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Abstract. An optimization problem on a set of Euclidean combinatorial con-
figurations is formulated. Peculiarities of applying genetic algorithms to solving 
this class of problems are explored. Principles of formation of an initial popula-
tion and selection mechanisms are described. A choice of crossover and muta-
tion operators is justified. Examples of the construction of crossover operators 
for sets of Euclidean configurations are given. A genetic algorithm of optimiza-
tion on permutation configurations sets is presented. Based on the algorithm, a 
random search approach is offered for optimization on spherically-located and 
well-described sets. The algorithm was tested on a problems of balancing 
masses of rotating objects. 
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1 Introduction  

Traditionally, combinatorial optimization problems are considered as difficult [1]-[3], 
which leads to the necessity of developing effective approximate methods for their 
solution. Nowadays, development of theory and methods of computational intelli-
gence regarding problems of combinatorial optimization is of interest of researchers. 
Of particular importance is a class of evolutionary methods [4]-[6], to which genetic 
algorithms belong [7]-[9]. Modern publications in this direction [10]-[14] prove the 
effectiveness of applying genetic and other evolutionary algorithms in solving combi-
natorial optimization problems. 

In the development of combinatorial optimization theory, an important place is 
occupied by an area of formalization of concepts such as “combinatorial set”, “com-
binatorial object”, “combinatorial configuration”. Not of less importance is investigat-
ing properties of functions given on these sets. Combinatorial configuration is one of 
the fundamental concepts. Depending on classes of combinatorial configuration sets, 



various optimization problems arise. Respectively, methods of their solving are highly 
determined by the properties of these configurations’ sets.  

In this paper, we consider a class of so-called Euclidean combinatorial configura-
tions as the basis of developing new approaches to solving combinatorial optimization 
problems by genetic algorithms. 

2 The Euclidean Combinatorial Configurations 

By a configuration [15] we mean a mapping  

                     : U V                                      (1) 

of some finite initial set U of elements of arbitrary nature into an abstract set V with 
a certain structure if a given set   of constraints holds. When both U and V  are 
finite, the configuration (1) is called combinatorial.  

We represent the combinatorial configuration of a tuple ,U ,V ,  , where 

1 n{ u ,.U ..,u }  – is initial set, 1 k{ v ,.V ..,v } v is resulting set,   is a mapping of 

type (1),   – is a given system of constraints on the mapping  .  

The papers [16-18] are devoted to the study of combinatorial configurations. Fur-
ther development of the concept of a combinatorial configuration was made by weak-
ening the conditions on the finiteness of V  [11, 18]. Thus, it is assumed that the re-
sulting set V  can be countable, and a combinatorial configuration, in this case, is 
called a combinatorial object. In [11, 18] another direction for a generalization of the 
concept is proposed. Namely, combinatorial objects of order k  are defined that al-
lows to expand significantly the range of real-world problems that can be formalized. 

We focus on considering a class of combinatorial configurations where elements of 
the resulting set V  are numerical vectors. The selection of such a class is justified by 
a wide range of real problems, in which the elements of the initial set U  are 
characterized by a certain set of numerical parameters (for example, physical and 
metric characteristics). First of all, it concerns the placement problems for geometric 
objects and other problems of Geometric Design. The synthesis of spatial configura-
tions is based on the concept of configuration spaces of geometric objects proposed in 
[19-22]. 

Let us B  be the set of vectors of a space mR  of the same dimension m , 

i.e.,  T1l m
m

l l kR ,  lb ,...,b   Jb . Let B  be the resulting set V  . Then the con-

figuration   will be an ordered sequence of vectors of 
1 2

Bj j jn
, ,...,b b b . Each 

configuration  1 2j j jn
, ,...,  b b b  is put in a one-to-one correspondence to a vector 

 1
N

Nx ,...,x R , N nm  x , i.e., there exists a bijection   such that: 

   1,  =    x x .                                (2) 



For example, such correspondence can be specified as follows: 

 1 1 1 2 21 1 1N j j j j mj mjn n n
x ,...,x ( b ,...,b ,b ,...,b ,...,b ,...,b ) x . 

