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Abstract. This work presents a spatial model for the real-time GIS-based deci-
sion support systems based on dynamic fuzzy rough soft topology, which repre-
sents a spatial structure that contains a multitude of interacting processes, which 
evolve in space and time. The dynamics of destructive processes are modeled 
using the spread model. The area of interest is represented as an approximation 
by a grid of cubic cells. This allows taking into account the peculiarities of the 
initial information obtained using remote sensing techniques and having a sig-
nificant uncertainty. As a result, boundaries of contours of spreading destructive 
processes are blurred using fuzzy rough soft topology. The proposed model re-
duces the computational complexity and provides the acceptable performance. 

Keywords: destructive processes, spatial model, fuzzy rough soft set, fuzzy-
rough soft topology, grid of cells, blurred boundaries 

1 Introduction 

Nowadays, the society faces the problem of increasing loss of lives and damages to 
properties caused by natural disasters that rise steadily due to population growth, 
urbanization, deforestation, environmental degradation, and global climate change. 
An effective way to overcome this problem is a proper risk management strategy that 
calls for disaster analysis consisting of spatiotemporal modeling of disaster in the area 
of interest (AOI).  

The authors are concerned with the areas containing natural and artificial objects 
among which are valuable objects requiring disaster protection. AOI with a multitude 
of interacting disasters, which evolve in space and time giving rise to danger and risk 
to some valuable objects is considered a dynamic system. The paper deals with real-
time disaster spatial modeling. 

However, the most of the destructive processes are poorly observed and their 
spreading within the AOI is weakly modeled, so real-time disaster modeling is a 
complex and non-trivial task, which becomes more complicated due to uncertainty of 
information, a wide geographically distribution of events and, as usual, a lack of time 
[1]. The efficiency of decision-making strongly depends on the availability of online 
disaster monitoring tools aimed at the real-time computation of the most important 
parameters related to the spreading of the destructive processes.  



Today, a suite of the most advanced methods and techniques, such as remote sens-
ing, GIS, geospatial analysis, unmanned aerial vehicles (UAV), can be synergistically 
used for GIS-based disaster modeling. Remote sensing techniques play a crucial role, 
as they provide powerful tools for the rapid acquisition of relevant data for disaster 
monitoring [2] in a form of streams of great volumes that come from sensors on a 
continuous basis at a high rate and should be analyzed in a real-time [3]. These data 
can be used for representing spatial distribution and properties of disaster, and for 
supporting forecasting disaster models. 

This paper presents a spatiotemporal disaster model in the context of the most 
common types of disasters such as wildfires. The authors consider fire monitoring as 
a continuous or discrete process of observing a status and changes in an active fire 
directly or indirectly and determining some fire parameters such as intensity, size, the 
rate of spread, and others relevant to respond operation and important for the decision 
maker. UAVs can effectively perform long-time missions to obtain remote sensing 
data [4]. However, due to the instrumental inaccuracy and distortions caused by vibra-
tions, remote sensing information obtained from UAVs is incomplete, imprecise, 
vague, and often blurred [5]. The dynamics of wildfire spreading depends on the ac-
curacy of determining the boundaries of its dynamic contour. However, the uncer-
tainty of observations significantly reduces the accuracy of determining the bounda-
ries of such contours [6]. Obtained remote sensing data should be correctly transferred 
to wildfire spread model, geolocated and mapped to the AOI.  

Numerous methods have been developed to model disasters based on a huge array 
of remote sensing and other data gathering techniques. Using the well-established 
traditional approaches for spatial modeling such as statistical methods do not provide 
the required performance and acceptable efficiency of GIS-based real-time wildfire 
modeling [7]. A key aspect to achieve the desired performance is to build an ap-
proximate spatial model of wildfire spreading, taking into account partial observabil-
ity and uncertainty of observations. Thus, we need to soften the requirements for the 
accuracy of remote sensing data representation, which will give us the opportunity to 
improve modeling performance. In this case, the boundaries of the dynamic contours 
of the spreading processes can be vague and blurred. 

