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Abstract. The problem of inductive model building on precedents for biomedi-
cal applications is considered. The model paradigm is a random forest as a set 
of decision tree classifiers working as ensemble. The apriori information taken 
from training data set is used in proposed method of random forest model build-
ing provide more accurate model saving general random character of a method. 
The resulting random forest provide more accurate model in comparison with a 
single decision tree, but its comparison with known methods of random forest 
model building proposed method is more accurate. 
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1 Introduction 

The decision trees [1-2], which are hierarchical tree-like models for obtaining a deci-
sion on assigning a recognized instance to one of the possible classes, are useful for 
problems of biomedical diagnosis by precedents. However, the known methods of 
constructing models based on decision trees [1-24] are not always able to provide the 
required level of classification accuracy. The paradigm of a random forest [25-31] is 
used to improve the accuracy of models based on decision trees. 

Random forest paradigm [25-31] is committee (ensemble) of decision trees and 
combines two main ideas: the Bagging method of L. Breiman [32, 33] and the method 
of random subspaces of T. Ho [26]. Generally, the idea of the method is to use a large 
ensemble of decision trees, each of which in itself gives not a lot of classification 
quality, but together joined they provide a good result due to the large number of 
predictors [25]. Decision trees are a good family of basic classifiers for bagging [32], 
since they are quite complex and can reach zero error on any sample. The method of 
random subspaces [26] allows to reduce the correlation between trees and avoid re-
training. Basic methods are trained on different subsets of the features, which are also 
randomly distinguished. 

The random forest paradigm has such advantages [25-31] as: the ability to effi-
ciently process data with a large number of features and classes, insensitivity to scal-
ing (and in general to any monotonic transformations) of feature values, resistance to 



the inclusion of irrelevant (useless) features, the ability to process both continuous 
and discrete features, the ability to work with missing data, possibility to be used for 
feature significance estimation, insensitivity to emissions in data due to random sam-
pling, possibility of evaluating the resulting model ability to generalize (test for out-
of-bag - unselected instances), high parallelizability and scalability, high prediction 
accuracy, the ability to balance the weight of each class on the entire sample, or on a 
subsample of each tree, low tendency to retraining (in practice trees almost always 
only improves composition, but upon validation, after reaching a certain number of 
trees, the learning curve goes asymptote), the random forests by modifying their defi-
nitions can be represented as nuclear methods, which are more convenient and inter-
pretable for analysis, random forest can be converted into the k-nearest neighbors 
model. 

However, a random forest has such disadvantages as [25-31]: not very high accu-
racy of models, lower interpretability of the model compared to a single tree, lack of 
formal conclusions (p-values) available for assessing the feature importance, poor 
quality of work for samples containing a large number of sparse features, a tendency 
to retraining on noisy data, inability to extrapolate, model bias for data including cate-
gorical variables with different amount levels, in favour of features with a large num-
ber of levels (when a feature has many levels, the tree will be more adaptable to these 
features, since they can get a higher value of the optimized functional such as infor-
mation growth), tendency to give preference to small groups of correlated features 
that have similar significance for tags to large groups, a large size of the resulting 
models - the spatial complexity is estimated as O(ST) for storing the model, where S 
is the volume of the initial sample, T is the number of trees, the large time spent on 
building the model compared to single decision tree. 

The aim of this paper is to improve random forest building method preserving its 
random character, but concentrating the method on such solutions, which seems to be 
more convenient to increase model accuracy using the a priori information extracted 
from the training sample. 

2 Formal problem statement 

Let we have a training set of S precedents (observations, instances, cases) <x, y>, 
where x = {xs}, y={ys}, s = 1, 2, ..., S, xs is an s-th instance of the sample, ys is an out-
put feature value associated with the s-th instance, xs = {xs

j}, j = 1, 2, ..., N, xs
j is a 

value of the j-th input feature of the s-th instance, N is a number of input features. 
Then the general model constructing task for the dependence y=f(w, x) is to find 

such a model structure f and such values of model parameters w for which the model 
quality criterion F is satisfied. As a rule, for the problems of approximation the model 
quality criterion is determined as a function of the model error (1): 
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The decision tree model structure consists of nodes and links (connections between 
nodes). The decision tree model parameters are the numbers of features used in tree 
nodes, as well as their boundary values for splitting the ranges of feature values. 