Definition. A Euclidean combinatorial configuration (an e-configuration) is a map-

ping N,U , ,: R  B , where B  is the resulting set;   is a mapping of the 

form : U  B ;   are constraints on the  mappings  , .  

We represent the Euclidean configuration by a tuple ,U , , B . Let   be a set 

whose elements are all possible combinatorial configurations for the given U ,B , 
which satisfy a system of constraints  . Then   will be a Euclidean combinatorial 

set [23], and its image  E     of the set   in NR  will be a set of all Euclidean 

combinatorial configurations that satisfy (2). The choice of the class of sets of 
e-configurations ( C -sets) is justified by some specific properties that these combina-

torial sets possess if they are mapped into NR .  

3 Genetic Algorithms for Optimization on C -Sets 

Let us consider an optimization problem on a C -set E  as follows:  

                    f ( x ) min, x E .                                   (3) 

Methods of solving optimization problems on C -sets, as a rule, are based on ap-
plying the theory of convex extensions and extremal properties of functions defined 
on vertex-located sets, e.g., sets coinciding with its convex hull vertex sets [23-26]. 
Among vertex-located sets, there are many those inscribed into a hypersphere. Such 
sets are called polyhedral-spherical, properties of which allow developing specific 
optimization methods [27] - [32]. 

Let us consider features of an implementation of genetic algorithms for optimiza-
tion on C -sets. Genetic algorithms operate with a variety of solutions (populations) 
formed by a sample of individuals. Chromosomes form individuals with parameters of 
the problem coded in them. Chromosomes are ordered sequences of genes. A gene is 
an atomic element of a genotype, in particular, of a chromosome. A set of chromo-
somes of each individual determines its genotype (a structure). Thus, the individuals 
of the population can be either genotypes or single chromosomes. The totality of ex-
ternal and internal signs corresponding to a given genotype determines a phenotype of 
the individual, i.e., decoded structure or a set of the considered problem parameters. 

For the class of combinatorial optimization problems under consideration, we 
assume that the genotype and phenotype of the population individuals coincide, the 
chromosome is a feasible e-configuration  1 Nx x ,...,x , and the genes are the val-

ues of its components in the sequence. Solutions are positioned in the population by 
their position on the surface of the function being examined. In this case, new solu-



tions are generated successively as different combinations of parts of the existing 
individuals of the populations. 

Typically, the generation of the initial population involves a random selection of 
individuals. For our class of problems, we are talking about a random choice of feasi-
ble e-configurations. This generation problem is of independent interest and is solved 
depending on the class of configurations under consideration. 

The next step is to select the parent pairs. As a rule, the elite selection is applied in 
this case, i.e., it is selected k  individuals with the best found so far values of the 
objective function f ( x )  and parent pairs are composed of them. If one selects all 

possible combinations of parental pairs, there will be 1 2k( k - ) /  pairs in total. A 

specifics of the class of problems under consideration make it possible to offer the 
following approach to the choice of parental pairs. Evaluating the Euclidean distances 
between the best k  individuals, one can cluster the searching domain. Let there are 
choose 0k k  clusters, in each of which nearby individuals are grouped. Parent pairs 

are selected from only one cluster. Naturally, in this case, the number of descendants 
will be less than with a full search of pairwise combinations. However, different rules 
of crossing, as well as mutations allow getting the required amount of offspring.  

In connection with this, we describe the methods for the formation of the crossover 
operator based on the properties of various classes of sets of e-configurations. Sup-
pose two individuals – e-configurations  1 Nx ,..., xx  and  1 Ny ,..., yy  - are 

chosen for crossing. The most common methods of crossbreeding are single-point, 
two-point and, in general, k -point crossovers. In this case, the parents are divided 
into the points 1 2 kj , j ,..., j , where 1 2 kj j ... j   , and their parts alternate in the 

offspring. Also, a uniform crossover is well-known for which the value of the compo-
nent is taken from the first parent with probability p  and the second parent with 

probability 1( - p ) .  