There are several well-known approaches to deal with the uncertainty and vague-
ness in the spatial models, such as fuzzy set theory [8], rough set theory [9] and soft 
set theory [10]. Each of these approaches has its inherent difficulties as pointed out in 
[10]. It should be noted that due to the absence of some important information a pri-
ori, such as membership functions for fuzzy sets, equivalence relations for rough sets, 
or parameterizations for soft sets, these approaches cannot ensure the adequacy of the 
spatial model of the destructive process independently. Therefore, many researchers 
combine some of these approaches. Some authors proposed to use for spatial model-
ing the combinations of rough and fuzzy sets [1], rough and soft sets [11], fuzzy and 
rough sets [12]. In [13], the authors proposed the concepts of rough fuzzy soft sets 
and fuzzy rough soft sets, which have a number of advantages to build a blurred spa-
tial model. Based on this, we can use soft topological spaces to build a spatial model 
of the destructive process, as well as the fuzzy rough method for its blurring. 

The aim of this work is to develop the approximate spatiotemporal disaster model 



within AOI [14] in the context of forest fires. To overcome the computational com-
plexity problem, we build a topological spatial model and soften the effects of discre-
tization using the fuzzy rough sets. The developed model allows analyzing big data 
streams coming from remote sensors and representing them in a user-friendly style. 

2 Modeling dynamics of destructive processes 

Let us consider the AOI as an open connected subspace Х of three-dimensional 
Euclidean space endowed with the topological properties [15, 16]. Firstly, the consid-
ered AOI is divided into a finite set of disjoint spatial objects represented as geomet-
ric shapes, which outline boundaries of certain areas. Such objects are named as 
geotaxons and represent geo-referenced natural parts of the terrain with the same 
characteristics. GIS can contain an unlimited number of geotaxons’ layers. To build a 
topological space on Х we use an equivalence relation X X X X     (reflexive, 

symmetric, and transitive) [1]. Then the pair  ,X Xapr X   is called the approxima-

tion space. The family of all composite sets is denoted by ( )XDef apr  and uniquely 

determines the topological space  , ( )XT X Def apr . 

Suppose that each point x X  has a non-empty finite set of attributes A , aV  is a 

domain of a A  and f  is a function such that :f X A V  . Let’s impose a metrical 
grid of coordinate lines with 1 2 3          within X , which form a set C  of 

cubic cells with the size being     . Thus, space X is discretized by a grid C  of 
isometric cubic cells c C . Assume that a cell c C  is a spatial homogeneous object 
of minimal size. The grid C  approximates AOI and constitutes a certain GIS layer.  

Each cell c C  is associated with a set of attribute values, which is called the cell 
state, via the value function  c,f A . The proposed discretization assigns equal values 

of the attributes to each point belonging to a certain cell c , therefore each cell c C  
represents a homogeneous area of the AOI in terms of attribute values A , so it can be 
reduced to a point of X . It’s suggested to model disaster dynamics by means of a 
change of states of the cells covered by the disaster.  

Suppose the set of attributes A  can be divided into subsets [16]: not changing over 
time (static) attributes SA , time-varying (dynamic) attributes DA , slowly changing 

(environmental) attributes EA , S D EA A A A   . Suppose  0 ,... ,...i FW w w w  is an 

ordered set of the cell states (phases), where 0w  is the initial phase, Fw  is the final 

phase, and each iw  is the transitional phase. We consider each significant change of 

the cell attribute’s value, which forces the cell to change its state, as an event. As-
sume, during the destructive process, the cell moves through a sequence of qualita-
tively different categories of states, which should be evaluated during continuous 
remote sensing. It is clear that the model of the destructive process can be represented 
as a model of dynamic change of states of a subset of cells covered by the process 
within the spatial model. Thus, the spatiotemporal structure of AOI can be repre-
sented as a topological space, which includes subspaces of cells of the same phase and 
makes it possible to assess the position and boundaries of the dynamic contour of the 



process. Since the belonging of each cell to a certain phase is determined approxi-
mately due to the uncertainty of remote sensing, the topological space describing the 
structure of the spatial model as well as the boundaries of the contour of the spreading 
destructive process is blurred. 

3 Soft sets and soft topologies 

Dynamics of destructive processes can be described by a blurred structure of AOI 
containing the sets of cells, which belong to a certain phase at any given time t . It is 
proposed to represent such a structure as a soft set, which blurring in different ways 
makes it possible to obtain blurred structures. The most common way of blurring the 
boundaries between subsets of cells belonging to different phases is to represent them 
in the form of a fuzzy set, but in practice, this method is impossible to implement. The 
soft set allows us to represent the AOI as a blurred topological space, which can be 
created by blurring the boundaries between the sets of cells corresponding to different 
phases. 

