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Abstract

Modern User Interfaces (UIs) are increasingly expected to be plastic,
in the sense that they retain a constant level of usability, even when
subjected to context (platform, user, and environment) changes at run-
time. Plasticity is often achieved by specifying suitable runtime adap-
tations of the UI as a response to changing contexts. While there exist
numerous approaches to enabling dynamic UI adaptation at runtime,
we argue that a series of consistency-related challenges arise during
the adaptation process, which have not yet been adequately addressed.
In this paper, therefore, we suggest a useful definition of consistency
in this context, identify some important and open consistency-related
challenges, and highlight solution strategies inspired by results and in-
sights from research on bidirectional transformations.

1 Introduction and Motivation

User Interface (UI) development requires coping with a constantly increasing level of complexity. One of the
reasons for this is the ubiquity of mobile UI platforms. Users running UIs on their mobile devices now expect
plasticity [CCT01], i.e., a constant level of usability, even when experiencing dynamic changes in their environ-
ment (brightness, loudness). UIs (especially web-based UIs) are also often used by multiple, different people (age,
preferred language), who all expect to experience a comparable level of usability. While such context changes
can theoretically be handled by (i) developing multiple UIs at design time, (ii) monitoring context changes at
runtime, and (iii) responding to changes by choosing the best UI variant, this näıve strategy typically suffers
from a combinatorial explosion in practice. For this reason, viable approaches instead support adaptation at
runtime, controlled with adaptation rules [YSSE17]. These approaches focus on runtime adaptation in the con-
text of UI development; we argue that introducing an additional artefact (adaptation rules) gives rise to a series
of consistency-related challenges, which have not yet been adequately addressed. In this paper, we provide a
characterisation of UI runtime adaptation as a consistency problem, identify a series of consistency management
tasks, and propose potential solution strategies inspired by research on bidirectional transformations [CFH+09].

Our running example is based on an adaptive e-mail client, which was developed at Paderborn University to
perform an empirical experiment on better understanding how users react to automated runtime adaptation.
Figure 1 depicts an illustrative sequence of context changes and how the UI adapts to the changed context in
each case. Each state is a pair of the UI, depicted as a screenshot of the e-mail app, and the current context
as experienced by the user. For our simplified example, the context is reduced to three components: (i) if the

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: J. Cheney, H-S. Ko (eds.): Proceedings of the Eighth International Workshop on Bidirectional Transformations (Bx 2019),
Philadelphia, PA, USA, June 4, 2019, published at http://ceur-ws.org

61



1 2 3 4 5

Figure 1: Consistent Context and UI Changes

user is on the move, in a moving vehicle, or immobile (and probably at home), (ii) if the brightness level is high
(sunny), low (cloudy), or very low (night-time), and finally, (iii) if the user is a novice or experienced user, based
on a threshold value of usage time. The first state (leftmost in Fig. 1) represents a novice user on the move and
experiencing high brightness levels. The corresponding UI uses a grid layout to simplify haptic interaction. In
response to a context change (depicted in Fig. 1 as labelled arrows – in this case with Label 1) leading to a state
where the user is now in a moving vehicle, the UI switches its modality to audio-based interaction, offering to
read new e-mails aloud and enabling control of the app via audio commands. When the user is immobile for some
time (and can be assumed to be seated in a building – see Label 2), the UI responds by reverting to standard
haptic-based modality and additionally uses a list of icons instead of a grid for more efficient screen space usage.
The next two context changes (Labels 3 and 4), represent changes in brightness level to low brightness and
night-time. The UI responds to low brightness levels by dimming the screen and using sepia tones instead of
white/black, and to night-time by inverting the colour scheme. The final context change (Label 5) is triggered
when the user passes a certain usage-time threshold. The UI assumes that the user must now be accustomed
enough to the icons and saves screen space by removing the explanatory labels for each icon.

With the increase in interest in the development and design of cyber-physical systems, we also mention another
possible scenario: In a smart home environment, an alternative strategy to address low brightness levels (Label 3),
could be to actively modify the context. In this case, for example, the smart home could be requested to increase
the brightness levels of the lamps in the current room. A further example for context manipulation could be
reacting to a sharp increase in mistakes and corrections (repeated text deletion) of the user. This “frustration
level” could be possibly addressed again by increasing brightness levels in the room, by playing soothing music,
or by opening the windows to let in fresh air. The point here is that there are cases where adjusting the context
of the user in response to changes in the UI could be a desirable strategy for consistency restoration.