A generalized crossover is of interest in which a special bit mask vector determines 
which a child gene inherits from the parent. 

A. Quasy-Crossover Operator 

The complex combinatorial structure of the set E  leads to the fact that the result-

ing descendants  x  and y , as a rule, do not satisfy the constraint system  . There-

fore, the crossover operators demonstrated above will be called quasi-crossover ones. 
The result z  of the quasi-crossover under Euclidean combinatorial configurations 

 1 Nx ,..., xx  and   1 Ny ,..., yy  is represented in the form = H( , )z x y . 

To form feasible e-configurations by the quasi-crossover of parental individuals, 
special transformations of z  can be required. In this regard, we propose the following 
approach to choose a Euclidean combinatorial configuration  1 Nz ,...,zz    that satis-

fies the constraint system   and is closest to the individual  1 , Nz ...,zz  obtained 



as a result of quasi-crossover. Thus, we have the auxiliary problem of projecting a 
point z  onto the C  -set E , which solution is EPrz z . 

Consequently, the crossover operator for the pair   1 Nx ,..., xx  and 

 1 Ny ,..., yy  of e-configurations is representable as  E H( )r , .Pz x y  

A search of  z  implies solving the optimization problem 

                                          .min, E  z z z                                (4) 

A specifics of different C -sets allows including many of them in a class of well-
described ones [33], i.e., sets on which linear problems are polynomially solvable. If, 
in addition, E  is inscribed into a hypersphere, the problem (4) is polynomially solv-
able as well. To show this, let us introduce the following class of sets.  

A set nE R  is said to be spherically-located if there exist such nRτ  and a 
number 0r   such that for any Ez  

               r. τz                                             (5) 

Let E  be a spherically located C -set, then, by (5), for any  1 Nz ,...,z E z  and 

 0 0 0
1 N

z ,...,zz  there is  

0 02 22 02
1

i i

N
( , ) c z b,

i
         


τ τ τ τz z z z z z  

where 

0 2 0 2 02 2
1 1

i i i i i i i i

N N
c ( z τ ), b r ( z τ ) τ ( z τ ).

i i
        

   

Thus, the solution of problem (5) reduces to finding the minimum of the linear 

function 
1

i i

N

i
f( ) c z


 z  on the set E  , equivalently, on the polyhedron conv E . 

Developing this approach, we propose the following ways of obtaining descendants 
for individuals  1 Nx ,..., xx  and  1 Ny ,..., yy . Considering that individuals - 

Euclidean combinatorial configurations - are elements of Euclidean space, we use the 
property of linearity of this space. To search for offspring, we will choose a linear 
combination of individuals x  and y , and then perform projecting onto E . 

B. Crossover Operator 

Let us consider a general approach for the formation of a crossover operator that 
takes into account different schemes for constructing linear combinations x  and y : 

 a simple linear combination of parental pairs: E Prz (x + y) ; 

 a weighted linear combination of parental pairs in accordance with the values 



of the function f ( x )  at these points 

 E Pr f f (z x x)+ y (y) .                                             (6) 

Moreover, in the maximization problem, a larger coefficient corresponds to a larger 
value of the function; 

 a randomized weighted linear combination: 
 E p 1Pr fp fz x x)+ ( - )y( (y) , 

where p  is a random variable uniformly distributed on a segment  0 1, . 

In general, it makes sense to assume that the descendant retains the genes of its 
parents as well as of other ancestors. Then the crossover operator with a weighted 
linear combination of k  individuals will take the form: 

1
i i

k

E
i

 Pr f


 
  

 
 x )(z x  

or a randomized weighted linear combination: 

1

k

E i
i

i ir p P f


 
  

 
z x x )( , 

where 
1

1i

k

i
p


 . 