Suppose destructive processes at each time gives rise to a certain state of AOI 
represented by a blurred structure, which consists of plausible sets of cells that belong 
to a certain phase. Such a structure is proposed to be presented as a soft set. 

Consider the concept of soft sets in general. Let S DW W W   is a union of the sets 

of environmental conditions and the set of phases of the cells, iW W  is any of its 

subsets, and 2W  is the set of all subsets of W , 2W
iW   [16].  

A couple  ,
iW iW    is called a soft set on the set of cells C  if   is a mapping 

: 2C
iW  , where 2C  is the set of all subsets of C  [16]. In other words, the soft set is 

a parameterized family of subsets of cells C . Each set  w , iw W  of this family 

can be considered as a set of w -elements of soft sets  , iW . 

A soft set can be defined by a plurality of pairs 

     , : 2 , 2
i i i

W C
W W Ww w w w      . A set  

iW w  is called a w -element of the 

soft set and is determined for each iw W . The soft set is associated with a set of 

equivalence classes generated by the Pawlak's indiscernibility relation. As mentioned 
above, we can identify an iA -indiscernibility relation in the set of cells. 

If a certain set of parameters iA  determines the class 
iw W W  , then iA -

indiscernibility relation can be substituted by w - indiscernibility relation. Thus, we 
assume that the soft set 

iW  splits the cell set C  into equivalence classes generated by 

w -indiscernibility relation w
C , where iw W . In other words, a parameterized family 

of subsets of cells C , which forms the soft set 
iW , is a factor set / w

CС   consisting 

of all equivalence classes of the set C  generated by the relation w
C .  

Thus, the soft set 
iW  can be used to generate equivalence classes in the set С  in-

stead of the equivalence relation w
C , iw W . w

C  can be generalized and represented 



as a similarity or a tolerance relation such that the soft set 
iW  splits the plurality of 

cells C  onto the vague sets (fuzzy or rough). Of particular interest for building the 
structure of AOI is the SA - indiscernibility relation, which can be replaced by the 

Sw -indiscernibility, as well as DA -indiscernibility relations, which can be replaced 

by the Dw - indiscernibility relation. The approximation spaces generated by these 

relations can be represented as soft sets 
SW  and 

DW  respectively. 

Consider the Sw -indiscernibility relation in a plurality of cells and the correspond-

ing soft set 
SW . The set of cells defining the AOI can be represented as the soft set, 

which divides the set of cell onto classes with respect to terrain conditions 

as      , : 2 , 2 C

S S S

WW
W W Ww w w w      , where  

SW w  is a set of cells, which cor-

responds to a class Sw W , maps it into a set of cells, and describes the static compo-

nent of AOI as      , : 2 , 2
S S S

W C
W W Ww w w w         [16]. While SA -

indiscernibility relation generates static equivalence classes in a set of points x X , 

which constitute a topological space SA
XT , and geotaxons are their connection compo-

nents, SW -indiscernibility relation defined on the set of cells also generates static 

equivalence classes. Their connection components are subsets of cells, which ap-

proximate geotaxons, and they constitute a topological space   ,S sw w
C CT C Def apr .  

The decomposition of the subspace C  of approximation subspace X  using 
geotaxons, approximated by cells, is a topological space that represents the static 

component of the spatial model   as   ,S S

C

w w
G CT C Def G . Each i - class of equiva-

lence  Sw
C i

apr  of approximation space Sw
Capr  can be represented as the value of the 

soft set  
SW iw , i Sw W , i.e.    S

S

w
C W ii

apr w  . Let  
SWDef   is a family of all 

composite sets of the soft set 
SW . Obviously,   ( )S

S

w
W CDef Def apr  . Thus, the topo-

logical space can be represented as the soft set      , ,S S

S

w w
С C WT C Def apr C Def   . 

The special role is related to DW -indiscernibility relation, which splits the set of 

cells into phases and generates dynamic equivalence classes. A dynamic topological 

space Dw
CT  is built upon dynamic equivalence classes and determines the dynamic 

behavior of the destructive processes. As well, each i -class of equivalence  Dw
C i

apr  

can be represented as the value of the soft set  
DW iw , i Dw W . At any time t , the 

set of cells can be represented as a dynamic soft set that splits the set of cells into 

phases (Fig. 1)        , , : 2 , , 2
D D D

W C
W W Wt w w t w w t      , where  ,

DW w t  is a set of 

cells, which belong to the phase Dw W  at the time t . This set describes the state of 

the process F :        , , : 2 , , 2
D D D

t W C
F W W WState t w w t w w t       . 



