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Abstract. We construct and study a discrete time model describing the conflict 
interaction between two complex systems with non-trivial internal structures. 
The external conflict interaction is based on the model of alternative interaction 
between a pair of non-annihilating opponents. The internal conflict dynamics is 
similar to the one of Lotka-Volterra model, namely information warfare model. 
We show that the typical trajectory of the complex system converges to an as-
ymptotic attractive cycle. We propose an interpretation of our model in terms of 
migration processes. 
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1 Introduction 

Since the beginning of 20th century the Lotka-Volterra model of prey-predator inter-
action is one of the main models for simulation of many processes in population the-
ory, social sciences and economics. As a rule, continuous models where Lotka-
Volterra equations have ratio-depended parameters are studied (see, for example [3, 5, 
6, 11-13, 17, 19, 21]). Application of this approach to information warfare model was 
proposed in [16].  

Authors regard some social community of quantity N0, potentially exposed 
some information threat (InfT) of two types, that is, for example, the threat of a nega-
tive change in its state by transmitting some information relevant to this group by  
information two different channels. The values N1 (t), N2 (t)  –  the numbers of “ad-
herents” depending on time t who accepted the new information, ideas, norms, etc. of 
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the type 1 and 2 respectively. These are the main current characteristics of the degree 
of prevalence of InfT. 

The main model assumptions are: 

1. Both InfT are distributed among the community through the two information chan-
nels: 

─ the first one is “external” in relation to the community, for example, advertising 
media campaign. Its intensity  is characterized by the parameters α1 > 0 and α2 > 0 
respectively, both are considered to be independent of time; 

─ the second, “internal” channel is interpersonal communication between members 
of the social community (its intensity, that is, the number of equivalent informa-
tional contacts, characterized by the parameters β1 > 0 and β2 > 0 respectively, that 
are also independent of time). As a result, the adherents of the first idea that have 
been already “recruited” (their number is equal to   N1 (t)), make their personal 
contribution to the recruitment process by affecting non-recruited members (their 
number is equal to the value of  N0 – N1 (t) – N2 (t)). The same is for the adherents 
of the second idea. 

2. The rate of change of the number of adherents N1(t) and N2(t)  (that is, the number 
recruited into the unit time) consists of: 

─ external recruitment rate (it is proportional to the product of the intensities 
α1 and α2 and on the number of individuals who are not yet recruited N0 – N1(t) – 
N2(t)), that is, α1ꞏ (N0– N1(t) – N2(t)) and α2ꞏ (N0– N1(t) – N2(t)) respectively; 

─ internal recruitment rate (it is proportional to the product of intensities 
β1 and β2, on the corresponding number of active adherents N1(t), N2(t) and on the 
number non-recruited N0 – N1(t) – N2(t)), that is, β1ꞏ N1(t) (N0 – N1(t) – N2(t)) and 
β2ꞏ N2(t) (N0 – N1(t) – N2(t)) respectively. 

The model is, thus, described by Lotka-Volterra-type equations: 
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The main aim of the work [16] is determination of obvious solution of (1), its sta-
ble points, bifurcation points, asymptotic behavior, etc. 

In this work we construct a model that describes non-studied variant of informa-
tion warfare model, i.e., a discrete model with migration. Here individuals migrate not 
randomly, but according to strategies, discussed in section 4. 

We construct the model of the conflict interaction between a pair of complex sys-
tems A and B. This means that every system consists of some parameters that interact 
by some non-trivial law. The system is a finite set of positive numbers: P = (P1, . . . , 
PK) for A and  R = (R1, . . . , RK) for B, where K means the quantity of parameters that 
characterize the system. We study dynamics in the discrete time. So, the evolution of 
every system is described by the sequence of vectors with non-negative coordinates 
P(n) = (P(n)

1 , . . . , P
(n)

K) for A, and R(n)= (R(n)
1 , . . . , R

(n)
K) for B, n = 1, 2, . . . . The 



vectors P and R correspond to the moment n = 0. Naturally, each system tries to reach 
the optimal values of its coordinates. In reality, due to the conflict interaction, every 
coordinate changes in a complicated way. The evolution of all changes is determined 
by double dependence: by the conflict interaction between systems (which we shortly 
describe in section 2), and by the mutual “fight” of coordinates (of the information 
warfare interaction) inside every system. 

