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Abstract—Computational science experiments are growing
increasingly distributed, both with respect to the computing
resources they leverage and the teams of individuals carrying
them out. Abaco [1] is a RESTful API and distributed computing
platform built to enable rapid development and massive scala-
bility of computational components across teams of developers
working with heterogeneous physical compute resources. Abaco is
an NSF funded project under active development that had its first
major production release at the beginning of 2018. Leveraging
Linux container technology and the Actor model of concurrent
computation [2], Abaco provides functions-as-a-service to the
general scientific computing community with three primary
capabilities: reactors to enable event driven programming models;
asynchronous executors to provide a map primitive for scaling
pleasantly parallel workloads to the cloud from within running
applications; and data adapters for the creation of rationalized
microservices from disparate and heterogeneous sources of data.
In this paper we describe the main features of Abaco, discuss
some success stories from early adoption and describe directions
of future work.

I. INTRODUCTION

Through a rise of data-driven methods, modern computa-
tional experiments require a network of distributed compo-
nents coordinating across heterogeneous physical infrastruc-
ture. A common approach involves refining raw data, often
times collected in experimental facilities, wet labs, or via
sensors deployed in the field, through a series of decision-
based pre-processing pipelines to produce more pristine data
artifacts. These artifacts are then fed into analytic models
or other codes, producing results which are validated against
observed phenomena, and the process is repeated. Building
reproducible experiments in such a context involves distributed
teams with various areas of expertise working with different
technologies. The Abaco system [1] is a distributed computing
platform designed to accommodate the needs of such computa-
tional experiments. Specifically, Abaco attempts to enable the
rapid development of portable, loosely coupled components
developed by distributed groups that can be integrated together
and independently scaled with minimal effort.

Abaco (Actor Based Containers) is an NSF-funded project
combining Linux container technology with the Actor model
of concurrent computation [2] to provide functions-as-a-
service to the national research community. In the Actor
model, computational primitives called actors are assigned a
unique mailbox capable of receiving messages. In response

to a message, actors can perform computation, create other
actors, and send additional messages through the system.
While the Actor model dates back to the 1970s, Abaco’s
innovation is to associate each actor with a Linux container
image and expose the actor’s mailbox as a URI over HTTP.
When a message is sent to an actor’s mailbox, Abaco launches
a container from the actor’s image and injects the message
contents into the container environment. Actors can be regis-
tered as either stateful, meaning they can only process one
message at a time, or stateless, meaning they are safe to
process multiple messages in parallel. Using internal queues,
Abaco is capable of managing tens of thousands of messages
at a time for hundreds of actors.

Abaco operations are exposed to the end user as REST-
ful APIs that speak JSON including: actor registration and
management, actor messaging, actor state, execution history
and logs, as well as an administrative API for scaling Abaco
itself. To register an actor, a user makes a POST request to
the actors endpoint, passing a JSON-formatted list of attributes
describing the actor. In particular, the description includes the
Docker image to associate with the actor. Abaco responds in
JSON with metadata it generated about the actor including a
UUID and mailbox URL. Once an actor is registered, Abaco
will queue a container execution for each POST request to its
mailbox URL. Abaco guarantees that each message will result
in exactly one container execution and that, for stateful actors,
only one container will execute at a time for a given actor.

Because each actor is defined with its own container im-
age, virtually any programming language or technology can
be used for its implementation. Moreover, as a rooted file
system, a container image necessarily contains all required
dependencies, providing a high degree of portability between
local development and production execution across whatever
compute resources a given Abaco instance might be leverag-
ing. Any server capable of executing the container runtime
can be leveraged as a resource for launching actor containers,
thus enabling Abaco to utilize a wide range of heterogeneous
hardware types. Sending messages over HTTP provide a
straight-forward mechanism for integrating loosely coupled
components developed by different teams in potentially dif-
ferent technologies.

After becoming an officially funded NSF project in Septem-
ber of 2017, work began to harden the Abaco prototype and
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Fig. 1. Using Abaco. Abaco usage workflow: Creators build functions
deployed in containers, send them to a public registry, then createand share
actors via web service calls. Users execute functions by making web service
calls that send a message to a specific actor.

add features necessary for an initial production launch at the
Texas Advanced Computing Center in January of 2018. Since
then, multiple adoptions have occurred and two additional
point releases have been deployed, but a lot more work is
planned over the remaining two and a half years of funding.
In the remaining sections of this paper, we discuss the primary
capabilities being developed and highlight some successes
from initial adoption, describe the Abaco architecture in more
detail, compare Abaco to other work and discuss areas of
future direction.