A random forest is a collection of trees as structures with parameters, as well as a 
transformation that combines the results of trees wok and the weight of trees in mak-
ing the final decision. 

3 Literature review 

The methods of decision tree constructing [1-24] hierarchically divide the initial 
space into regions, in which they evaluate the output average value for the instances 
hit in the region (cluster). This value is assigned to the output feature of all instances 
hitting in this cluster. The advantage of this group of methods is the simplicity and 
interpretability of the resulting models, as well as the possibility of passing the cluster 
analysis tasks and selecting informative features. The disadvantages of the methods of 
this group are the low accuracy of the obtained models. 

The random forest method aims to improve classification accuracy joining set of 
separately generated random models. This makes possible to approximate the inter-
class boundary more accurately in comparison with single decision tree. 

Let the training sample consist of S instances, the dimension of the feature space is 
N, and the parameter m (the number of selected features) is specified. Set the number 
of individual models (trees) in the ensemble (forest) T as well as the maximum ac-
ceptable number of instances in the tree node or the maximum allowable tree height 
as a stop criterion Z. 

The most common way to build a committee's tree is called bagging (short for 
bootstrap aggregation): 

To build the next t-th model in a form of decision tree (t = 1, 2, ..., T): 

– set the number of features for the t-th model tm <N (usually, only one value is 

used for all models tm =m); 

– generate a random subsample with S repetitions from the training set (thus, some 

instances will hit into it two or more times – on average  SSS 11  , and about S/e 

instances (here e is an Euler's number) will not be included into it at all). Those in-
stances that are not hit in the sample are called out-of-bag (unselected). 

– build a decision tree based on the generated subsample, and during the creation 

of the next tree node we will randomly select tm  features from the N initial features, 

then from the tm randomly selected features we will choose the best feature, based on 

which we will split instances. The choice of the best of these features can be done in 
various ways, for example, on the basis of the Gini criterion or the criterion of infor-
mation gain. The tree is built until the subsample is completely exhausted, or until the 
tree reaches the maximum given height Z, or until no more than Z instances are found 
in each leaf of the tree, and it is not subjected to the pruning procedure. 



The optimal number of trees is chosen in such a way as to minimize the classifier 
error on the test set. In case of its absence, the out-of-bag error estimate is minimized, 
defined as a recognition error for those instances that did not fall into the training sub-
sample due to repetitions (their number is approximately S/e). 

It is recommended to set Nm  in classification problems, and m=N/3 in regres-
sion problems. It is also recommended in the classification problems to build each 
tree until there is one instance in each leaf, and in regression tasks to build each tree 
until there are five objects in each leaf. 

Recognition of sample instances by a trained model in the form of a forest of deci-
sion trees is performed by voting: each forest's tree assigns a recognized instance to 
one of the classes, and the class for which the most of trees voted wins. More for-
mally, the total forest model for the recognized instance x', submitted to its inputs, 
will determine the output value using the formula: 

– in classification problems (2): 
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– in the evaluation problems (3): 
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The disadvantage of the known methods for constructing a random forest of deci-
sion trees is that the resulting forest turns out to be more precise than a single tree, but 
at times or even more complicated because of the large number of constructed models 
in the form of trees of the corresponding forest. This essentially not only increases the 
time expenditures for the decision making and the requirements for memory resources 
of the computer, but also leads to a significant reduction in the generalizing properties 
and interpretablility of the forest model in comparison with the model of the single 
tree. 

Therefore, an urgent task is to develop methods that allow to synthesize models in 
the form of a random forest, free from the disadvantages noted above, or character-
ized by them to a lesser extent. 

4 The method of forming a random forest of decision trees 
based on a priori information 

To solve the problem of the development of a method free from disadvantages men-
tioned above, it is proposed in the process of building a forest of decision trees, along 
with a casual approach to their construction to use deterministic component - take into 
account the a priori information, which will allow on-directs the formation of models 
so as to concentrate on the most promising directions, preserving the overall stochas-
tic nature of the model building process. 



