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Abstract. The sample dimensionality reduction problem for classification is 
addressed. The sampling method with the preservation of the most significant 
instances near the interclass boundaries is proposed. It calculates the interclass 
distances in the sample used to build hyperspheres, removes redundant in-
stances inside the hyperspheres, and creates a subsample from the set of hyper-
sphere centers. The experiments to study the proposed method properties are 
conducted. They allow recommending the proposed method for use in practice 
as a significant to reduce the complexity and ensure acceptable accuracy of 
classification models. 
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1 Introduction 

The decision making automation in the problems of technical and biomedical diag-
nostics requires the construction of classification model that usually created on a set 
of observations (instances, precedents) characterized by a set of features [1]. In ap-
plied problems often we need to operate with a large-size datasets. This leads to a 
significant expense of time for data processing and requires big computer memory 
resources. Therefore, the urgent problem is to reduce the data sample dimensionality. 

There are two main approaches to solve a data dimensionality reduction problem: a 
feature selection and a sample selection [2]. 

The approach of feature selection is the most widely used in practice [3]. It enu-
merates various combinations of features and determines their suitability for a model 
building based on a specific criterion for feature combination. Among all the best 
feature combinations the resulting combination the one is selected as a result that 
contains the smallest feature number. However, if the feature set is not initially re-
dundant, this approach may lead to the loss of important information. 

Another approach is a sample (instance) selection using different methods to re-
duce the number of instances [4–7]. The most common practice is a random extrac-
tion of smaller subsamples from the big original sample. But random methods in most 
cases cannot guarantee that the resulting sample of a small size will reflect the main 
properties of the original sample, especially near the interclass boundaries. 



The purpose of this paper is to develop a sample selection method, which allows 
minimizing the size of original samples and at the same time to preserve the most 
important instances located near the interclass boundaries. 

2 Formal problem statement 

Let we have an original data sample yxX , , where     Ssyyxx ss ,...,2,1,,  , 

where S is a number of instances, sy  is a class of s-th instance,  s
j

s xx   is a s-th 

instance inputs, j=1, 2, ..., N, s
jx  is a value of j-th input feature jx  for s-th instance, 

N is a number of input features. 
Then the problem of sample selection may be presented in the form: find 

yxX  , :       optyxyxfSSxxyyxx sss  ,,,,,|, , where 

<x',y'> is a selected subsample, S' is a number of instances in a selected subsample, 
f() is a criterion describing quality of sample selection, opt is an acceptable value of f 
criterion. As a rule, for the problems of approximation the model quality criterion is 
determined as a function of the model error. 

3 Literature review 

The sample dimensionality reduction methods by extracting smaller subsamples from 
the original samples can be divided into two main categories: probabilistic and deter-
ministic methods [4–20].  

Probabilistic methods involve randomly selecting of each instance (group of in-
stances) from the original sample with a known non-zero probability that can be accu-
rately determined. The probabilistic sampling [4–18] includes the following methods: 

─ simple random sampling method [10], which allows randomly selecting a given 
number of instances from the original sample. Moreover, all instances of the origi-
nal sample have the same probability of being selected; 

─ systematic selection method [11], which arranges the original sample in a certain 
form and splits it into consecutive groups of instances. Then an object with a given 
sequence number from each group is selected and included in the subsample being 
formed; 

─ stratified selection method [12], which divides the original sample into non-
intersecting homogeneous subsets (strata), including instances of all types. Then 
random or systematic selection methods are applied to each subset; 

─ probability proportional to size sampling method [13–14], which is applied when 
there is additional information about the classes and their size, and the probability 
of selecting each instance of the original sample will be proportional to the size of 
the class to which it belongs; 



─ cluster sampling method [15–18], which divides instances of the original sample 
into clusters. Then, from each cluster, a subset of the instances for the subsample is 
randomly selected. 

The advantages of probabilistic methods [5, 10] are their relative simplicity and the 
possibility of estimating the sampling error. The disadvantages of probabilistic meth-
ods are that they do not guarantee that a subsample will display the properties of the 
original sample well or will not be redundant and will not artificially simplify the 
task. 

