
10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

Job-queuing and Auto-scaling in Container-based
Cloud Environments

Osama ABU OUN
University of Westminster, London, UK

Email: o.abuoun@westminster.ac.uk

Tamas Kiss
University of Westminster, London, UK

Email: t.kiss@westminster.ac.uk

Abstract—Many applications process large quantities of data
that takes significant time and requires big amount of compu-
tational resources. Optimising the execution of such applications
in a cloud computing environment by keeping costs at minimum
but still completing the task by a set deadline has paramount
importance. As container-based technologies are becoming more
widespread, support for job-queuing and auto-scaling in such
environments is becoming important. Current container tech-
nologies, such as Docker or Kubernetes provide limited support
in this area. This paper presents JQueuer and CAutoScaler,
a couple of cloud-independent solutions that offer job-queuing
and automated scalability at the level of containers. Applying
these solutions leads to more cloud-aware applications providing
transparent auto-scaling for end-users and optimising execution
time and costs. Business and science gateways will benefit from
using an orchestrator combined with JQueuer and CAutoScaler
since it will provide the layers needed to auto-scale the containers
and to batch/sweep the jobs from a queue depending on a user-
defined policy.

Keywords—cloud computing, container technologies, Docker
Swarm, JQueuer, autoscaler, MiCADO

I. INTRODUCTION

Cloud computing offers scalable and on-demand access to
large amount of computational and data resources. Operating
System (OS) level virtualization, also known as container-
based virtualization has recently attracted much attention due
to its near-native performance and low virtualization overhead
[1]. In science gateways, containers simplify packaging ap-
plications so as to run on any cloud independently of the
cloud’s configuration. A Container Orchestration Engine takes
multiple resources in the cloud, combines them into a single
pool, and provides an abstracted layer between the cloud
resources and the application container that run on these
resources. Most applications can be containerized along with
all their libraries so as to run in any cloud without the need to
install any prerequisites. Containers are stateless which makes
them suitable for services that perform single function and
do not need to store data in the containers. Web Service is
an example of these Stateless Services where it is possible to
create/clone several containers so as to process HTTP requests.
Several types of Batch Processing applications in science
and business gateways, for example discrete event simulation
and image/video processing, require a mechanism to launch
containers and provide each one of them with the jobs or
data which should be processed. These applications typically
consist of hundreds or thousands of scenarios which need to

be executed, usually independently from each other. Some
scenarios are lightweight allowing several of them to be
executed at the same time on the same machine in different
containers, while others consume large amount of resources
and need long time to be accomplished. These applications
are all dealing with the submission of jobs where the results
need to be kept after execution. The need to provide the
containers with jobs or data and to collect the output after
execution are not the only main differences between Stateless
Services and Batch Processing applications. The policy used in
scaling containers is another big difference. Scaling up/down
the containers of stateless service may depend on load on
these containers, CPU and memory consumption, number of
requests, etc. In Batch Processing applications, we might
need to take scaling decisions depending on different type
of policies such as: the time needed to process a job or the
deadline to finish all jobs in the queue. In some cases, we do
not need to scale up the containers if there are no more jobs
in the queue, even if all of them are consuming 100% of their
resources. The duration needed to finish a job (Job Duration) is
one of the most important factors to be taken into consideration
in order to decide the number of containers needed to process
jobs in the queue. Job Duration differs completely from one
job to another. For example, a queue of video files to be
processed might contain one minute video lengths and one
hour video lengths. This results in the need to periodically
auto-scale up/down the containers after calculating the number
of containers needed using a user-defined policy.
While Stateless Services are widely supported by current tech-
nologies, there is very limited or no support for job-queuing,
execution and related policy-based auto-scaling mechanisms
which are required by Batch Processing applications. The lack
of these components forces application developers to spend
time and money so as to develop proprietary tools or to
customize open source libraries to work in container-based
environments. These components should also be available to
run on public and private clouds. Running applications and
experiments on private clouds might be necessary due to
confidentiality reasons. In this paper we propose JQueuer
and CAutoScaler to address the above issues. The proposed
solutions take a list of jobs and an auto-scaling policy, start
the application containers in the cloud, dispatch the jobs to the
containers, and auto-scale up or down the number of containers
in order to finish the jobs according to the given policy. The

1



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

paper is organized as follows. Section II discusses the state of
the art and related work. Section III explains the structure of
an experiment which will be used as in our design. Sections
IV and V provide the detailed design of the JQueuer and the
CAutoScaler, respectively. Implementation, testing and results
are described in sections VI and VII. Finally, Section VIII
concludes this paper and presents future work and desired
improvements.

