired nature
and for the benefits that can provide in terms of reliabilities and richness of
the information. Indeed, the integration of multiple perception modalities can
increase the reliability of shared information while adding to the final repres-
entation information exclusive of a particular modality. Robotic systems are an
interesting scenario of application for multimodal perception since they typically
have different sensors that can be integrated to enhance the robot understanding
of the environment.

The multimodal perception paradigm requires a fusion process integrating
information from all the modalities, an extensive overview of fusion techniques
is presented in [3]. The fusion process can be performed at feature level, early
fusion, or at decision level, late fusion [7]. In early fusion feature extracted from
the raw data are combined and then analysed as a whole, on the contrary in
late fusion outputs from all the perceptive modules are merged to obtain the
final output. Both late [2] and early [6] fusion have been used in robotics for
multimodal recognition of objects. Late fusion offers particular advantages in
terms of modularity, each time a new sensor is installed the module processing
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Figure 1: The UML diagram of the proposed architecture with m perception
modules.

its data can be easily integrated into the system. Furthermore, this approach
encourages reusability and when a well-known technique to extract information
from a sensor is available can be easily adapted to the particular use case.

To enhance modularity and reusability of code in robotic, we propose an
architecture for multimodal perception using late fusion. Late fusion requires a
common representation to be shared among all the module outputs. Because of
its intuitiveness, we have designed a semantic representation in which each item,
detected by the perception modules, is associated with a list of semantic char-
acteristics, which in the paper will be simply named features. The architecture
uses features shared between different modalities to correlate items.

2 A Modular Software Architecture Overview

The proposed architecture1, shown in Figure 1, performs a late fusion of dis-
tinct perception modules resulting in a structure P , provided as output. The
perceptive modules {Mi, ∀i ∈ [0 . . .m]} have an unconstrained input interface
Ii and a well defined output structure Oi. In particular, Mi generates a set of
semantic items Xij ⊆ Oi described by features through a map 〈vij〉s that relates
semantic key (s ∈ Si) to a value (vsij) (as shown in Table 1). Remarkably, we
assume that in all key-values maps, the keys are unique and we define the set
1 an implementation is available at:
https://github.com/EmaroLab/mmodal_perception_fusion

https://github.com/EmaroLab/mmodal_perception_fusion
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(b) An RGB image, I2, (RGB image) used
by M2 to extract the features of the X2j

items.

Figure 2: An example of input and extracted features obtained from two percep-
tion modules of the architecture shown in Figure 1.

containing the semantic key of the whole system as S =
⋃m

i=1 Si. The features
describing an item Xij span in a subset of S, note that it might be possible @ vsij .
Finally, the output P has the same structure of Oi, but while the latter contains
key-value maps generated from a single module, P is created by the merging
process possibly using features from all the perception modalities.

The key-value structure is expressive, flexible and suitable as input for further
symbolic reasoning, such as Ontology Web Language (OWL) compatible with
the Robotic Operative System (ROS), e.g. through a bridge presented in [4].
Indeed, each feature of a perceived item is represented with a semantic key, that
belongs to the symbolic domain (i.e. is encoded as a string), and a value, which
can be a boolean signal, a real or natural number, as well as another symbol,
e.g. Xij = {〈radius, 0.3〉, 〈cluttered, true〉, 〈color, red〉}.

The architecture interfaces with the perception modules through the Features
Selector, which manages the synchronisation of the incoming data and generated
R and F . Where R is the union of all the perceived items and F is a structure
containing only the values with shared keys. The Correlation Table Manager
computes the correlation tables T as a function of the features distance while
considering only the features contained in F . This map is used by the Reasoner
to identify lists of items that can be merged, and corresponding item indexes
are stored in U . Finally, the Feature Matcher uses indexes store in U to fuse
correlated items and provides as output a set of new items P .

3 Software Interfaces for Multimodal Perception Fusion

As describe in Section 3 the proposed architecture is designed to work with mod-
ules that provide outputs through the Oi interface, which is formally defined as
Oi = {Xij , ∀j ∈ [1 . . . η(i)]}, where η(i) represents the number of items per-
ceived by the i-th module at some instant of time, and each item is represented
with a map of features Xij = 〈vij〉s. Given some output Oi from different i-th
modules, we define their union as the concatenation of all the items perceived
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vsij
semantic features (s)

time [h:m:s.ms] position [m] shape radius [m] label . . .

p
er

ce
iv

ed
it

em
s
(i
j) X11 09:37:45.92 (.42, .13, .04) sphere .04

X12 09:37:46.03 (.37, -.21, .02) cylinder .03
X13 09:37:46.85 (.31, -.22, .03)
X14 09:37:47.35 (.17, .34, .04) plane
X21 09:37:46.20 (.45, .11, .05) ball
X22 09:37:46.31 (.21, .33, .03) book
X23 09:37:46.37 (.34, -.19, .02)
X24 09:37:46.42 (.31, -.22, .03) glass

Table 1: An example of item’s features perceived through the inputs in figures
2a (provided in the O1 interface shown in Figure 1) and 2b (provided in the O2

interface). Perceived items are shown by row, while semantic keys by columns.

by all the modules, i.e.