2 Consistent Runtime UI Adaptation: Schematic Overview and Challenges

A schematic overview of a typical solution architecture (based on [YSSE17]) that supports runtime UI adaptation
is depicted in Fig. 2. We distinguish two main layers: a modelling layer that is technology independent, and a
system layer representing a particular choice of technologies making up a suitable execution platform. A model
space comprises all possible models of a certain “type” (context, UI), as well as all possible changes (called
deltas) leading from one model to another. Model spaces can be specified using metamodels and constraints,
graph grammars, or some other dedicated modelling language. At the modelling layer, we identify a context
model space, a UI model space, and collection of correspondence models (referred to as corrs in the following)
that capture the semantic overlap between context and UI models (which context model elements correspond
to which UI model elements). Given all possible triples consisting of a context and UI model connected by a
corr, adaptation logic provided by an adaptation engineer is used to identify a consistent subset of all possible
triples. A triple of context, UI, and corr is thus consistent if and only if it is a member of this consistent subset
determined (in some way) by the adaptation logic. Adaptation logic can be expressed as a set of constraints, a
set of rules, or a program in some suitable domain-specific language.

Context models represent (a simplification of) the actual context experienced at runtime. At the system layer,
this context has to be observed in some manner. For our running example, the specification of the context model
space (a context metamodel) is used to generate required sensor services for the Android platform. These sensor
services not only observe the context, but also notify a synchroniser when the context changes. The synchroniser
is generated from (or configured with) the specified adaptation logic. For our running example, the synchroniser
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Figure 2: Schematic Overview of Solution Architecture

is realised using Nools,1 a Rete-based rule engine for Javascript. The responsibility of the synchroniser is to
react to context and UI changes and restore consistency (if necessary) by modifying either the context (if this
is possible) or the UI (or even both). Although it is theoretically possible to have solutions where the UI can
be arbitrarily changed at runtime, realistic systems will probably use well-known UI frameworks such as what is
offered by the Android or iOS platforms, or web-based UI frameworks such as Angular/AngularJS. The typical
approach will be for a UI designer to specify the initial structure of the UI on the model level, and then to
generate code from this UI model representing the basic structure of the UI. Although some changes (layout,
navigation, colours) will be supported, the UI will typically never radically diverge from this initial structure.
Creating, e.g., completely new UI widgets on-the-fly is intriguing, but does not reflect the current practice. In the
following, we identify and discuss three main groups of consistency-related challenges of runtime UI adaptation:

(C1) Conformance of the System Layer : Especially for an iterative, incremental development of the involved
metamodels, adaptation logic, and the required generators, it cannot be assumed that the generated system
(services, UI and synchroniser) always behaves in conformance to the adaptation logic specified on the modelling
layer. Automating such a conformance check requires a trusted execution engine on the modelling layer, and a
means of reverse engineering models representing the current state of the running system.

(C2) Compatibility of the Initial Structure of the UI and Adaptation Logic: Another check is if the starting
state of the UI, chosen by a UI designer, is still compatible with the adaptation logic, specified by an adaptation
engineer. Even if both artefacts are developed by the same person, improvements to the fixed parts of the UI
can still violate assumptions made in the adaptation logic.

(C3) Checking for Desirable Properties of the Adaptation Logic: Finally, a series of model analyses can
be performed on the adaptation logic. (i) Under which circumstances can the adaptation logic lead to non-
deterministic runtime behaviour? While this can be desirable, there are also cases where it is clearly not. (ii) Do
adaptations always terminate? This is especially relevant when the context can also be modified. (iii) Are there
“dead” parts of the adaptation logic that can never be applicable for a chosen initial UI model?

3 Limitations of Existing Approaches to Runtime UI Adaptation

In the following, we briefly describe the main groups of existing approaches to runtime UI adaptation and discuss
their limitations regarding consistency management and our identified challenges.