At the selecting a subsample to build a partial tree model, it is proposed to select 
samples for inclusion in the model randomly, but taking into account their individual 
informativeness, minimizing their similarity (increasing diversity) – maximizing the 
distance to the nearest instance. 

At the current tree constructing, the choice of the root node is proposed to make 
randomly, but taking into account individual estimates of the informativeness of the 
features, increasing the chances of those features to be used in the root node, which 
are individually the most significant, and have not yet used in the roots of previously 
formed trees.  

At the current non-root node forming, it is proposed to take into account the indi-
vidual informativeness of the features their relationships with each other with respect 
to the output parameter. 

1. Initialization: set the training sample <x, y>. 
2. Estimate the a priori information: 
– determine individual estimates of the informativeness of each j-th input feature 

[34-46] respectively to the output feature jI , j = 1, 2, ..., N; 

– determine individual estimates of the informativeness of each i-th input feature 

[34-46] respectively to the j-th input feature jiI , , j = 1, 2, ..., N; 

– estimate the individual informativeness of each sample instance sI  [35, 44], 
s = 1, 2, ..., S; 

– determine the measure of the distance between the s-th and p-th instances of the 
sample in the feature space psd , . For small size samples evaluate by (4): 
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For large samples, instead of the distance between instances, it is possible to use the 
distances between their locally sensitive hashes [47] ealuated as (5): 

 psps HHd , , s = 1, 2, ..., S, p = 1, 2, ..., s, (5) 

where Hs is a locally sensitive hash for s-th instance. 
Calculation of hashes, unlike calculation of distances, will not require loading all 

instances into computer memory: hashes can be calculated in just one sample pass, 
operating with fragments in memory. 

3. Building a forest of T decision trees. To build the t-th model as a decision tree 
(t = 1, 2, ..., T): 

– set the number of attributes for the t-th model tm  <N (usually, only one value is 

used for all models tm =m); 

– generate a random subsample of size S with repetitions from the training sample. 
When selecting a subsample to build a partial model, it is proposed to select the sam-
ples for inclusion in it randomly, but taking into account their individual informative-



ness, minimizing their similarity (improving diversity) – maximizing the distance to 
the nearest instance using the modified rule of roulette [48] determined by (6): 
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where sV  is the binary decision to use the s-th instance at subsample forming (1 is 

use, 0 is not to use),   is a set of already selected instances for inclusion in the sub-

sample, sr  is- a random number in the range [0, 1], generated to select s- th instance. 
This rule should be applied consistently to the original data sample, as long as 

| | S', where S' is a desired subsample volume. 
The proposed rule will preserve the random nature of the selection, providing each 

instance with a chance to be selected for inclusion in the subsample, but will increase 
the chances of being selected for the individually most informative instances, as well 
as for those instances that are most different in the feature space from the already 
selected instances; 

– for a given basic method of decision tree building, determine for each feature the 

value of the partitioning criterion jMI  used by the method (it is necessary to provide 

]1,0[jMI ), on the basis of which to determine the randomized selection criterion of 

the feature for splitting the tree in the root node by (7)-(9): 

 rIIII jjtjMjRand
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where root(t) is a number of the feature used in the root node of the t-th tree from 
already constructed forest of trees, r is a random number in the range [0, 1] generated 
for the new tree. 

The proposed criterion jRandI , preserving the criterion jMI  of the chosen method 

as a whole, will give it randomized properties, as well as increase the chances of those 
features to be placed in the root node that have not yet placed in the roots of previ-
ously formed trees, as well as individually are the most significant. 



– select the best feature as the root node of the created t-th tree using the criterion 

jRandI , and then split the sample according to the selected feature; 

– build a decision tree based on the generated subsample using the resulting root 
node, and during the creation of the next node of the tree from the N initial features, 

randomly select the tm  features, taking into account their individual informativeness 

and interrelation with each other using the criterion (10): 

 rIIII tempjjjMRandj ),ˆmax( ,*  , (10) 

where is temp  a number for the current node of the feature, located in the parent 

node. 