II. STATE OF THE ART

A number of solutions and studies have been proposed to
tackle the problem of auto-scaling jobs and services execu-
tion in container-based cloud environments. We are going to
compare job-queuing and auto-scaling in three widely used
Container Orchestration Engines.

a. Docker Swarm: It is an orchestration tool which manages
cluster of Docker Engines. Docker provides the service
concept in which the services are “containers in pro-
duction”. A service only runs one image, but it codifies
the way that image runs, what ports it should use, how
many replicas of the container should run so the service
has the capacity it needs, and so on. Scaling a service
changes the number of container instances running that
piece of software, assigning more computing resources to
the service in the process [2]. The containers in a service
are stateless. Therefore it is not adequate for running jobs.

b. Kubernetes: It groups containers that make up an ap-
plication into logical units for easy management and
discovery. Kubernetes uses job concept and it provides
the possibility to define a parallelism variable [3] which is
equivalent to the number of container instances in Docker
Swarm.

c. Apache Mesos: Apache Mesos is a project to manage
computer clusters [4]. There are several software projects
which have been built on Apache Mesos. Jenkins, the
leading open-source automation server has a plug-in for
Mesos in which it scales up/down the jobs according to
the job queue size.

d. AWS (Amazon Web Services) - EC2: AWS provides the
EC2 Container Service (ECS), which is a cluster manager
but it is not possible to use ECS outside of AWS which
prevents using these components in private clouds.

We can notice that Docker Swarm and Kubernetes do not
provide job-queuing. Therefore, each application should im-
plement its own queue agent so as to access an external queue
in order to fetch the jobs. Kubernetes adds the parallelism
variable statically in the job definition, while Docker Swarm
gives the possibility to scale up/down the number of containers
manually. Apache Mesos provides job-queuing through Jenkins
plug-in but auto-scaling is achieved according to the job-queue
itself and not according to a user-defined policy.
There are other job scheduling systems such as: SLURM
and HTCondor. SLURM (Simple Linux Utility for Resource
Management) is an open source, fault-tolerant, and highly
scalable cluster management and job scheduling system for
large and small Linux clusters. SLURM can be used as

cluster manager and job scheduler but it is not compatible
with windows operating system. Any job queuing solution
should be platform-independent since Docker started to sup-
port windows operating system in order to run legacy scientific
applications and tools. HTCondor is an open-source high-
throughput computing software framework for coarse-grained
distributed parallelization of computationally intensive tasks
[5]. HTCondor has support for launching containers but it does
not communicate with container orchestrators which prevents
the applications from using services offered by them such as:
networking between containers, docker compose, etc.
JQueuer and CAutoScaler are designed to be platform-
independent and cloud-independent, in addition that they can
work with any Container Orchestration Engines.

III. EXPERIMENT STRUCTURE

Fig. 1. Experiment Structure

In previously mentioned job submission type applications,
for example simulations or image/video processing, there are
always numerous scenarios that need to be completed on large
computational resources. However, as these application areas
evolved independently, the vocabulary used to identify the
different units of execution are rather varied. In order to avoid
any confusion or misunderstanding, in this section we define
and present these units of execution as experiment, job and
task, as it is illustrated in Fig. 1. These terms are described as
follows:

A. Experiment

An experiment consists of two parts. The first part is a
set of global parameters (upper part of Fig. 1), and the
second part consists of a list of jobs (lower part of Fig. 1).
Global parameters are, for example, the application container’s
image, the auto-scaling policy (e.g. the deadline by which the
experiment should be finished), the minimum and maximum
resources for each container, and an estimated length of each
task. An experiment is considered to be “accomplished” when
all the jobs are executed successfully.

Experiment’s Description Language: An experiment (in-
cluding jobs and tasks) might be stored using various for-
mats, such as XML (Extensible Markup Language), JSON
(JavaScript Object Notation), or YAML (Yet Another Markup
Language).
There are two options so as to describe an auto-scaling policy.
In the first option, the auto-scaling policy can be described
using the same format that describes the experiment. In this
case, the implementation of the auto-scaling policy is part of

2



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

the main system. The other option is to consider the auto-
scaling policy as an external module/service (module-based
policy) which could be called (along with the arguments) using
a RESTful (Representational State Transfer) API. In this case
the auto-scaler calculates the number of containers and sends
it back to the system to take the appropriate action. In this
second option, the experiment should have a field that contains
the URL of the auto-scaling policy service. This option could
be used in science gateways since it separates the development
of the auto-scaling policies from the main system and gives
the possibility to application developers so as to add their own
policies.