  

Fig. 1. State of the destructive process in the form of a soft set 

Fig. 1 reflected the state of destructive processes in the form of soft sets, which di-
vides the set of cells into three subsets: 0w -elements (in white), 1w -elements (in dark 

gray), and 2w -elements (in light gray). If iw  and jw  elements related by achievability 

relation, then the areas approximated by cells, which are iw - and jw - elements of the 

soft set, must be adjacent to each other. The decomposition of the subspace C  of 
approximation subspace X  using DW -indiscernibility relation is a topological space 

  ,D Dw w
С CT C Def apr  superimposed on topological space Sw

CT . Each i -class of 

equivalence  Dw
C i

apr  can be represented as the value of the soft set  
DW iF w , 

i Dw W . 

 

Fig. 2. The indiscernibility relations used to construct of the spatial model 

Let  
DWDef   be a family of composite sets of the soft set 

DW . Obviously, 

that   ( )D

D

w
W CDef Def apr  . Thus, the topological space can be represented as the soft 

set       , ,D D

D

w w
С C WT C Def apr C Def    [16]. 

Consider q -indiscernibility relation on the set of cells that generates dynamic 

equivalence classes, which constitute a dynamic topological space q
CT  representing 



homogeneous regions in respect of relative hazard, threat, or risk assessments at any 
given time t . A subset of cells belonging to one class of equivalence forms a zone, 
each of which does not necessarily have to be connected. At any time t  the set of 
cells can be represented as a dynamic soft set, which splits the set of cells into zones 

from the set Q:        , , : 2 , , 2Q C
Q Q Qt w q t w q t      , where  ,Q q t  is a set of 

cells, which are within a zone q Q  at a time t . The decomposition of the subspace 
C  of approximation space X  using q-indiscernibility relation is a topological space 

  ,q q
С CT C Def apr . 

Each i -class of equivalence  q
C i

apr  can be represented as the value of the soft set 

 Q iw , q Q . Let  QDef   be a family of composite sets of the soft set QF . Obvi-

ously, that   ( )q
Q CDef Def apr  . Thus, the topological space can be represented as a 

soft set      , ,q q
С C QT C Def apr C Def   . The set 

SW  is static while the sets 
DW  

and Q  are dynamic. The spatial model   can be represented as a multilayer topo-

logical space, which is a superposition of topological spaces in the form of soft sets:  

      , , ,
S DW W QT C Def       , 

where  Def   is a family of composition sets generated by the soft sets 
SW , 

DW , 

and Q , each of which constitutes a separate layer of the spatial model. Fig. 2 shows 

three types of iA -indiscernibility relations in the set ( iA A ) [16]. Table 1 reflects 

the properties of the considered topological spaces, which are shown in Fig. 3 [16]. 

4 Approximate topological space 

Since the spatial model of AOI is blurred, in order to build an approximate topology 
we need to generalize (blur) a strict indiscernibility relation  Dw

C t . Using the ap-

proximated soft sets we can represent topological spaces of terrain conditions 
(geotaxons), dynamic conditions (phase), estimations, etc. The blurring of topological 
spaces will be considered on the example of the topological space of the dynamic 
conditions, which is important for obtaining risk assessment.  

Let us build a generalization of the relation  Dw
C t  into the similarity relation 

 Dw
C t% , which can be replaced with the fuzzy soft set 

DW  [17]. As a result, at each 

time t  we obtain a fuzzy approximation space        , ,D

D

w
C C Wapr t C t C t   % %%  

and a fuzzy topology, which represents a partition of all cells in C  into fuzzy sets of 

cells  iwC t% , 0,... 1i n   that enumerate all possible phases of the set DW  [18]. 