Deterministic sampling methods [5, 19] involve the selection of instances based on 
assumptions about their informativeness, which forms the selection criteria. In this 
case, the sample data contains instances that may not be selected or the probability of 
their selection cannot be accurately determined. Therefore, the theory developed for 
probabilistic samples is not applicable to such samples. The deterministic sampling 
includes the following methods: 

─ convenience sampling [5, 20], which forms a non-representative sample of the 
instances most easily available for study; 

─ quota sampling [5], which divides the original sample into disjoint subgroups with 
different properties, after which instances are selected from each subgroup based 
on a given proportion and on the researcher's preferences; 

─ purposive sampling [20], which extracts instances from the original sample in ac-
cordance with the researcher's opinion about their relevance to the study. 

A major problem with these methods [19–20] is the impossibility of estimating the 
error of the formed samples. The advantage of deterministic methods is their ability to 
identify the most significant instances for building a diagnostic model of precedents, 
which can also be used to initialize recognition patterns and speed up the learning 
process. 

The original data samples used in solving the problem of building a diagnostic 
model by precedents can be very large or have redundant data. Model operation using 
such samples may require significant computational and time resources. Extracting 
smaller subsamples from the original data is an effective and natural solution to the 
big data problem when building a diagnostic model by precedents. It is important to 
preserve significant instances of the original sample to obtain a representative sub-
sample of a smaller volume. Therefore, when constructing diagnostic models, based 
on cluster analysis deterministic methods are the most relevant, since they make it 
possible to identify the most significant instances. As a rule, when solving problems 
of technical and biomedical diagnosis there is information about classes, this greatly 
simplifies the task of clustering, which can be performed more accurately, especially 
near the class boundaries. However, in the common case, cluster analysis solves the 
clustering problem for unlabeled data and does not allow selecting important in-
stances located near interclass boundaries. 

Therefore, to create representative subsample of a small size with well-defined 
class boundaries, it is necessary to develop a method of sampling from the original 
data, which will reduce the computational load and preserve the topological represen-



tativeness of the original sample in the feature space by keeping significant instances 
at the interclass boundaries. 

4 The sampling method preserving interclass boundaries 

To preserve the topological representativeness of the original sample in the feature 
space by keeping significant instances at the interclass boundaries a deterministic 
method of labeled datasets reduction is proposed. It separates the original labeled 
sample by the hyperspheres of different radii in the feature space, depending on the 
distances between instances of different classes. The reduction is performed sequen-
tially for each class (primary class) relative to all other classes. On each method’s 
iteration, the most perspective instance of primary class is selected. This is calculated 
using the Gromov–Hausdorff distance between the primary class and the united set of 
other classes: 

  ),(minarg
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where px  is an instance of the primary class and the most perspective instance, ux  is 
an instance of the united set of other classes. 
Then a hypersphere is formed with a center at the most perspective point and a radius 
equal to the distance to the nearest instance of the joint set of other classes in the fea-
ture space. All instances of primary class inside the hypersphere are excluding from 
further consideration. The procedure is repeated until all instances of the primary 
class will be excluded from the consideration. The reduced subsample is formed from 
the centers of the resulting hyperspheres. The construction of hyperspheres is per-
formed separately for each class of the original sample. Thus, the method adapts to 
the distribution of data in the sample, automatically adjusting the number of instances 
in the reduced subsample. Due to the adaptability of the hypersphere radii, closer to 
the class boundary more hyperspheres of a smaller radius are formed. In other words, 
in a reduced sample, the density of instances at the class boundary will be higher than 
far from the boundaries, which allows for more accurate determination of the class 
boundaries. 

The proposed method is based on the hypothesis of compactness of classes. In the 
ideal case, when classes do not intersect (compact), the proposed method greatly re-
duces the original sample, including by removing meaningful instances at interclass 
boundaries, thereby skewing interclass boundaries. In this case, in order to form a 
more representative subsample, it is proposed to regulate the number of hyperspheres 
by the fractional change in their radii. With a decrease in the hypersphere radii, the 
number of clusters increases, and the most of the clusters accumulate at the class 
boundaries. Thus, in the formed subsample, it is possible to regulate the number of 
instances, especially at the class boundary, increasing its representativeness. For-
mally, this method can be written as follows: 



1. The initialization stage. Set the initial data sample yxX ,  and initialize the re-

duced sample  yxX , . 

2. The stage of sample splitting into classes. Split the original sample yxX ,  into 

K  separate subsamples )(kX  for the instances of each class: 


S

s
ss kyxkX

1
}|{)(


 , where Kk ,...,1 . Determine the volume (number of 

instances) of each k-th subsample kS . 