After that, from the randomly selected tm  features, using the base method, select 

the best feature, on which basis the partition will be performed. The tree is built until 
the subsample is completely exhausted or until the tree reaches the maximum given 
height Z, or until no more than Z instances are found in each leaf of the tree, and it 
does not undergo the pruning of branches. 

The proposed method preserving the generally random nature of the selection of 
subsamplе instances in the process of building decision trees forest will increase the 
chances to be selected for constructing of the particular models of those instances that 
are individually more informative, and will also strive to provide a variety of in-
stances used to construct particular models, also preserving the random principle of 
selection of a subset of candidate features for the formation of the current node of the 
synthesized decision tree will increase the chances to becoming the root of the tree of 
the individually most informative features that not yet used as root, and at the next 
node forming it will increase the chances to being used of those features that are indi-
vidually the most significant and also most closely associated with the feature already 
used in the parent node. 

5 Experiments and results 

The proposed method were implemented as software and experimentally investigated 
in solving the problem of diagnosing the development of recurrent respiratory infec-
tions in young children. 

Diseases of the respiratory system occupy a leading place among the entire pathol-
ogy of young children of early age. It is problematic to examine children from whom 
infectious episodes acquire a protracted, severe, recurrent course. To create rehabilita-
tion and prevention programs, it is necessary to determine the most significant risk 
factors, as well as their combination, which was solved within the framework of the 
task of diagnosing the development of recurrent respiratory infections in young chil-
dren [48]. 

The data sample for the experiments was obtained in [48] on the basis of a survey 
of 108 children. The observations were characterized by 42 features reflecting the 
presence or absence of chronic diseases in the parents and the child: x1 is child gender, 



x2 is a father's illness – allergy, x3 is a father's illness – other chronic diseases, x4 is a 
father's illness – healthy, x5 is a mother's illness – allergy, x6 is a maternal diseases – 
other chronic diseases, x7 is a maternal diseases – healthy, x8 is a normal pregnancy, x9 
is a mother sick during pregnancy, x10 is a normal delivery, x11 is a pregnancy was 
complete, x12 – whether the child was in the anaesthesiology department, x13 – 
whether the child was in the neonatal pathology department, x14 is a breastfeeding, x15 
is a breastfeeding for up to one month, x16 is a breastfeeding for up to three months, 
x17 is a breastfeeding for up to one year, x18 is a breastfeeding feeding up to the pre-
sent moment, x19 is a breastfeeding with a term of over a year, x20 is a diagnosis – 
cytomegalovirus infection, x21 id a diagnosis – anemia, x22 is a diagnosis – abnormal-
ity of the urinary system, x23 is a diagnosis – obstructive bronchitis, x24 is a diagnosis 
– recurrent obstructive bronchitis, x25 is a diagnosis – congenital heart disease, x26 is a 
diagnosis – urinary tract infection, x27 is a diagnosis – otitis, x28 is a diagnosis – acute 
respiratory viral infection, x29 is a diagnosis – acute stenotic laryngotracheobronchitis, 
x30 is a diagnosis – pneumonia, x31 is a diagnosis – rickets Ca-norm, x32 is a diagnosis 
– enterobiosis, x33 is a diagnosis – hypotrophy, x34 is a diagnosis –allergy, x35 is a 
diagnosis – central nervous system damage, x36 is a parents smoke, x37 is a older chil-
dren in the family, x38 is a child attends care facility, x 9 is a unfavourable living con-
ditions, x40  is a child use antibiotics of 1-2 groups, x41 is a child use antibiotics of 3rd 
group, x42 is a child episodically ailing. The output feature y take a value "0" or "1" 
depending on the child's exposure to the development of recurrent respiratortion in-
fections. The fragment of data sample is presented in the Table 1. 