R
.
=

m⋃
i=1

Oi = {Xij , ∀i ∈ [1 . . .m], j ∈ [1 . . . η(i)]} .

On the other hand, we define the intersection operator as the collection of pairs
of items Xhq and Xkp where all the features related to not common keys are
removed. And the remaining values referring to the common keys, vzhq and vzkp
where

z ∈ Zhq,kp =
{
s : ∀s ∈ S, ∃ vshq, vskp ∈ R, h 6= k

}
⊂ S,

are structured as Hz
hq,kp =

{
〈vhq〉z, 〈vkp〉z

}
. Finally the intersection is defined

as

F
.
=

m⋂
i=1

Oi =
{
Hz

hq,kp : ∀z ∈ Zhq,kp, k, h ∈ [1 . . .m],

q ∈ [1 . . . η(h)], p ∈ [1 . . . η(k)]
}
.

Remarkably, our architecture correlates items perceived from different modules
based on feature with common semantic key. In particular, if Hz

hq,kp = ∅ the
hq-th and kp-th items can not be directly correlated and, if F = ∅ all the items
can not be correlated.

Let Φ = {ϕz, ∀z ∈ Zhq,kp} be a set of ϕz distance functions associated to the
hq-th and kp-th items; thus, each distance can be computed as ϕz

(
vzhq, v

z
kp

)
=

dzhq,kp ∈ [0, inf). We define the correlation score between the hq-th and kp-th
items as

fhq,kp = tanh

(
−
∑

z d
z
hq,kp

w

)
+ 1 ∈ [0, 1],

in this way low distances values are mapped to high-level of correlation scores,
and w is a parameter that can be tuned for modulate the mapping function
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behaviour. Through the computation of fhq,kp for all the pairs of perceived items
in F , we obtain a set of tables T =

{
Thk, ∀h, k ∈ [1 . . .m], h 6= k

}
(thus T

collects m(m− 1)/2 tables), where Thk is a table of size η(h)× η(k).
The system uses the correlation tables T as a grounded representation to

reason on the best matching among the Xij items. Such a reasoning generates
a set U = {Ue, ∀e ∈ [1 . . . g]}, where g is the number of objects perceived by the
architecture (i.e. real objects), and Ue is a list of indexes ij-th associated to the
l-th items that can be merged to describe the e-th real object, i.e. Ue = 〈i, j〉l.
From R we extract all the l-th items {Xij , ∀i, j ∈ Ue} which have z-th shared and
y-th unique features. Fusing the l-th items generates Pe = 〈ve〉z ∩〈ve〉y, where a
function δ is used to compute vze = δ

(
vzij ∀i, j ∈ Ue

)
and vye =

{
vyij , ∀i, j ∈ Ue

}
.

Finally, the architecture output is P = {Pe, ∀e ∈ [1 . . . g]}.

4 Implementation

To provide an application example, we have built an implementation that uses
images and point clouds to detect objects in a tabletop scenario (as shown in
Figures 2). The architecture have been implemented using the ROS middle-
ware, specifically for two perception modules (i.e. m = 2): M1 and M2. The
point clouds are processed by M1 with a stack of RANSAC simulations to seg-
ment the objects laying on the table [5]. Each j-th item perceived by M1 can
be described by one or more of the features contained in S1 = {time, shape,
position, orientation, radius, high, vertex}. On the other hand, M2 ex-
ploits a Convolution Neural Network (CNN) from the tensorflow tutorial [1] to
detect objects and assign them a describing label. Each j-th item perceived by
M2 can be described by one or more of the features contained in S2 = { time,
label, position}. Therefore, common features of object detected by the two
methods are contained in Z1p,2q = {time, position}.

The correlation table T12 have been computed as described in Section 3, while
the two ϕz functions have been defined as Euclidean distance. To finally merge
information from M1 and M2 we have used an algorithm that explores T12 to
find the row and column indexes of cells which contains a high correlation score.
The algorithm ensures that each index cannot occur twice in Ur (i.e. each object
detected from M1 is associate at maximum to one object detected by M2) and
conflicts are addressed to prioritise higher correlation scores. Finally, to merge
all the objects we have defined the δ function for time and position as the
geometric mean.

5 Discussions and Conclusions

The paper proposed a general-purpose architecture for late semantic fusion. In-
deed, it can accommodate an arbitrary set of perception modules that process
different data sources, but they have to generate a specific type of outcomes,
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defined through the semantic item’s features. Nevertheless, these semantic struc-
tures are flexible, and the architecture uses them to correlate items perceived by
different modules, providing a fused representation as output.

The architecture relies on the distance between shared features, computes
the correlation between items, requires a reasoner for items matching, and a
function for item fusing. We deeply analysed how to orchestrate such elements
in a general scenario and we present a simple implementation based on RANSAC
and CNNs.

We argued that for a general case, it is required a further investigation of
the distance functions between complex features, (e.g. color, shape, etc.), as
well as regarding the types of reasoning to be performed with the computed
correlation tables. On the other hand, such tables are expressive, allowing to
achieve complex decisions for the item fusion. For example, they contain all the
information to merge objects with partially shared features, through transitivity
properties. Future developments of this work will include a wider integration of
perceptive modules and an experimental evaluation of the architecture.
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