4 A Genetic Algorithm of Optimization on the Permutation Set 

Let us consider the application of the described approach in solving the optimization 
problem on the combinatorial set of permutations (without repetitions). In this case, 
the Euclidean combinatorial configuration ,U ,, , B  is given by a bijective map-

ping   and a set of constraints    . Let the set B  be such that 1  m , k N n , 

i.e.,  1 2 nb ,b ,...,bB  is the set real numbers ordered as follow 1 2   nb b ... b . 

Then the Euclidean combinatorial configuration  1 n
nz z ,...,z R  is an ordered set 

of numbers from B . In particular, we can choose nB J . 

The set of all Euclidean combinatorial configurations satisfying the above property 
is called the basic permutation (without repetitions) C -set, which we denote by 
E( B ). It is known [34, 35] that the set E( B )  is polyhedral-spherical and coincides 

with the set of solutions of the system of linear and quadratic constraints: 

1 1
i i

n n
z b ,

i i
 

 
 



1
i i n

W
z b , W ,

i W i
   

 
J  

   22

1 1
i i

n n
z b ,

i i
     

 
 

1

1
i

n
b

n i
  


 

where W card W . 

Also, note that the linear function 
1

i i

n
f( ) c z

i
 


z  attains its minimum on the set 

E( B )  at the point  1 nz z ,..., z   , where ii
z b  , ni J , and the sequence 

 1 ,n i n i j n,..., , J , i, j J i j           is such that 
1 n

c ... c   . Thus, 

E( B )  is well-described set. 

Since the set E( B )  is polyhedral-spherical and well-described, then for any point 

 0 0 0
1  n

nz z ,..., z R  it is possible to find the nearest point of E( B )  in the closed 

form. Namely, it is representable in the form  1 nz z ,..., z   , where 1n ii
z b    , 

ni J  and the sequence  1 n i n,..., , J ,      i j ni, j J , i j       is such 

that 0 0
1 n

..z . z   . 

The results are directly generalized to the case if k n , but E  is still consists of 
permutation configurations induced by the same multiset. In this case, E  is the basic 
permutation with repetitions C -set. This two classes of permutation C -sets are united 
in a class of basic generalized permutation C -sets to which the above results are ap-

plicable. Also, the Boolean C -set nB  along with its special subclasses such as the 

Boolean permutation C -set, the Boolean half-cube C -set, permutation matrices set 
are spherically-located and well-described. Respectively, the above results are ex-
tendable to the classes. 

5 A Hybrid Approach to Optimization on C -Sets 

Consider the optimization problem (3) on a C -set  nE R such as 

 E  is spherically-located, namely, 

          rE S ( a ) .                          (7) 



Note that together with the finiteness of E , the condition (4) means that E  is ver-
tex-located, i.e.,  

E vert  P ,                      (8) 

where P conv E  - is a polyhedron; 

 E  is well-described                                                                (9) 
and respectively, by (4), projecting onto the set is conducted effectively; 

 for P , the vertex adjacency criterion is known.                                        (10) 
Among the combinatorial sets with properties (7)-(10), there are the mentioned 

above generalized set of permutations, the set of partial permutations and combina-
tions induced by two numbers. The same holds for the direct product and direct sum, 
as well as for certain subsets and particular cases of the listed sets, such as Boolean 
and binary sets, sets of polypemutations and permutation matrices, sets of even and 
odd permutations, a set of vertices of a demicube, and so on. 

Thus, (3), (7)-(10) covers a wide class of combinatorial problems that are, typically, 
NP-hard, starting with Boolean problems [2] and ending with optimization problems 
on composite images [17] of the above combinatorial sets. On the other hand, these 
problems have plenty of practical applications [1-3]. 

So, a search for new approaches to the solution of the problem (3), (7)-(10) is of in-
terest both from the theoretical and practical point of view. 