3. The stage of subsample reduction. Set 0k . Then while Kk   perform in a cy-
cle: 1 kk , set primary subsample )(kXP  , merge all other subsamples into 

one virtual subsample 
S

s
ss kyxU
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cycle: 

─ calculate the Gromov–Hausdorff distance between the primary subsample P and 
the virtual subsamples U : 
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─ set the instance px  as the most perspective instance of the primary subsample P  

and join it to the subsample X  : pxXX  ; 

─ determine the radius of the hypersphere centered at px  as ),( up xxdr  , where 

  is a fraction of distance d , 10   ; 

─ join the most perspective instance px  to the subsample X  : pxXX  ; 
─ remove from the subsample P  all instances that are included in the hypersphere of 

radius r : rPPP \ , where rP  is a set of instances remote from the center px  of 

the hypersphere at a distance ),( sa xxdr  . 

4. The stage of model building. Construct the recognition model using reduced sam-
ple X  . 

The proposed method allows automating the process of reducing the size of the 
original sample, which contains information about the classes, for solving the prob-
lems of technical and biomedical diagnosis. 

The disadvantage of the method is the necessity of calculating and memory storing 
of the pairwise distances between instances of opposite classes. Therefore, if the size 
of the original sample is large enough and does not allow all pairwise distances to be 
simultaneously loaded into the computer's memory, or the data are received dynami-
cally, it is possible to process the original sample in packets. 

To provide the correct work of the method each packet should be represented by all 
classes. Applying the described method to the first data packet, we obtain the initial 
distribution of the extracted sample. The instances of the next data packet are com-



bined with the instances of the sample obtained in the previous step. The combined 
sample is processed again by the sampling method with preserves interclass bounda-
ries. The procedure is repeated until all the data of the original sample has been proc-
essed, or until a stop has been made in the specified phase of the data stream, if the 
data is dynamic. Formally, this method can be written as follows: 

1. The initialization stage. Set the initial data sample yxX ,  and initialize the re-

duced sample  yxX , . 

2. The stage of packets initialization. Determine the number of packets in the sample 
)/round( QSP  , where Q  is a number of instances in the packet, specified by 

the user, round is an argument rounding function to the nearest integer. Split the 
original sample X  into P  packets )(X , P,...,1 . 

3. The stage of packet processing. Set 0 . While P , perform in a cycle: set 

1  , join packet )(X  with reducing sample X  : )()(  XXX  , then 

process the packet )(X  using the sampling method with preserving class bounda-

ries described above using the adaptive reduction method and set )(XX  . 

4. The model building stage. Construct the recognition model from a reduced sample 
X  . 

The proposed batch sampling method allows to process of very large samples in a 
batch of a given size. The data batch processing combined with the sampling method 
preserving interclass boundaries allows to obtain representative reduced samples from 
large data samples, or dynamic data sets, without requiring significant computational 
resources. 

5 Experiments 

To study the properties of the proposed methods they were implemented as computer 
software. The set of experiments were conducted to solve the practical problems of 
classification using the developed software implementing proposed methods.  

Considering the possible variability of relative performances of method across 
datasets, the results were obtained based on two datasets of various size and dimen-
sion, characterized in Table 1. 

Table 1. Datasets used for validate the method 

Dataset 
Number of 
instances 

Number of 
features 

Number of 
classes 

Breast Cancer Wisconsin (Diagnostic) 569 30 2 
Activity recognition with healthy 
older people using a batteryless wear-
able sensor 

9101 8 5 

 



The Breast Cancer Wisconsin Diagnostic dataset (BSW) requires to predict 
whether the cancer is benign or malignant. Features are computed from a digitized 
image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics 
of the cell nuclei present in the image [21]. 

The activity recognition with healthy older people using a batteryless wearable 
sensor (RHOP) dataset contains sequential motion data from 14 healthy older people 
aged 66 to 86 years old using a batteryless, wearable sensor on top of their clothing 
for the recognition of activities in clinical environments [22]. 

In each problem the data were normalized to map feature values into the interval 
[0, 1]: 
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where s
jx  is a j-th feature value of s-th instance of a sample, min

jx  is a minimum 

value of j-th feature, max
jx  is a maximum value of j-th feature. 

Further, each initial data set was divided into test and training samples by the 
stratification method [12] in the ratio of 25% and 75%, respectively. This made it 
possible to compare the work of models built on the original sample and reduced 
sample by the proposed method. 

The classification model was built using a two-layer feed-forward neural network 
with 10 neurons in a hidden layer trained by the Levenberg-Marquardt method and 
Error backpropogation technique [23]. 