Let L  denotes the interval [0,1], 2C  denotes a family of crisp subsets of C , and CL  
denotes a family of all fuzzy subsets of C , where each fuzzy set is a mapping 



  :wC t C L% . Thus, we can represent the fuzzy soft set, which divides the set of cells 

into phases and define the state at time t  as 

Table 1. Properties of the topological spaces [16] 

Cartographic object or zone  

Geotaxons Cells Processes Assessments 
1 topological 

space 
S

С

A
GT  

CT  Dw
CT  

q
CT  

2 The base of 
formation  

SA -

indiscernibility 

relation SA
С and 

soft set 
SW  

Sampling space 
on equal objects 

Dw -

indiscernibility 

relation Dw
CT  and 

soft set 
DW  

q-

indiscernibility 

relation q
CT  

and soft set Q  

3 Connection 
components 

Geotaxon Cell A set of cells, 
which belong to 
the same phase 

Dw  

A set of cells, 
which corre-
sponds to the 
assessment q 

4 Attribute values 
of connection 
components 

Static Dynamic Dynamic Dynamic 

5 The 
composition of 
connection 
components set 
(variability in 
space) 

Static Static Dynamic Dynamic 

6 Elements of the 
equivalence 
class 

Homogeneous 
with respect to a 
set of certain 

attributes of SA  

Homogeneous 
with respect to a 
set of certain 

attributes of A  

Homogeneous 
with respect to a 

certain phase Dw  

Homogeneous 
with respect to 
a certain as-
sessment q 

 

       , , : 2 , ,D

D D D

W C
W W Wt w w t w w t L     % % % , where 

      , , , :
D DW Ww t c w t c c C    % %       , :w wС t c С c t c C % %  is the fuzzy set of 

cells, which belong to the phase Dw W  at time t , and      ,
D

w
W w t c C c t  %%  is a 

degree of membership of the cell c to fuzzy set of cells wC% , which belong to the 
phase w  ( w - element of the fuzzy soft set 

DW% ) at time t . In this relation, we use the 

fuzzy w - elements instead of crisp ones, so the soft set becomes the fuzzy soft set. 

5 Fuzzy-rough soft topology 

The above-considered model of the topological space is based on the fuzzy 
splitting of the set of cells into phases, the number of which in the general case can be 
unlimited. However, it is not always possible to find a way to determine the degrees 
of membership of cells to certain phases. If such degrees are not known, then instead 



of fuzzy sets, it is convenient to use rough sets defined by a lower approximation (as a 
subset of cells that uniquely belong to an approximate set), an upper approximation 

 

Fig. 3. The topological spaces of the spatial model 

(as a subset of cells that may belong to an approximate set), and a boundary region (as 
a subset of cells, whose degree of membership is unknown with respect to the ap-
proximated set). 

The approximate indiscernibility relation at a time t  generates an approximation 

space µ   µ   ,
Dw

CCa pr t C t   and an approximate topology, that is, the partition of the 

set of cells C  on the approximate subset of cells µ  iw
C t , 0,... 1i n  , which belong to 

each of the possible phases of the set DW . To build an approximated soft set of cells, 

we should blur the crisp soft set by introducing the Pawlak lower and upper rough 
approximations. 

Let  ,D Dw w
C Capr C   be Pawlak space approximation, and  ,

DW DW    be a soft 



set within C . Denote the lower and upper rough approximation of the soft set 
DW  in 

 , Dw
CC   by  ,

DW DW    and  ,
DW DW    respectively. Clearly, they are the soft 

sets       D

D D

w
W C Ww c C c w       and       D

D D

w
W C Ww c C c w        for all 

Dw W . In the case, when    
D DW Ww w   , the w -element of soft sets 

DW  is the 

crisp set, otherwise, it is the rough set. 
The above definition is a rough approximation of the soft set [9]. The approximate 

set of cells that belong to a certain phase w  at time t  is determined by two approxi-

mations as       ˆ , , , ,
D D DW W Ww t w t w t    , where  ,

DW w t  is a lower approximation, 

which contains all cells that belong to the set  ˆ ,
DW w t  clearly and necessarily (i.e., 

they belong to the phase w ); and  ,
DW w t  is an upper approximation, which con-

tains all cells that may belong to the set  ˆ ,
DW w t . 

The negative region of the rough set  ˆ ,
DW w t  is called a set of cells of the uni-

verse C , which do not reliably belong to  wC t :     ˆ , ,
D DW WNEG w t C w t   . A 

boundary region of the rough set  ˆ ,
DW w t  is called a set of cells of the universe C , 

which belong to the upper approximation  ,
DW w t  but does not belong to the lower 

approximation  ,
DW w t :       ˆ , , ,

D D DW W WBND w t w t w t      

During the monitoring of destructive processes, it is often possible to obtain 
information for the cells about the graduation of their degree of membership with 
respect to the boundary region of the certain rough set. For this purpose, it is conven-
ient to represent the state of the destructive process as a fuzzy rough soft set of cells, 
which divides the set of cells into phases at each time t  and can be represented as a 
triple consisting of the upper and lower approximations of the rough set, and the 
boundary region of the rough set represented as the fuzzy set: 

        ˆ ˆ ˆ ˆ, ,
D D D DW W W Wt t t BND t    % %  [19]. 