The law of evolution inside of each (independent) system is described by a dis-
crete variant of equations (1) (here we use the following notations P:=N1 and R:=N2 

to separate the discrete case): 
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Typical behavior of both continuous and discrete information warfare model is 
shown in Figure 1. 
 

 

Fig. 1. Typical behavior of continuous information warfare model (Source: [16, p.256]) 

2 Conflict Interaction Between Non-annihilating Opponents 

In this section we shortly remind an alternative approach to describe the redistribution 
of conflicting positions between two opponents, say A and B, concerning an area of 
common interests. The main idea of this model is that the influence of every opponent 
may be redistributed among conflict positions, but no one opponent may be destroyed 
(that would mean its distribution equals 0 in all the regions). This idea is realized due 



to the probabilistic character of opponents’ distributions (the sum of the each oppo-
nent’s presence by all regions should be equal to 1).  

We consider the simplest case where the existence space of common interests is a 
finite set of positions Ω = {ω1, . . . ωK,}, K ≥ 2. Each of the opponents A and B tries 
to occupy a position ωi, i = 1, . . . , K with probability PA(ωi) = pi ≥ 0 or PB(ωi) = ri ≥ 
0. The starting distributions of A and B along Ω are arbitrary and normed:  
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A and B cannot be present simultaneously in a same position ωi. The interaction be-
tween A and B is considered in discrete time. We introduce the noncommutative con-
flict composition between real-valued stochastic vectors p0 = (p1, . . . , pK), r0 = (r1, . . 
., rK): 

 1 0 0: , p p r   1 0 0: , r r p  

 
where the coordinates of p1, r1

 are defined as follows: 
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where the coefficient a is from the intervals [-1,0) or (0,1] and stands for the activ-
ity interaction. At the nth step of the conflict dynamics we get two vectors 
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The behavior of the state {pn, rn} at time t = n for n tending to infinity has been 
investigated in [1, 4, 7-10]. We shortly describe the results. 
 
Theorem 1. For any pair of non-orthogonal real-valued stochastic vectors p, r such 
that their inner product (p, r) > 0, and any fixed interaction intensity parameter a not 
equal to 1/(p,r), the sequence of states {pn, rn} tends to the limit state {p∞, r∞}. 
This limit state is invariant with respect to the conflict interaction: 
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We emphasize that in the case of a purely repulsive interaction (parameter a be-
long to the interval (0,1]), if the starting distributions are different, then the limiting 
vectors are orthogonal. 

Therefore each of the vectors p∞, r∞ contains by necessity some amount of zero 
coordinates on different positions ωi. For example the typical limiting picture for pn is 
presented in Figure 2. 
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Fig. 2. Typical behavior of a pure conflict model a=1, p0=(0.5; 0.3; 0.2), r0=(0.48; 0.34; 0.18), 
p∞=(0.33; 0; 0.67), r∞=(0; 1; 0) 

 

3 Model of Conflict Interaction Between Complex Systems 

In this section we construct a dynamical model of conflict interaction between a pair 
of complex systems. This again means that every system includes some parameters 
that interact in non-trivial way described in section 1. But now each of the systems is 
subject to the inner conflict between their elements. For simplicity, we assume both 
systems to be similar and described by discrete information warfare models of type 
(2). We introduce the conflict interaction between these systems using an approach 
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developed in [1, 2, 4, 7-10]. With such a rather complex situation we may obtain a 
wide spectrum of evolutions. In this work we study qualitative characteristics of the 
behavior of corresponding dynamical systems for some choice of parameters a, α1, α2, 

β1, β2 (see (2), (3)) and values of initial quantities of adherents Pi, Ri. 
The coefficient a, that shows intensity of the interaction between systems, has an 

important effect. The increasing a from zero to unit causes the appearance of a series 
of bifurcations. For a = 0 we have two copies of independent information warfare 
models. For small values of a both systems behave like pure information warfare 
systems, coming them to a stable state. 

The role of the coefficients α1, α2, β1, β2 and initial quantities of adherents Pi, Ri in 
a pure information warfare model is well-known and described (see, [16]).  