II. SOFTWARE COMPARISON

Abaco draws inspiration from a number of existing software
systems.

1) Functions-as-a-service: Commercial offerings such as
AWS Lambda [3], Google Cloud Functions [4] and Joyent
Manta [5] provide functions-as-a-service similar to Abaco, but
control over the runtime environment is far more limited than
an arbitrary container image as are the resources available to
the function. For instance, a Lambda function has a maximum
runtime of 300s over a single core, 3008 MB of RAM and 512
MB of temporary storage, with a deployment package size that
must be under 50 MB [6].

Very recently, the open source project OpenFAAS [7] was
launched to provide an open source functions-as-a-service
based on Docker images. While OpenFAAS is perhaps closest
in spirit to Abaco, at present it requires the function container
images to run an HTTP server. Function calls are proxied
directly back to the web service, so synchronization must be
managed by the application. OpenFASS requires its compute
servers to be members of a Kubernets or Swarm cluster, the
setup and management of which is nontrivial and may have
security implications in a multitenant environment. The only

requirement of an Abaco compute server is that it be capable
of running the Docker daemon. OpenFAAS also lacks several
features Abaco provides as part of the Actor model.

2) Containers-as-a-service: Amazon’s Elastic Container
Service (ECS) [8] and Google’s Container Engine [9] are com-
mercial examples of containers-as-a-service offerings. While
enabling the use of arbitrary container images, these APIs lack
the various Actor-based semantics that distinguish Abaco’s
design. As a result, these services are better suited for long-
running server daemons.

3) Distributed Computing Platforms: Systems like Apache
Spark [10], Apache Storm [11], iPython parallels [12] and
AWS Kinesis [13] provide various features that resemble
Abaco’s asynchronous executors capability and even support
additional programming paradigms such as IPC with much
better performance. Abaco asynchronous executors only at-
tempt to address pleasantly parallel compute jobs with the
goal of making them substantially more accessible.

III. PRIMARY CAPABILITIES AND INITIAL ADOPTION

We describe three primary high-level capabilities of the
Abaco platform and some initial adoption to date. These
capabilities are in various stages of maturity; we describe
additional development efforts needed to fully realize these
capabilities in more detail in section six. We propose that the
breadth and diversity of these capabilities as well as the initial
adoptions is compelling validation of the underlying design.

A. Reactors for event-driven computing

Event-driven architectures utilize software components that
execute in response to certain events occurring in the system.
The Abaco platform provides specific functionality and tooling
for developing what we refer to as reactors: actors meant to
execute in response to events. Many popular platforms provide
event notifications in the form of webhooks: POST requests to
a specified URI whenever the event occurs. Examples include
code repository hosting platforms such as Github, Bitbucket
and Gitlab, continuous integration servers such as Jenkins and
Bamboo, cloud storage APIs such as Box and DropBox, and
other middleware solutions like the Agave science-as-a-service
API platform. By subscribing an actor’s mailbox URI as the
target for a webhook, the actor becomes an event processor
for the subscribed event. Abaco provides features such as
its nonce service for generating limited-use, pre-authenticated
tokens for a specific actor endpoint to simplify authentication
from external systems.

1) Adoption: ETL in the Synergistic Discovery and Design
Environment: The Synergistic Discovery and Design Envi-
ronment (SD2E) [14] is a gateway and computing platform
leveraged by a community of investigators spanned across
multiple research universities, government and industry labs
working on grand challenge problems in synthetic biology and
related areas. The labs within the SD2E community generate
raw experimental data at a rate of roughly 3 TB per day,
and developers have created a series of reactors to implement
the complex ETL pipelines that must be performed every
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time new files are generated. SD2E ETL reactors implement
validation and transformation steps as well as launch longer,
asynchronous transfers and compute-intensive batch jobs on
HPC resources. SD2E reactors are integrated into multiple
external systems including Gitlab, Jenkins and the Agave
science-as-a-service API.