B. Job

A job consists of three parts: Pre-job Command (1), Tasks
(2) and Post-job Command (3). While the first and third parts
are optional, the second part is required. Pre-Job, Post-Job and
task commands will be invoked within the container so as to
launch an application, execute a system call, etc.
(1) Pre-Job Command (Optional): It is the command that
should be invoked in the container at the beginning of each
job and before running the tasks. The command might be used
to initialize the parameters or to reserve the resources which
are needed to execute a task.
(2) Tasks (Required): It is a list of tasks that should all
be executed sequentially in the same container. If any task
failed for any reason, the whole job will be considered as
“failed” and it will be re-queued or canceled, depending on
the configuration of the system. Most of the time, each job
consists of one task only. However, in some experiments tasks
are depending on each other and need to be executed in a
certain order inside a job (e.g. The first task would parse the
argument and download files from a server, the second task
would run the application, while the third task will upload
the results to a server). Another motivation to put multiple
tasks inside one job is to enhance network utilization and
reduce overhead by fetching and executing multiple inputs in
a batch (e.g. fetching of multiple images at once in order to
be analyzed sequentially instead of fetching one image at a
time).
(3) Post-Job Command (Optional): This command should be
executed after finishing all the tasks of the job and before
getting a new job from the job queue. It might be used to free
the resources, reset the parameters, etc.
A job is considered to be “accomplished” when all its tasks
are executed successfully.

C. Task

A task is the smallest unit in this structure. It contains the
command line that should be called in the container and the
parameters (arguments) which should be passed along with
this command.

An example of the above structure is a simulation ex-
periment. The experiment has global parameters including
the container’s image. Let there be a thousand jobs in this
experiment and let each job consists of one task. The task

in this case will contain the command line of the simulation
application that needs to be executed inside a container, and
different sets of parameters that this command line requires.

IV. JQUEUER DESIGN

Fig. 2. JQueuer Structure

JQueuer is a queuing system that can be used in conjunction
with container technologies to support the execution of a
large number of jobs and the enforcement of certain up or
down scaling policies. JQueuer is a distributed system that is
composed of two independent components: JQueuer Manager
and JQueuer Agent (Fig. 2). In the following, we are going
to discuss the structure and the functionality of each of these.
Communication methods between the JQueuer Manager and
the JQueuer Agent were left out so as to be defined in the
implementation according to the technologies used.

A. JQueuer Manager

JQueuer Manager is the main component of the JQueuer
system which should be running on a Container Orchestra-
tion Manager (e.g. Docker Swarm) where it can control the
containers and the services. The JQueuer Manager consists
of several sub-components. Each sub-component has different
sets of tasks. The sub-components and their tasks are described
as follows:

1) Experiment Receiver: It is a RESTful web service which
provides a standard API to submit the experiment file/object to
the JQueuer system via HTTP Request. When an experiment
is received, the “Experiment Receiver” will generate an “Ex-
periment ID” which will be used to identify this experiment
in the system. The experiment sender will receive this ID as
a HTTP response.

2) Experiment Queue: It is a list of the experiment IDs
which have been submitted. Each experiment has two impor-
tant items in this queue: the Experiment Service Name and
the Job Queue ID. JQueuer Agents use this list to recognize
whether the containers running (on their virtual machines)
should be controlled or not.

3) Experiment Controllers: It is an array of threads in
which each thread controls a single experiment. A controller
will be instantiated directly after receiving the experiment
and it will keep running as long as the experiment is not
accomplished. A controller is in charge of the following tasks:

a. Job Parsing: It parses the jobs from the experiment
file/object and adds these jobs in a job queue dedicated
to this experiment.

b. Monitoring (Data Analysis): It analyses the experiment
execution data that was received from the Monitoring

3



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

Database. The resulted information will be used for
deciding whether the system should scale up, scale down
or continue with the current number of containers.

c. Decision of auto-scaling: This is done using the CAu-
toScaler component which calculates the number of con-
tainers needed to accomplish the experiment according to
the auto-scaling policy. The CAutoScaler is discussed in
detail in Section V.

4) Job Queues: Each experiment depends on a dedicated
job queue which has its own ID. The mechanism used to
dispatch jobs from job queues is discussed in Subsection IV-B.