The state of our dynamical system is fixed by a pair of vectors Pn
 = (P(n)

1 , . . . , 
P(n)

K), Rn = (R(n)
1, . . . , R

(n)
K) with non-negative coefficients, where n = 0, 1, . . . de-

notes the discrete time, K≥2 stands for the number of conflict positions. The complex 
conflict transformation is denoted by the mapping 
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where F is the composition of four operations, the specific mathematical transforma-
tions: F = [N-1 * N]U. 
      Let us describe them in an explicit form for the first step for the case K=2.  

The first operation U describes the interaction between elements inside every sys-
tem separately according to the information warfare model. Corresponding mathe-
matical transformation of vectors (the interaction composition) 

0 0 0 0{ , } { , }UP R P R   

is described by the system of equations of the form (2): 
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and 
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where the passage to new values of coordinates is pointed by tilde, but not by chang-
ing of upper index, likely to (2). 

The following operation involves the interaction * (see (3)) between previous sys-
tems according to the theory of the alternative conflict for non-annihilating opponents 
(see, e.g. [1, 2, 4, 7-10]). To describe this operation we at first have to normalize the 

vectors 0 (0) (0) 0 (0) (0)
1 2 1 2( , ), ( , )P P R R P R      , i.e., to work with stochastic vectors. We 

use the following notation for normalization: 0 0 0 0{ , } { , }N p rP R  , where the coor-

dinates of the stochastic vectors 0 0{ , }p r  are determined by formulae 
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 The next step exactly corresponds to the conflict interaction between systems. We 
introduce new stochastic vectors {p1, r1} with coordinates: 
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Finally, we have to come back to the non-normalized vectors, which characterize 
quantitatively populations in both regions after inner and outer conflicts operations. 
So, at time n = 1 we have the following vectors N-1{p1, r1}={P1, R1}, where 

 1 (1) (1) 1 (1) (1)
1 2 1 2( , ), ( , ),P P R R P R  
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We can repeat this procedure starting from {P1, R1}. So we get {P2, R2}. And so 
on for any nth step. 

To find the equilibrium points in the case of the complex conflict interaction de-
scribed above, we have to solve a very complex system of non-linear equations. Thus, 
pure mathematical approach seems to be not applicable. We use computer simulation 
methods to see the behavior of the dynamical system under consideration. 

Let us consider the case of discrete information warfare model with the conflict 
interaction between systems. If we take the values of the coefficients N0=20000,  
α1=1,  α2=0,1,  β1=0,002, β1=0,0036 that corresponds to the case of a pure information 
warfare model presented at Figure 2 and small value of a=0,00005, then the influence 
of the inner conflict is minimized and we have, in fact, two separated information 
warfare models. In this case the equilibrium points have the coordinates P1 = 
14.943507, P2 = 35.100629. The dynamics is constant with these initial data. 

In case of larger a=0,01, when oscillations appear (see Figure 3), the equilibrium 
point may also be easily found if we put the initial data in both systems to be equal. In 
this case the behavior is like in the case of a pure information warfare model, and 
stabilization occurs.  

We should also stress that stable points in the models presented at Figures 1 and 3 
are extremely different. This effect is caused by the presence of the outer conflict that 
initiates oscillations and does not allow exponential growth of the quantity of adher-
ents in all the regions. Thus, if we have some information warfare system and want to 
change the quantity of adherents of some idea inside this system, we may create an 
analogous “artificial” system, introduce the conflict interaction and obtain the desired 



 
Fig. 3. Oscillations of two adherents’ quantities P1, P2 inside one region (0<n<200) N0=20000,  
α1=1,  α2=0,1,  β1=0,002, β2=0,0036, a=0.01 

 

shift of the equilibrium point. So, we observed the interesting phenomenon: the equi-
librium point of an isolated system is shifted if we come to the case when identical 
systems are united as an “ensemble”. 

However, this equilibrium point is unstable, any perturbation of initial data causes 
the receding of the system from the equilibrium point. 

One of more interesting observations concerns the limit cycles. It is known that no 
such kind of orbits in discrete information warfare model is possible. But under the 
effect of the outer conflict, as we see at the pictures, the dynamical system reaches the 
limit cycle starting both from an inside or outside point with respect to the orbit. Par-
tially, in Figure 4 we present the phase-space picture for (P1, P2) in the case of the 
model presented at Figure 3. As it was pointed above, in case of a pure information 
warfare model, with the stable initial data there is no dynamics. However, in the case 
of the model with the outer conflict the process tends to a limit cycle. 