For the comparison of models built on different training samples the mean square 
error of the test sample classification was calculated: 
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To provide a reliable result in our study ten simulations of model building for each 
training sample were performed. After model testing their MSE values were averaged. 

The results of the proposed method depend on the density of the instance distribu-
tion near the interclass boundaries and the class compactness. So, for a sample with 
heavily mixed classes, the size of the reduced subsample may remain almost un-
changed, or it may change slightly. If the classes are well separable then the size of 
the reduced subsample will be small enough and the interclass boundaries will be 
poorly defined.  

Therefore, the key issue of applying the proposed method is the correct selection of 
the   coefficient. Selection of   coefficient allows to change the radii of hyper-
spheres, thus adjusting the number of instances near the interclass boundaries and the 
representativeness of the reduced sample. In the experiments, a training set was cre-
ated for different values of   coefficient (0.25, 0.5, 0.75, 1). Then, the MSE depend-
ences on the   coefficient were studied. 



6 Results and Discussion 

The conducted experiments showed that the proposed method works well in auto-
matic mode due to its adaptability, which is an important factor in solving technical 
and biomedical diagnostics problems. 

The results of the proposed method are presented in Table 2.  

Table 2. Results of experiments 

BSW RHOP   
S' MSE S' MSE 

0 427 0.026194 6902 0.003484 
0.25 427 0.027152 623 0.010707 
0.5 372 0.027807 329 0.007960 
0.75 228 0.027599 201 0.012432 
1 127 0.035558 136 0.026053 

 
As it can be seen from the Table 2, the results for the different data sets are also 

different. This is due to the different distribution of instances at interclass boundaries. 
In the case of BSW, the original size of the training sample was 427 instances. 

From Table 2 it can be seen that MSE has changed slightly for all   values, while the 
sample size has reduced almost 4 times with 1 . Thus, using the proposed method 
for the BSW dataset, it was possible to significantly reduce the size and save the most 
important instances on the interclass boundaries. 

The original size of the training sample of the RHOP dataset was 6902 instances. It 
can be seen that for given   values, the sample size has significantly reduced, and the 
value of MSE has increased. This may mean that the classes are very well separated 
and the density of the instances at the interclass boundaries is low, so the use of the 
developed method led to a deficiency of instances at the interclass boundaries, respec-
tively to a decrease in the model's efficiency. Therefore, in this case, it is possible to 
recommend to set the minimum   values ( 1.00   ). 

The proposed method makes possible to find a compromise between the size and 
representativeness of the reduced samples, depending on the tasks by changing the 
proportion of the hypersphere radii using the   coefficient. 

The disadvantage of the developed method is that it is computationally expensive, 
especially for large datasets.  

Therefore, there is a need to apply approaches to reduce the method computational 
load. For example, in the case of large samples, it is possible to use the method in an 
ensemble with feature selection methods [24]. 

It is also possible to reduce the computational load by eliminating the stage of de-
termining the most promising instance from the calculations and it's replace by a ran-
dom instance of the class. However, this approach requires further study and identifi-
cation of the necessary restrictions. The next approach could be parallelization of the 
computational load using multiprocessor systems. 



7 Conclusion 

The problem of reducing the labeled large data samples for diagnostic model building 
by precedents is addressed in the paper. 

The scientific novelty of study results consists in the fact that a new sampling 
method preserving interclass boundaries has been developed. It makes possible to 
significantly reduce the size of the original labeled sample, retaining the most signifi-
cant instances near the interclass boundaries and removing less informative instances 
located inside the classes. Thus, the proposed method allows in the automatic mode to 
solve the sample reduction problem adapting to the data distribution in the labeled 
sample. 

The practical significance of the obtained results is that proposed method is im-
plemented as software, which provides possibility of batch processing of large data 
samples, or samples formed from data streams (dynamically incoming data). This 
software has been experimentally studied at solving the problems of real datasets 
sample selection. The experiments were confirmed the efficiency of the developed 
software and of implemented method. The results of the conducted experiments allow 
to recommend the use of the developed method and its software implementation for 
solving the problems of technical and biomedical diagnosis. 

The prospects for further research may be concerned on study the proposed method 
on a wider class of practical problems. Also the study of the possibilities of the pro-
posed method in ensembles with the methods of feature selection for large datasets 
seems to be appropriate. The development of implementations of the proposed 
method for multiprocessor systems operating in a parallel mode also is important for 
many practical problems. 
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