A widespread technique to support UI plasticity is rule-based UI adaptation [MPAA16, YSSE17]. The basic
idea is to express the adaptation logic as a set of rules characterising how the UI is to be changed as a reaction
to the changing context of use. In most cases, rule-based UI adaptation approaches rely on a rule engine such as
Nools2 or Drools3 to implement the synchroniser. To the best of our knowledge, existing rule-based approaches

1http://noolsjs.com/
2http://noolsjs.com/
3https://www.drools.org/
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do not address challenges (C1) or (C2), and only partially address (C3) by annotating adaptation rules with
priority levels used to resolve conflicts between adaptation rules. Priorities, however, only shift the responsibility
to the developer and the manual task of determining the correct set of priorities for an evolving rule set is an
error-prone process that has to be repeated from scratch for every change.

In contrast to rule-based approaches, optimisation-based approaches [Aki14, BMB+11] treat the runtime adap-
tation of UIs as an optimisation problem. The basic idea is to formulate an objective function that characterises
the consistency of the UI and context models (e.g., via constraints in form of a cost function [Aki14] or prop-
erties [BMB+11]). Inconsistencies are then resolved by optimising this objective function, e.g., using genetic
algorithms [BMB+11]. While optimisation-based approaches provide a better solution for (C3) than rule-based
approaches, it is arguable if detailed analyses can be replaced by black-box, often unconfigurable optimisation.
As with rule-based approaches, (C1) and (C2) remain completely unaddressed.

Another group of approaches (e.g., [Tro14]) focuses on the modelling layer and makes a models at runtime
assumption, i.e., that there is no (generated) system layer, eliminating (C1). Trollmann [Tro14] focuses on
supporting (C3), providing a formal approach based on graph diagrams for a rule-based specification of the
adaptation logic. Analyses for conflict detection and other inconsistencies are presented, potentially addressing
(C2) as well (at least on the modelling layer). While the approach of Trollmann essentially applies bx4 to
UI runtime adaptation, it is also (at least for the foreseeable future) of limited applicability as it ignores the
conformance of the system layer and thus all pragmatic, generative approaches to UI development (C1). Finally,
there are also hybrid approaches [RTKP18] that strive to combine approaches to design and runtime adaptation.

4 Applying Bx to Runtime UI Adaptation: Potential and Open Challenges

As partly demonstrated by Trollmann [Tro14], a bx language can be used to implement the adaptation logic
required for supporting runtime UI adaptation (see Fig. 2). This is advantageous for the following reasons:

1. Bx languages are designed to address multiple consistency management scenarios including consistency
checking, forward and backward transformations, and incremental synchronisation, using a single program
(in this case the adaptation logic). In combination with a reverse engineering approach, (C1) can thus be
addressed by checking if a pair of context and UI models (representing the current context and runtime UI
on the modelling layer) is consistent. (C2) can be addressed by backward transforming the initial UI model,
i.e., attempting to extend it to a consistent triple. If this fails, then the initial UI model is not in the domain
of the synchroniser and, in this sense, contradicts the adaptation logic.

2. Concerning (C3), bx languages are designed to obey a certain set of bx laws (depending on the language)
with the goal of guaranteeing desirable behaviour. Some rule-based bx languages such as Triple Graph
Grammars (TGGs) [Sch94] also provide static analyses techniques that can be used to guarantee additional
properties such as determinism or confluence.

There are, however, also open challenges for bx posed by the application domain of runtime UI adaptation:

1. In general, there has been a primary focus of most bx approaches on model synchronisation. While this is
certainly important, (C1) indicates that conformance checking of a generated system is an equally crucial
task in practice. Scalable support for consistency checking is, however, still to be improved for most bx
languages [Leb16], even for TGGs.

2. Bx languages should be able to tolerate inconsistencies, as users in a UI runtime adaptation setting can
refuse certain adaptations and might prefer to continue using the UI without restoring consistency. This
has already been identified as an open bx challenge by Stevens [Ste14]; runtime UI adaptation provides yet
another practical setting where this is important.

3. Finally, a development framework for setting up and realising complex architectures such as illustrated by
our schematic overview (Fig. 2) is missing in practice. The choice of bx language, as well as generators,
adapters, and a suitable modelling framework should be kept flexible and exchangeable through the usage
of standard component interfaces. The current work on a bx benchmarking framework can be viewed as
preliminary work in this direction [ADJ+17].

4Graph diagrams are a generalisation of Triple Graph Grammars (TGGs) to multiple models [TA15].
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