5) Monitoring System: The monitoring system contains the
monitoring data related to all experiments. The system will be
accessed from the Experiment Controllers so as to gather the
monitoring data related to their experiments.

6) Container Orchestrator Agent: The agent works as a
bridge between the Experiment Controllers and the Container
Orchestrator Daemon that is used in the cloud. The agent
receives the commands from the controllers, forwards them
to the Daemon and waits for the results. The supported
commands by the agent are:

a. Create Service: This command is used to create the
Experiment’s Service which requires two parameters:
container’s image URL, and initial number of containers
in the service. Before sending the command to the
Daemon, the agent will form a third parameter (Service
Name) using the image URL parameter. Service Name
will be used as an ID during the execution.

b. Get Service’s Status: The controller issues this command
along with its Service Name in order to get the status of
its Experiment’s Service. The result consists of all data
related to the service including the number of containers
running under this service and their statuses.

c. Scale Up/Down: The parameters required for this com-
mand are: Service Name and number of containers needed
to run under this service which is calculated by the
CAutoScaler.

d. Destroy Service: This command will be issued by the
controller when all its jobs are executed successfully.

B. JQueuer Agent

An instance of JQueuer Agent component should be running
on each Container Orchestration Node. An instance should
exist on the Container Orchestration Manager if an Experi-
ment Service is running one or more of its containers on this
Manager. The JQueuer Agent is responsible of controlling the
services’ containers of the experiments, fetching jobs from
the job queues, monitoring the execution and sending data
to the JQueuer Manager. From functional point of view, this
component can be divided into sub-components as follows:

1) Experiment Checker: This sub-component monitors the
Experiment’s Queue in the JQueuer Manager. When a new
experiment is added, the Experiment Checker will fetch the
Experiment Service ID and the Job Queue ID items.

2) Job Queue Fetcher: It uses the Job Queue ID which has
been obtained from the Experiment Checker so as to fetch the
jobs from an experiment job queue and execute them on the
containers of the corresponding Experiment Service.

3) Monitoring Updater: It monitors job execution on local
containers and sends data and statistics to the Monitoring
system in the JQueuer Manager.

4) Container Orchestrator Agent: The agent acts as bridge
between the JQueuer Agent and the Container Orchestration
Daemon on the local machine. The first item is used by Job
Queue Fetcher so as to recognize the containers that belong
to a certain experiment.

V. CAUTOSCALER DESIGN

CAutoScaler is the second main part in the system. It is
responsible of taking and executing the decision of scaling
up/down an experiment by calculating the number of contain-
ers which should be running according to the scaling policy.
The CAutoScaler works as a sub-component of the Experiment
Controller. As there is a controller for each experiment, these
will all have their own CAutoScaler instances. The current
design focuses on one single policy, the deadline policy,
in which the experiment should be accomplished before a
given deadline by using at least the minimum number of
containers and without surpassing the maximum number of
containers. Each container will be allocated with minimum
number of resources (memory and processing). Please note
that the system is not limited to this one policy, and it is very
much possible to extend it to process different policies by
implementing them in the CAutoScaler. The CAutoScaler has
two main components: Container Calculator and Container
AutoScaler. These two functionalities are explained in detail
in the following two subsections.

A. Container Calculator

This functionality focuses on the process of calculating the
number of containers needed at any moment. The process
starts as soon as the experiment is received and it calculates
the number of containers needed to finish the experiment
according to the scaling policy. The algorithm applied to
calculate the number of containers depends on the phase where
the experiment is currently in. The first phase is called the
Initial Phase which covers the period between receiving the
experiment and the successful execution of the first job. The
second phase is called the Monitored Phase which starts as
soon as a job is successfully executed, and it finishes when
the experiment is finished which means all jobs are executed.
The main difference between the two phases is the way how
the average execution time of a task is calculated. Since there
is still no monitoring data in the initial phase, the calculation
is based on the the estimation of duration needed to execute a
single task as provided by the user. In the Monitored Phase,
the calculation is based on the average of duration of all tasks
(of one particular experiment) which have been executed so
far. The number of containers (“containers count”) will be
equal to the multiple of the duration needed to execute a single

4



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

task, the average number of tasks per job, and by number of
jobs in the queue, and the result is divided by remaining time
until the deadline. The resulted value will also be checked
against the minimum and maximum number of containers. At
the beginning, the controller will start the Experiment Service
using the “containers count” as an initial number of containers.
When the Experiment Service is started and the number of
containers which are in “running” state is greater than zero,
the Container AutoScaler will process the number resulted
from the Container Calculator and scale up/down the service
as explained in Subsection V-B.