Thus, the idea of implementation of outer conflict to the standard information war-
fare model makes it much more complex and allows observing non-classical effects 
like oscillations, cyclic attractors, shifting of stable points, etc. We hope to study and 
describe all these effects in our following research. 



 

Fig. 4. Phase-space (P1, P2) inside one region (corresponding coefficients are presented at 
Figure 2) 

 

4 Interpretation 

In many works on mathematical biology and economics [3, 5, 6, 11-13, 17, 19, 21] 
the modelling of population dynamics or economical processes is based on Lotka-
Volterra type equations. As a rule, continuous, not discrete, models are studied. In 
some works the migration process is considered. It takes place between different re-
gions, inside which an interaction of the Lotka-Volterra type is present. For example, 
in [5] the migration rate between regions has some fixed probability.  

We study discrete information warfare models with an additional interaction be-
tween them. That may be interpreted as some kind of correlation between the habi-
tants of different regions. We suppose that discrete models are more natural, partially 
it is clear that information exchange among individuals happen at some fixed mo-
ments of time.  

It is well known that in the classical information warfare model [16] a stable point 
exists. The amount of adherents tends to this point in the phase-space. In this case we 
observe the following dynamics, after several period of oscillations the populations 



stabilize (see Figure 1). Thus, we have an attracting point in phase-space. Such a dy-
namics exists inside every region when “migration” is absent. 

When we introduce an additional interaction between the habitants of different re-
gions a redistribution process appears which we interpret as a migration. In some of 
our complex models there is no stable point, the amount of adherents in both regions 
oscillates along fixed orbits. Apparently these orbits in a phase-space are attractors. 

We note that explicit formulas of conflict interaction between non-annihilating 
opponents which describe the redistribution of populations are given by (3). The indi-
viduals of a certain kind migrate to the region, where their amount more numerous. 

Is the “migration strategy” which is described in our model a natural one? We 
suppose that in many cases individuals may be right behaving in such a way. If we 
consider an information warfare model, it is clear that every separated individual is 
unable to estimate all factors that have an influence on the population dynamics like 
aggressive information influence, real amount of adherents with his own and alterna-
tive position, current population dynamics. In other words, the individual “does not 
know” the parameters of the information warfare equations and their current influence 
on the population dynamics. 

However the individual has the group reflex and will migrate to the region, where, 
as he supposes, the information background is best (his population should be concen-
trated there). He suggests, right there are reliable information resources, possibilities 
for retranslation of his ideas, better conditions to organize large groups. Formula (3) 
just describes this tendency. 

Similar motivations may be proposed in case of the work migration. Here the un-
employed may be regarded as playing the role of “neutrals”, employees and employed 
workers as playing the role of “information sources”. People, who seek for work and 
migrate to another country, do not know, as a rule, the real situation in the opposite 
region. They prefer to migrate to the country where the majority of their friends mi-
grated (group reflex). 

So, at the cost of migration accelerates the increasing of one of adherents quantity 
in one of the regions. But at the same time there is an effect of the inner information 
warfare “fight” inside every system. As a result, some time later the backward migra-
tion starts. 

In the Figure 3 we may see the effect of delay, when the amount of adherents of 
the first idea inside the region decreases, but the adherents of the other idea continue 
migration to this region, until their amount starts decreasing by following the informa-
tion warfare model. 

We emphasize, that in our model, in comparison with discrete information warfare 
model, a cyclic oscillations of quantities are observed. Moreover, a cyclic attractor 
exists in the phase-space, and the adherents trajectory tends to this orbit both from 
inside or outside point with respect to this cycle. We remark that in our model the 
normalization was fulfilled by the amount of habitants of the region, so the compo-
nent of the corresponding vector may be large both at the cost of large population of 
fixed individuals and at the cost of small whole population of the region. So, a migra-
tion to the region with a lot of “free space” is also possible. 

We also studied model with the attracting interaction (a < 0). In this case we ob-
tained formally a similar dynamics, but now individuals migrate to the region where 



they are less numerous. Such a migration strategy might be also natural for some spe-
cies, e.g. for “missioners” who want to spread their ideas among opponents. 
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