An interesting feature of optimization over sets of type (8) is the possibility of re-
ducing the problem (3) with an arbitrary function to optimization of a convex func-
tion, called a convex extension of  f x  from E  [22, 23]. This feature is very impor-

tant when new methods are developed because it allows getting estimates of the 
accuracy of the solutions found and, accordingly, constructing approximation algo-
rithms based on heuristics similar to the one proposed in this paper. 

We offer the following hybrid method of a random search for solving (3), (7)-(10) 
using some ideas of the above genetic algorithm. 

Step 0. Put parameter m Z ; 

Step 1. Initial iteration: 0i . Generate M -element sampling (an initial popula-

tion) from E :  


i i
j

j JM
X x , where 2 mM C .  

The initial record is    


min i
j

j JM
f min f x ,   


min i

j
j JM

x arg min f x . 

Step 2. Perform a descent from the individuals along the adjacent vertices to local 

minimizers of  f x :  


i i
j

j JM
Y y , where i

jy  - is a local minimizer of  f x  

obtained from i
jx . 

Step 3. Form a basis  iS Y  of the multiset iY , i.e., a set of its various elements. 

From  


i i
j

j JM
Y y ,  choose m  the best ones by values of  f x  and form a set 



 


i i
j

j Jm
Z z  from them. 

Step 4. Try to improve the record:  

if  min i
j

j Jm
f min f z ,


 then    min i min

j ij Jm x Z
f min f z , x min f x .

 
   

Step 5.  Make the crossing within iZ , namely:  j j'  find a center of the segment 

 
 

i i
j j'z , z  - 

2




i i
j j'i

jj'
z z

z  

and project  ' i
jj'z  onto E  creating in such a way a new M -element sampling (a new 

population) from E :  

 
1

' i ' i ' i ' i i
jj' jj ' E jj'

j j' m
Z z , Z M , j, j' z Pr z

  
    . 

Step 6. Set 1 i i . Check the termination condition. If it does not hold, set  
1i ' iX Z  and go to Step 2. 

 
As a termination criterion, an achievement of the maximum number of iterations, 

non-improvement of the current record for a prescribed number of iterations, and so 
on can be applied. 

The advantage of the offered method is that it uses the structural specifics of each 
particular combinatorial set. On the one hand, it allows, when crossing distant ele-
ments, obtaining feasible elements, differ significantly from the elements, then per-
forming a search in a vicinity of the new elements, thus decreasing the probability of 
omitting an exact solution. On the other hand, if the points are subjected to the cross-
ing, which are already sufficiently close to each other, then the new points will "in-
herit" general properties of both "parents". For instance, if two points belong to the 
same hyperface of a polytope, then as a result of their crossing is also a point on the 
hyperface. 

 

6 Simulation and Numerical Results 

Consider the use of the proposed genetic algorithm in solving the problem of balancing 
solids. There are a set of points  1 2j j j j NA ( x , y , z ), j J , ,...,N    in the space 

3R and a set of geometric objects i NS , i J  with masses i Nm , i J , whose centers of 

mass are at points i i i i NT ( x , y ,z ), i J   respectively. It is necessary to place the 

center of gravity of each of the objects i NS , i J  in one of the points i NA , i J  so, 

that the deviation of the center of gravity of the system relative to the point 

0 0 0 0A ( x , y ,z )  was minimal. If the deviation of the center of gravity of the placed 



objects from a point 0A  is considered in the Euclidean metric, then the objective 

function of the problem can be written as follows: 

2 2 2F( )     m , 

where 

0 0 0
1 1 1

N N N
m x m y m zi i i i i i

i i ix y z
m m m

, ,  

  
  

  
      , 

1

N

i
i

m m


  , 1 N( m ,...,m )m  . 

Since each point i NT , i J , must be placed in one and only one of the points 

j NA , j J , the given task belongs to the class of assignment problems. Therefore, it 

can be formulated as an optimization problem on the set of N -permutations induced 

by a masses’ set  1 Nm ,..., m . 