Fuzzy-rough soft set splits the set of cells into w -elements, each of which is a 
fuzzy rough set of cells, which belong to a certain phase w , Dw W : 

        ˆ ˆ ˆ ˆ, , , , , ,
D D D DW W W Ww t w t w t BND w t    % % , where   ˆ ,

DWBND w t%  is a fuzzy set 

of cells, which belong to the boundary region of the w -element of the rough set 

 ˆ
DW t :          ˆ ˆ ˆ, , ,c, : ,BND w t c BND w t c BND w t    % % .   ˆ ,c,BND w t%  is the 

degree of membership of the cell c, which belongs to the boundary region of the 

rough set  ˆ
DW t , to the fuzzy set   ˆ ,

DWBND w t%  at a time t . 

Fig. 4 shows the blurring of the boundaries of w -elements of the soft set 
DW  using 

fuzzy rough soft set ˆ
DW

%
. The top of the figure shows the state of the destructive 

process in the form of the soft sets 
DW , which splits the set of cells into three subsets 



( 0w - elements, 1w - elements, and 2w - elements), each of which is a crisp set. 

 

Fig. 4. Blurring the boundaries between the elements of the soft set using the fuzzy rough sets 

We obtain a fuzzy rough soft set by generalizing the soft set ˆ
DW

%
 and blurring the 

boundaries between its elements. Two lower figures show fuzzy rough sets, which are 

elements of the fuzzy rough soft set: 2w - item (  2
ˆ

DW w% ) and 1w - item (  1
ˆ

DW w% ). The 

boundary regions of the approximate sets are represented by fuzzy sets. Cells having 
different degrees of membership to the rough set are represented in different colors. 
Thus, the state of the process at a time t  can be defined as a fuzzy rough soft set of 

cells  ˆ
DW t% :      ˆ ˆ, , :

D DW W Dt w w t w W   % % , where each fuzzy rough set of cells 

 ˆ ,w t%  is the w -element of the fuzzy rough soft set  ˆ
DW t% . Let  ˆ/ R Dw

CC t%  be a 

factor-set, consisting of fuzzy sets of cells    ˆˆ , ,
D

w
W Dw t C t w W  %%

, generated by 

fuzzy rough relation µ  Dw

C t . In this case,      ˆ ˆˆ ,R ,D

D

w
C C Wapr C t C t  % %%  is a fuzzy 

rough approximation space and µ   ˆ
DC WDef a pr Def   is a family of fuzzy rough sets 

representing the cells, which belong to a certain phase; t T   the set 

    ˆˆ
DWt Def t  %%  is a fuzzy rough topology on C . At any t T  a couple 

    ˆ ˆ,Dw
CT t C t% %  is fuzzy rough topological space. Each element of  ˆ t% =  ˆ

DWDef %  

is the fuzzy rough open set in C  [20]. 

6 Developing a spatial model of the destructive process 

In order to diagnose the situation during destructive processes in real-time systems, in 
terms of time limit there is no need to allocate a large number of phases of a cell. It is 
quite enough for a certain time to allocate a subset of cells not yet covered by the 
destructive process, a subset of the cells covered by the destructive process, and a 



subset of cells destroyed as a result of the destructive process (which were covered at 
the previous moments of time). To do this, we use three possible values of the cell 
phase c  in the spreading area of the destructive process F  (Fig. 4) [16]: 

- "Not covered by F" (   0,D Dw c t w )  

- "Covered by F" (   1,D Dw c t w ) 

- "Phase not defined" (   2,D Dw c t w ).   