2) Adoption: webterm management in IPT on the Web: The
Interactive Parallelization Tool (IPT) [15] is an NSF-funded
project providing a command-line tool that analyzes a serial
source code and generates a parallelized version of the code
by asking the developer a series of questions interactively.
IPT on the Web is a gateway that provides users with a
terminal emulator in the browser (webterm) for running the
IPT command line tool as well as web forms for managing
files, compiling codes and launching benchmarking runs on
HPC systems such as Stampede and Comet. IPT on the Web is
comprised of a stateless web application whose architecture is
simplified through the use of an Abaco reactor for managing
the user webterms. Each webterm runs as a single Docker
container on an elastic cluster in the NSF Jetstream cloud.
The reactor manages these webterm containers by responding
to login and logout events. An upcoming paper will provide
more details on the IPT architecture.

3) Adoption: Automatic creation of Singularity Biocon-
tainers: The Biocontainers initiative [16] is an open-source
effort aimed at providing portable execution environments for
bioinformatics. One of the primary efforts involves creating
Docker images from Conda package recipes. Since many of
the world’s most powerful supercomputer still only offer the
Singularity container runtime, The Life Sciences Computing
group at the Texas Advanced Computing Center created an
Abaco reactor to automatically build a Singularity image from
a new or updated Biocontainer Docker image and upload it to
the TACC Singularity image repository. The bulk of the reactor
development was actually done by an undergraduate research
assistant. To date, several thousand Singularity images have
been built through this pipeline.

B. Asynchronous Executors for pleasantly parallel workloads

A more nascent capability, whose initial features were
only released to production in early March, provides high-
level tooling for asynchronously executing functions on the
Abaco cluster from directly within a running application;
for example, when scaling out pleasantly parallel workloads
such as parameter sweeps. To support such a capability, the
Abaco Python SDK provides an executor class which wraps
calls to the service for creating actors, sending messages,
and retrieving results. The executor class implements Python’s
concurrent.futures.Executor interface [17] to provide compat-
ibility with threadpool and processpool executors that may
already be in use for parallelizing code on a single machine.
The Abaco executor provides submit(), blocking call() and
map() methods for executing a callable against (respectively,
mapping a callable over) a set of input data. The technique
employed serializes the callable and data and sends them

together as a single binary message to an actor registered as
part of instantiating the executor.

The actor associated with the executor is assigned a special
image developed by the Abaco team that knows how to
deserialize a properly formatted message back into the original
callable and data, execute the callable against the data, and
register the result to Abaco’s results endpoint. Somewhat
surprisingly, this simple approach was able to achieve 1
Teraflop of average performance on an 8 node Abaco com-
pute cluster by running matrix-matrix multiplication of large,
square numpy arrays. A key point is that the actor’s container
image needs all software dependencies preinstalled in order to
minimize the code needed to be serialized at execution time.
The Abaco development team plans to integrate this capability
into TACC’s custom JupyterHub offering where user notebook
servers run out of Docker containers. The Abaco executor will
be able to automatically detect the JupyterHub context and
register an actor with a matching image, thereby guaranteeing
the software dependency requirement without the user ever
being aware that container images are in use.

1) Use case: Exploratory runs of Opensees from Jupyter:
The Abaco team developed the initial implementation of the
asynchronous executors capability in close collaboration with
researchers at the University of California, Berkeley who
needed a way to launch a number of short, exploratory runs
of the Opensees application [18] for earthquake modeling.
Resources required for these runs were on the order of a
few dozen cores over a span of 10-15 minutes. While such
runs might collectively take a few hours on an individual
workstation, leveraging a traditional HPC system may not
improve time to solution if it is experiencing long queue times.

C. Data adapters for rationalized interfaces to heterogeneous
data sources

Still in the design and early prototyping stages, data
adapters are specialized actors that create high-quality API
access to data from disparate external sources such as files,
databases, HTML tables and third-party APIs. Through base
images and SDKs, Abaco will enable a developer to write
a short function to return results from the data source based
on a query, and Abaco will automatically format the response
to common serialization standards such as JSON. Additional
benefits enjoyed by all actors such as authentication and
access control, fault tolerance and scaling are inherited by
data adapters. Once the initial data adapters feature becomes
available, the Abaco team will develop additional features such
as global search and caching across adapters and a provenance
endpoint compliant with the W3C PROV specification [19].