B. Container AutoScaler

The Container AutoScaler starts processing the number of
containers needed (received from the Container Calculator)
as soon as there is at least one container (of the Experiment
Service) is in “running” state. The process uses coherence
index so as to delay the scaling up/down in order to make sure
that the number of containers needed is coherent with the last
two results. The coherence index is increased by one every
time the function receives a new calculation’s suggestion. For
example, if the last calculation suggested a scaling up while the
current one is suggesting scaling down, the function will reset
the counters and starts over without performing any scaling. If
the last calculation and the current one are both suggesting the
same thing (scaling up or scaling down), the function will take
the lesser number of containers between the two calculation
in the case of scaling up and the greater number in case of
scaling down. The idea behind selecting the lesser and greater
number is to scale up and down gradually as much as possible
which gives the system the possibility to reevaluate the number
of containers needed to finish the experiment.

In all cases, the function will not scale up or down until the
coherence index is at least three which means the last three
calculations are suggesting the same action.

VI. SYSTEM IMPLEMENTATION

Fig. 3. System Implementation

In this section, technologies and tools which have been
used in the first implementation of JQueuer and CAutoScaler
(Fig. 3) are described. The aim was to reuse existing open
source products as components, and as a result minimise
development time and effort. Choice of technologies was a
result of thorough investigation and comparison which due to

limitations in length is not detailed here.
As Container Orchestrator, Docker Swarm [6] the native clus-
tering tool for Docker containers was selected. The two main
components of the designed architecture, JQueuer Manager
and JQueuer Agent have been developed using Python 3 and
were prepared as Docker images. The Docker Swarm Manager
node (left hand side of Fig. 3) hosts JQueuer Manager, with
additional components for queuing, scheduling and data stor-
age. These components include Celery [7], an asynchronous
distributed task/job queuing system that was used together with
Rabbitmq [8] (message broker) and Redis [9] (an in-memory
database) for capturing results. Redis was also applied for
experiment queuing, simplifying data exchange between the
manager and the agents. For monitoring, Prometheus [10] was
applied as core monitoring system, statsd for saving statistics
and events of the JQueuer Agents so that they can be accessed
from Prometheus, and Grafana as data visualization tool. We
used the official docker images of each of these components
together with Docker compose, a tool for defining and run-
ning multi-container docker application in order to group all
containers and simplify the deployment and communication
among them. The Experiment is described in JSON format.
JQueuer Agent (right hand side of Fig. 3) has two main
components: Container Updater and Container Manager.

a. Container Updater: The main function of this sub-
component is to monitor the containers on the local
machine so as to distinguish containers which belong to
a particular experiment. Each Docker container shows in
its information the name of its Docker Swarm Service.
The Container Updater will check the container services
against the experiment list in the Redis server. If the
container is new and it belongs to one of the experiments,
a new Container Manager will be forked so as to manage
this container and it will be added to its Manager List.

b. Container Manager: It is responsible of managing and
controlling an experiment container. The life cycle of a
Container Manager starts by fetching a job from the job
queue that corresponds to its container. It then executes
the pre-job script in the container and goes through
the list of tasks. Tasks are executed sequentially, and
after finishing them successfully, the Container Manager
will run the post-job script. It sends the statistics to
the statsd server including: job starting/finishing time
and task starting/finishing time. If the job failed for any
reason, it sends the time spent before the job has failed
to statsd, and it signals this failure to the Celery server.
After finishing the job, it fetches another job and starts
executing it. Container Manager keeps working until the
job queue of this experiment becomes empty.

Containers from different experiments can coexist on the
same machine, as it is shown in (Fig. 3). JQueuer Agent
will provide each Container Manager with a Container ID
and a Job Queue ID. The Container List contains only
those containers that belong to an experiment and have been
assigned to managers. That is the reason why we do not see

5



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

Container S2-C3 on the list as this should be added only when
the Container Updater checks the containers in its next round.
The containers JQueuer Agent, XYZ, YXZ and ZXY have been
ignored since they do not belong to any experiment.

VII. TESTING & RESULTS

JQueuer was tested with Repast Simphony (RepastS) [12],
an open source agent-based modeling and simulation sys-
tem using a simplified infectious disease simulation model.
Modeling and simulations are often based on scientific work
and involve interdisciplinary research teams which can be
supported using science gateways. Jobs were added to the
experiment’s JSON file along with the following parame-
ters: RepastS Docker image URL, estimated execution time
of a single task, minimum memory and CPU required by
each RepastS container, minimum and maximum number of
containers, and deadline. RepastS was deployed in a Docker
container, also including a script that takes the HTTP URL of a
simulation scenario and the FTP URL of the results server. The
script fetches the simulation scenario from the HTTP server,
processes it, and then transfers the output file to the FTP server.