As a rule, information on being cells in these phases can be obtained during monitor-
ing with different sensors. The cells covered with the destructive process belong to 
the phase 1Dw  and form a zone limited by the internal and external contour of the 

process. These contours are blurred and can be represented as boundary regions of an 
approximate set of cells in this phase. During the monitoring of the dynamics of the 
process with various sensors, it is often possible to obtain information about the pos-
sibility of covering the cells that belong to the blurred contour. Often, we can also 
determine the gradation of the possibility of covering cells that belong to a blurred 
contour of the destructive process. The state of the process can be represented as the 
fuzzy rough set of cells, covered by the destructive process, given by a triple, consist-
ing of the upper and lower approximations of the rough set, as well as the boundary 
region of the rough set, presented as the fuzzy set: 

        1 1 1 1

ˆ ˆ ˆ ˆ, , , , , ,
W D D DD

D W D W D W Dw t w t w t BND w t      , where 

      1 1
ˆ ˆ, , , ,

D WD
W D DBND w t c w c t   . 

For some destructive processes, the concept of the inner contour does not make 
sense (e.g., for floods). Therefore, it is often advisable to consider only the outer con-
tour of the process, which we will call simply a contour. The location and dynamics 
of the outer contour are decisive for assessing the time-level threat, representing the 
time for which the outer contour of the process can reach a certain object (Fig. 5). 

 

Fig. 5. State of the destructive process defined by the fuzzy rough soft set 

In this case, we consider two phases of cell dynamics: 



- "Not covered by F" (   0,D Dw c t w )  

- "Covered by F" (   1,D Dw c t w ). 

During monitoring it is possible to determine the areas covered and destroyed as a 
result of the destructive process (lower approximation  

1

ˆ ,
DW Dw t , that is, the set of 

cells belonging to the phase 1Dw ), and areas not yet covered by the destructive proc-

ess (negative region   1

ˆ ,
DW DNEG w t , that is, the set of cells belonging to the phase 

0Dw . There is a blurred territory between these areas, which constitute a blurry con-

tour of the destructive process (fuzzy set   1

ˆ ,
DW DBND w t ). Based on the monitoring 

data it is not difficult to construct a fuzzy rough soft approximation space 

    ˆˆ ,
C

apr t C t   and a fuzzy rough soft topology     ˆ ˆ
C

Def apr t t  , that is, parti-

tioning the set of cells C  at each time t  on the fuzzy rough subset of cells 

 ˆ ,
WD

Diw t , which belong to each of the possible phases Diw  of the set DW . 

7 Experiment Results 

The proposed spatial model has been implemented using Visual C and tested on 
computer based on the Pentium i5-7400 3 GHz processor and 16 GB RAM. The de-
veloped spatial model of the spreading destructive processes based on the fuzzy rough 
soft topology was used in the GIS-based real-time DSS providing the geospatial 
analysis of emergencies in real time disaster situations [21]. The developed DSS al-
lows evaluating a number of indicators, e.g. danger degrees, threats, and risks, for 
target objects, as well as providing the geospatial analysis of emergencies in real time 
disaster situations. To obtain such estimates, it is necessary to build a spreading model 
of the destructive process and track the movement of its contour in real time by moni-
toring using UAVs.  

To examine the developed model, we use real-time DSS in the forest fire response 
operations. Fig. 6 shows the representation of the forest fire front based on the fuzzy 
rough soft topology, which has been obtained during the monitoring. Fig. 7 depicts a 
fuzzy-rough cut of the forest fire front evaluated by the possibility of burning obtain-
ing during the forest fire monitoring. 

The results of the experiment show that the proposed spatial model provides ac-
ceptable performance in terms of accuracy and speed for all kind of topology. The 
fuzzy rough soft topology shows sufficient results on the speed with enough accuracy. 

8 Conclusions 

The approximate spatial model for the real-time GIS-based DSS based on the 
fuzzy-rough soft topology is proposed. The model of the destructive process is repre-



sented as the model of dynamic change of states of the subset of cells covered by the 
process within the spatial model. As a result, the spatiotemporal structure of AOI is 
represented as a topology space, which includes subspaces of cells that belong to the 
same phase. 

 

Fig. 6. Representation of the forest fire front based on the fuzzy rough soft topology 

 

Fig. 7. A fuzzy-rough cut of the forest fire front assessed by the possibility of burning 

The soft topological spaces are used to build a spatial model, as well as the fuzzy-
rough method is used for its blurring. Since the belonging of each cell to the certain 
phase is approximately determined due to the uncertainty of remote sensing, the topo-
logical space is blurred and the boundaries of the dynamic contour of the destructive 
process are also blurred. The proposed spatial model representing uncertain informa-
tion about the disaster reduces the computational complexity and provides flexible 
and timely decision-making in real time.  
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