IV. ADDITIONAL FEATURES

The primary capabilities are enhanced by a number of
additional features, many of which can be tuned through the
main Abaco configuration file. We briefly describe a few
highlights below.
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1) Multitenancy and JWT Authentication: The Abaco plat-
form is multi-tenant, meaning that different projects can lever-
age the platform and enjoy logically isolated views into the
API. Abaco provides a configurable authentication mechanism
including support for the standard JSON Web Tokens (JWT)
[20]. Tenants can be configured in the Abaco configuration
file and resolved at runtime using the JWT.

2) Integration into the greater TACC ecosystem: An Abaco
instance can be configured to leverage a number of additional
services within the TACC ecosystem, and these integrations
will find analogs in other HPC centers. First, Abaco integrates
with the TACC identity and access management system so
that actor containers automatically start with a valid OAuth
token representing the user who registered the actor. This
enables actors to make authenticated calls to other TACC APIs,
including Abaco itself, as part of their execution. Second,
on a per-tenant basis, Abaco can be configured to create
mounts from various external file servers directly into the
actor containers. At present, NFS mounts to various collections
on TACC’s Corral storage system as well as native Lustre
mounts to TACC’s global parallel file system, Stockyard, are
available. Thus, actors can leverage files and directories from
these storage systems via a POSIX interface. Finally, actor
containers are started with the uid and gid associated with the
TACC account that registered the actor. This means that the
POSIX permissions on the underlying file systems are strictly
adhered to.

3) Default actor environments and custom container en-
vironments: Environment variables are a standard way of
parameterizing container images. When an actor is registered,
the operator may choose to provide a dictionary of name-value
pairs to serve as the actor’s default environment. Then, query
parameters sent to the messages API may be used to override
or extend the default environment with values for a specific
actor execution.

4) Basic Permissions System with RBAC: Abaco provides
a basic permission system recognizing the READ, EXECUTE
and UPDATE permission levels. Actors can be shared (or
unshared) with other users at the different levels by making
requests to the actor’s permissions endpoint. Additionally,
when configured with JWT authentication, Abaco will parse
the JWT for specific roles to support different levels of access.
Presently, four roles are recognized: admin, privileged, user
and limited, though it is easy to extend the system to support
additional roles.

5) State API: In general, stateful actors are responsible for
managing their own state, but to ease that burden, a state
endpoint is available. The state endpoint provides a store,
private to each actor and accessible during execution time,
for storing and retrieving arbitrary JSON-serializable objects
across different actor executions.

V. ARCHITECTURE

Inspired by the Actor model, the Abaco architecture consists
of several narrowly focused agents communicating via mes-
sages. The web service API layer is divided into several agents

Fig. 2. The Abaco Architecture. Abaco employs an architecture inspired
by the Actor model, with independent agents organized into a supervisor
hierarchy. Messages are passed between agents through channels brokered by
RabbitMQ, while Redis and MongoDB provide persistence. Actors execute
functions within containers in response to messages.

to handle different endpoints, including actor registration and
management, actor messages and results, actor execution his-
tory, details and logs, and an administration API for internal
scaling and reporting. The web services layer communicates
with various backend agents by sending messages over a
flexible channel mechanism. All channels currently leverage
AMQP brokered by RabbitMQ, though it is easy to swap
RabbitMQ for another message broker such as Kafka or even
a peer to peer transport like zeromq. The Abaco development
team is considering such options for the data adapters feature
where it will be crucial to minimize latency.

Abaco’s backend agents include one or more spawner
processes responsible for starting and stopping worker agents
associated with a specific actor. Workers subscribe to an
actor’s mailbox queue and start actor containers when new
messages arrive. The workers supervise the execution of the
actor containers, collecting results, execution data such as
total runtime and resources (cpu, memory and i/o) used, and
container logs. Health agents periodically check the health of
all workers and spawners.

The Abaco agents are stateless, and thus multiple instances
of any given agent can be started and stopped at any time
for upgrades and to achieve a desired scalability with minimal
impact to the overall health of the system. For persistence,
two databases are employed. The state of the currently running
system, including all registered actor data, is stored in Redis
while accounting and historical data such as execution history
and logs are stored in MongoDB. Redis was chosen for its low
latency and transaction semantics while MongoDB, through
clustering and sharding, enables performant access to very
large datasets.