Table 1. Fragment of data sample 

s x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 … x42 y 
1 0 0 0 0 0 0 1 0 1 1 … 0 1 
2 1 1 0 0 0 0 1 1 0 1 … 0 1 
3 1 0 0 1 0 0 1 1 0 1 … 0 1 
4 0 0 1 0 1 0 0 0 1 1 … 0 1 
5 0 0 1 0 0 0 1 1 0 1 … 1 1 
6 0 1 0 0 0 0 1 1 0 1 … 0 1 
7 1 0 0 1 0 1 0 1 0 1 … 0 1 
8 1 0 0 1 0 1 0 0 1 1 … 0 1 
… … … … … … … … … … … … … … 
12 0 0 0 1 0 0 1 1 0 1 … 0 1 
13 1 0 0 1 0 0 1 1 0 1 … 0 1 
14 1 0 0 1 0 0 1 1 0 0 … 0 1 
15 1 0 0 1 0 0 1 0 0 1 … 0 1 
16 0 0 0 1 0 1 0 0 1 1 … 0 1 
17 1 0 0 1 0 0 1 1 0 1 … 0 0 
18 0 0 0 1 0 0 1 0 0 1 … 0 1 
19 0 0 0 1 0 0 1 1 1 1 … 0 1 
20 0 0 0 1 0 0 1 0 0 1 … 0 1 
21 0 0 0 1 0 0 1 0 0 1 … 1 0 
22 0 1 1 0 1 1 0 0 1 0 … 0 0 
… … … … … … … … … … … … … … 

108 0 0 0 1 0 0 1 1 1 0 … 0 0 



In the experiments, the original sample was randomly divided into training and test 
samples of the same size. Wherein it was ensured the preservation of the frequencies 
of the classes in the training sample relative to the original sample. On the basis of the 
training sample, models were built in the form of decision trees. For each model, the 
errors were determined on the basis of training and test data, as well as the time of 
work creation. 

The results of the experiments are presented in the Table 2. Here Etr is a model er-
ror for training sample, ttr is a time of building, ttrr is a time of recognition of training 
sample, Etst is a model error for test sample, ttst is a time of recognition of test sample. 

 

Table 2. Results of experiments 

Model architecture 
and training method 

Etr ttr, sec ttrr, sec Etst ttst, sec 

Single decision tree, 
Breiman's method [2] 

0 0.73 0.09 3 0.09 

Random forest, method [25] 0 5.78 0.65 1 0.65 

Random forest, 
proposed method 

0 5.92 0.65 0 0.65 

 
The results of the experiments presented in the Table 1 show that the proposed 

method allows to obtain models that is better in accuracy (of lower error) in compari-
son with existent tree building methods [2, 25], but requires a little more time to build 
a model, the speed of the constructed model for proposed method does not essentially 
differ from the speed of a random forest model constructed using the method [25], 
but, as was to be expected, random forest-based models require significantly more 
time for calculations compared to the single-tree model [2]. 

Increasing the accuracy of problem solving by a model built on the basis of the 
proposed method is provided, on the one hand, by increasing the diversity of deci-
sions for root feature selection, and, on the other hand, by taking into account the 
individual informativeness of features at forming the decision-making hierarchy. 
Whereas the proposed method preserves the generally random nature of the formation 
of the forest of the decisive trees. 

6 Conclusion 

The problem of inductive model building on precedents for biomedical applica-
tions is considered in the paper.  

The model paradigm is a random forest as a set of decision tree classifiers working 
as ensemble. 

A random forest method is proposed. It for a given training sample builds a set of 
trees for hierarchical clustering of instances. The a priori information taken from 
training data set is used in proposed method of random forest model building to pro-
vide more accurate model saving general random character of a method.  



The software implementing the proposed methods has been developed and studied 
at the diagnosis problem solving. The conducted experiments have confirmed the 
performance of the developed software and allow recommending it for use in practice. 

The resulting random forest provide more accurate model in comparison with a 
single decision tree, but it comparison with known methods of random forest model 
building proposed method is more accurate. 

The prospects for further research are to test the proposed methods on a wider set 
of applied problems, to study the dependence of the speed and accuracy (error) of 
method's work on the sample volume and the feature number in the original sample. 
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