This class includes a problem of balancing masses of rotating parts, occurred in a 
turbine construction, power plant engineering, etc.  

Problem statement: on a perfectly balanced disk, it is necessary to place the blades 
with the specified angular pitch so that the total unbalance of the system is minimal. 
The objective function of the problem is determined by the static moments of the 
blades with respect to a pair of mutually perpendicular axes. Let i Nm , i J  be the 

static moments of the blades about axes of their coordinate systems. If the blade is at 
an angle k  to the axis Ox , then, about this axis, its moment is equal i km cos  and 

about the axis Ox  -  i km sin  in a coordinate system associated with the disk. Then 

the total imbalance of the system of the blades i NS , i J  is as follows: 

1 22 2

1 1

/
N N

i ii i
i i

f ( ) m cos m sin 
 

                
 m ,                       (11) 

where i N, i J   are the given angles corresponding to spots of the blades on the disk. 

Thus, a permutation of the masses  1 Nm ,...,m  uniquely determines the value of the 

problem objective function. 
We tested the proposed genetic algorithms for solving the balancing problem (11) 

when placing from 50 to 300 masses uniformly distributed within an interval (0, 100). 
Coordinates of points i NA , i J  were also generated randomly within an interval (-

50, 50) and 0 0 0 0A ( , , ) .  To perform the calculations PC with characteristics 

i3/8G/SSD 256G was used. The average runtime for solving the balancing problem 



for 100 masses was 9 seconds. In the series of test samples, an unbalance does not 
exceed  0.1. The results were compared with a random search for a series of samples 
solved for the same running time as the genetic algorithm required. The best unbal-
ance results obtained using a random search belong to the interval (5.10), which is 
significantly worse than using the genetic algorithm. 

Also, it was solved a test problem of balancing rotating masses offered in [36]. The 
unbalance was calculated using the formula (2), where 96 vanes were placed on a disk 
with an equal angular steps 2i Ni / N , i J    . A crossover operator of type (6) 

was used. There were chosen 1000 permutations in population. The best 50 of them 
were selected for crossing. The optimal unbalance of 0,054 was achieved in six gen-
erations and 0,83 seconds. The corresponding permutation of static moments of the 
vanes is as follows {42; 7; -63; 7; -9; 3; -10; 7; -14; 17; -11; 22; 17; -30; 5; -28; 77; 
19; -6; -46; 0; 25; -31; -6; 11; 3; 19; 8; 22; -26; 20; -4; -38; 2; -26; -14; 49; -27; 12; -4; 
16; -7; -18; -55; 5; 9; -24; -33; -18; 2; -9; 11; 37; -25; -14; -2; -7; -16; 3; -53; 48; 14; 
30; 29; 48; 0; 17; -36; -69; -2; 13; -5; -26; -4; 13; 5; 12; 42; -9; -3; -10; 0; 6; 7; -9; -40; 
11; -30}. The total number of the objective function evaluation is 9552. The best 
value of the function arttained is 5.491.  

7 Conclusions 

The report offers a new approach to implementing genetic algorithms in Combinato-
rial Optimization. A notion of a Euclidean combinatorial configuration is introduced 
as a mapping of a finite abstract set of an arbitrary nature into Euclidean space. As a 
result of this mapping, an optimization problem over a combinatorial configuration set 
is equivalently formulated as a discrete optimization problem on a finite point con-
figuration which elements are Euclidean combinatorial configurations. Consideration 
is given to the specifics of implementing genetic algorithms to solving this class of 
problems: methods for the formation of the initial population and selection mecha-
nisms are proposed, and the choice of crossover and mutation operators is formalized 
and justified. As an example, it is considered optimization on Euclidean permutational 
configurations. Based on the genetic algorithm, a random search method is offered for 
optimization over spherically-located and well-described sets that cover a wide class 
of problems in theoretical and practical domains. 
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