VI. FUTURE WORK

While already in production supporting several use cases,
many additional development efforts are planned for the Abaco
system over the next two and a half years. In this section we
provide an overview of the features planned.

1) Autoscaling: For actors registered with the stateless
property, Abaco is developing a capability to automatically
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scale the number of workers associated with an actor according
to the size of the actor’s mailbox. An initial prototype is
currently being developed on top of Prometheus, an open-
source time series database and monitoring server. Via a new
Abaco metrics endpoint, mailbox sizes as a function of time
are scraped by Prometheus. When mailbox size thresholds
are crossed, a Prometheus alert triggers a webhook to an
administrative scaling endpoint within Abaco, and appropriate
action is taken to add or remove workers. The Abaco team is
exploring different algorithms for triggering the scaling alert,
including computing rates of change of mailbox sizes over
different intervals of time. An interesting research problem is
to automatically learn efficient scaling behaviors for specific
actors across different times of day based on historical data.

2) Data Adapters: The data adapters capability described
in section two is still in early development stages, and the
Abaco team is working with multiple groups interested in
the functionality to define precise requirements for the initial
feature release. The goal is to enable a data adapter to expose
a source of data easily, perhaps with a function written in
only a few lines of code. Registration of data adapters will
extend the base actor registration to allow provenance to be
captured in accordance with the W3C PROV standard. Once
the initial release is made, development will turn to more
advanced features such as data adapter response caching and
global search. Caching will be optional, and specific aspects
of it behavior, such as time to live, will be customizable on
an individual adapter basis. A key aspect of the search design
will be the determination of global ontology for the query
language. An interesting long-term research question is to what
extent an effective and efficient ontology can be automatically
learned from historical data. Open source projects such as
Elasticsearch are being considered for the implementation.

3) Events API and Actor Subscriptions: A formal mech-
anism enabling external systems to publish events to Abaco
will be developed together with a subscription capability so
that actor executions can be triggered from external events
without requiring the external system to be capable of making
webhooks. This event system can also be consumed internally
to provide additional features such as actor linking where a
given actor automatically executes in response to another actor
completing an execution.

4) High Performance Private Container Image Registry:
Currently, actor registrations require an image attribute that
references a Docker image available on the public Docker
registry. This precludes leveraging private images for actors
and has the potential to introduce performance variance since
images must be fetched from hub.docker.com to any Abaco
compute node from which actor workers will reside. In a future
release, Abaco will integrate a dedicated private image registry
on high-performance storage hardware across its production
compute cluster.

5) Secrets API: In addition to providing support for private
images via the private image registry, Abaco plans to offer a
secrets API for centrally managing sensitive information such
as database passwords and API credentials.

6) Additional Tooling and Sample Images Library: Cur-
rently, an official command line interface (CLI) and Python
SDK are available, but the development team plans to make
SDKs available for additional languages. Based on demand,
JavaScript and Ruby are likely to be the next SDKs developed.
In addition to SDKs, a growing library of sample images is
being produced to cover common tasks. Throughout the course
of the project, numerous utility images and examples will
continue to be developed by both the core Abaco development
team as well as the open source community.

7) Interactive Web Environment: The initial release of
Abaco provided a simple web interface to some of the basic
endpoints as well as an admin tab for administrators to get a
quick view into the overall usage and health of the system. In a
future release, the interface will be overhauled and extended to
provide a comprehensive, interactive environment for working
with actors. A possible integration with JupyterLab being de-
signed at present would enable the development, registration,
execution and live debugging of actors all from within the
browser.

VII. CONCLUSION

Abaco is a distributed computing platform providing
functions-as-a-service though a novel unification of the Actor
model and Linux containers. Using Abaco, components of
a computational science experiment can be built with dif-
ferent technologies and integrated together through message
passing over HTTP. Containers offer a significant degree of
portability which simplifies the development life-cycle, and
the Actor model enables the platform to provide scaling and
fault tolerance. The platform is general enough to enable
event-driven programming, scaling out of pleasantly parallel
functions from within running applications, and data federation
and rationalization from disparate data sources. In its first
year of funding, Abaco has been adopted by a broad range of
users and applications, including leading scientists working on
multi-institutional projects as well as undergraduate students
on individual REUs.
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