Several scenarios have been tested with varying parameters.
The number of jobs varied between 250 and 1000 jobs per
scenario, the deadline was between one and two hours, and
the maximum number of containers were between 10 and 20.
The results shown below are for the following scenario: one
task per job, 500 jobs, deadline is 90 minutes, estimated task
duration is two minutes, the minimum number of containers
is one while the maximum is ten, ten Docker Swarm Nodes.
The duration statistics were as follows: Job Execution Duration
(Min: 52 sec, Max: 80 sec, Avg:59 sec), Failure Duration (Min:
28 sec, Max: 47 sec, Avg:38 sec) and eight jobs have failed
(during scaling down as their containers have been terminated),
but these have all been resubmitted. Finally, Fig. 4 shows
how the CAutoScaler was scaling up/down the containers
according to the accomplishment of the experiment. The figure
clearly indicates that the experiment started with the maximum
number of containers based on the estimated execution time
provided by the user. However, as the system realised that a
smaller number of containers will also be enough to finish the
experiment by the set deadline, it started to scale down. Fig.
4 also shows that the experiment finished exactly at the given
deadline.

Fig. 4. Repast - Container AutoScaling

VIII. CONCLUSION AND FUTURE WORK

This paper presented JQueuer, a distributed system designed
to execute a large number of jobs in a cloud environment,
taking into consideration a predefined set of policies and
using restricted number of resources/containers. We explained
the design and implementation of its two main components,
JQueuer and CAutoScaler, that represent a unique extension
to container-based technologies when handling queues and
processing jobs. A beta version of the system was implemented
to realise a deadline-based policy, and was tested on an agent-
based simulation application in Docker Swarm.

The implementation of JQueuer is part of a larger project
where an application level cloud orchestrator called MiCADO
(Microservices-based Cloud Application Level Dynamic Or-
chestrator) [13] is being developed within the European COLA
(Cloud Orchestration at the Level of Applications) project.
The application-level orchestrator will be used as back-end in
science or business gateways to provide automated scalability
for a wide range of applications, including the submission
of jobs. JQueuer will also be further developed to enhance
scaling down so as to avoid terminating containers while they
are executing jobs, and integrate it with the Policy Keeper of
MiCADO in order to support a wider range of policies.

ACKNOWLEDGMENT

This work was funded by the COLA Cloud Orchestration
at the level of Applications Project No. 731574 project.

REFERENCES

[1] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-based cloud
platform for mobile computation offloading,” in 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2017, pp.
123–132.

[2] “Docker,” https://www.docker.com/, accessed Online: 2018-03-16.
[3] “Kubernetes,” https://kubernetes.io/docs/tasks/job/fine-parallel-

processing-work-queue/, accessed Online: 2018-03-16.
[4] “Apache mesos,” http://mesos.apache.org/documentation/latest/frameworks/,

accessed Online: 2018-03-16.
[5] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing

in practice: the condor experience,” Concurrency and Computation:
Practice and Experience, vol. 17, no. 24, pp. 323–356. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938

[6] “Docker swarm,” https://docs.docker.com/engine/swarm/, accessed On-
line: 2018-03-16.

[7] “Celery,” http://www.celeryproject.org/, accessed Online: 2018-03-16.
[8] “Rabbitmq,” https://www.rabbitmq.com/, accessed Online: 2018-03-16.
[9] “Redis,” https://redis.io/, accessed Online: 2018-03-16.

[10] “Prometheus,” https://prometheus.io/, accessed Online: 2018-03-16.
[11] “Grafana,” https://grafana.com/, accessed Online: 2018-03-16.
[12] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen,

and P. Sydelko, “Complex adaptive systems modeling with repast
simphony,” Complex Adaptive Systems Modeling, vol. 1, no. 1, p. 3,
Mar 2013. [Online]. Available: https://doi.org/10.1186/2194-3206-1-3

[13] T. Kiss, P. Kacsuk, J. Kovacs, B. Rakoczi, A. Hajnal,
A. Farkas, G. Gesmier, and G. Terstyanszky, “Micadomicroservice-
based cloud application-level dynamic orchestrator,” Future
Generation Computer Systems, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17310506

6


