
10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

Accelerating Gateway Development with
Agave ToGo Webapps and Microsites

Rion Dooley
University of Texas at Austin

Austin, TX 78218
Email: dooley@tacc.utexas.edu

Sean Cleveland
University of Hawaii
Honolulu, HI 98622

Email: seanbc@hawaii.edu

Abstract—The Agave Platform is an open, Science-as-a-Service
(ScaaS) cloud platform for reproducible science. Agave uses
standards-based technologies and community promoted best
practices to enable users to run code, manage data, collaborate
meaningfully, and integrate anywhere [1]. Agave ToGo is an open
source, white label, reference web application that serves as both
a defacto user interface for the Platform and a launching point
for developers seeking to create new gateways leveraging the
Platform. In the past year, demand has increased for smaller,
focused gateways that facilitate a single activity and/or serve a
particular function. To meet this need, Agave ToGo Microsites
were developed. In this paper, we present the Agave ToGo
webapps and microsites, examine how and when they can best
be used to accelerate science gateway development, and look at
two recent projects adopting ToGo for their gateways.

Keywords—agave, gateway, science gateway, angularjs, web
service, angular, microsite, webapp, responsive, website

I. INTRODUCTION

The Agave Platform is an open, Science-as-a-Service
(ScaaS) cloud platform for reproducible science. Agave uses
standards-based technologies and community promoted best
practices to enable users to run code, manage data, collaborate
meaningfully, an integrate anywhere [1]. Agave ToGo (ToGo)
is an open source, white label, reference web application
for the Agave Platform. ToGo serves as both a defacto user
interface for the Platform and a launching point for developers
seeking to create new gateways leveraging the Agave Platform.

The field of web development has exploded since Agave
first went into production in 2011. From the first release of
GatewayDNA[2] in 2013 to the first release of Agave ToGo in
late 2015, to the introduction of realtime microsites today, the
rate at which technology changes is only increasing. Never
before have there been so many frameworks and platforms
with such strongly opinionated communities evangelizing their
merits. The term “Javascript fatigue” has made its way into the
mainstream vocabulary of web developers everywhere as they
struggle to keep up with the latest and greatest technologies.

Despite the rate of change, there is hope. If we take a
moment to step back from the bleeding edge and look around,
we can identify some clear winners in the field. The big
winner over the last 7 years was the movement towards
API driven applications using REST. The current move to
microservice architectures, edge computing, and mobile-first

applications only further cement REST as the standard for
web interoperability.

PHP still powers a significant portion of the web thanks
to Wordpress, Drupal, and Laravel, but Python has gone
mainstream, becoming the language choice of some of the
largest websites on the web today. The new 800lb gorilla,
however, is Javascript. Thanks to Google’s V8 engine and
Node.js, Javascript runs in everything from new microwaves
to NASA’s Mars Lander. Full stack application development is
not only possible in Javascript, it is frequently the best choice
for greenfield development.

Of the dozens of frontend Javascript frameworks appearing
since 2011, Angular, React, and Vue have attracted the kind of
critical mass needed from the open source community to make
them safe choices for both commercial and non-commercial
use. One could argue that Ember, Elm, or another language
should be included in the group, but few would argue that any
of three listed should not be.

Finally, with all the uncertainty around HTML5, CSS3, and
HTTP/2, the big winners were Webpack, Websockets, and
Bootstrap, one of which is likely to be used nearly every time
we load a web page or open a mobile app.

In response to these changes, the Agave team worked
with several groups from our user community to understand
how different web development trends impacted their needs
and expectations. From those engagements, we identified two
emerging areas of need for our users. First, we found that
there was a strong, ongoing desire to deploy smaller, focused
gateways that facilitate a single activity and/or serve a particu-
lar function. Second, we found that due to externally imposed
constraints, gateway teams could reduce some of their risk and
extend the life of their projects through the incorporation of a
few common boutique APIs.

In this paper, we present our work to address each of
these areas within the context of Agave ToGo. We start
with an overview of Agave ToGo and look at the parallel
implementations in Angular, AngularJS, Laravel, Flask, and
Express. We then present our new ToGo Microsite Gateways
and discuss how and when to best use them accelerate science
gateway development. We finish with a look at a recent project
adopting ToGo for its gateway and concluding remarks.



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

(a) Implicit Flow supports login to
multiple tenants

(b) Resource Owner Password Cre-
dentials Flow login page

Fig. 1: Login screens for Agave ToGo

II. TOGO WEBAPPS

Agave ToGo is the reference implementation of a science
gateway built entirely on top of the Agave Platform. It was
originally implemented as a static web application written
in AngularJS [3][4]. This year, three new server-side imple-
mentations of ToGo will be ported onto the popular web
frameworks Flask [5], Laravel [6], and Express [7]. While
the implementation details will differ between languages and
frameworks, every implementation of ToGo will present a
consistent user interface and feature set.

A. Common features

Regardless of the implementation, all ToGo implementa-
tions have the following features.

1) Responsive dashboard layout: The user interface (UI)
is a fully responsive, mobile friendly single page application
built upon Twitter Bootstrap. The design utilizes an ”admin
dashboard” theme common to many of today’s SaaS applica-
tions. A collapsing primary navigation menu is pinned to the
left of the screen with content appearing in the main panel.
A static header holds clickable notification icons indicating
outstanding alerts, status messages, a user profile menu, and
an icon button to toggle the application settings panel.

2) Integrated auth: Users must authenticate to use ToGo.
Unauthenticated users are redirected to a login page where
they can select the tenant they would like to use and login
using the selected tenant’s OAuth2 server. All frontend imple-
mentations support the Implicit Flow[8] shown in Figure 1a
by default. The lifetime of implicit bearer tokens is usually 4
hours, but can vary from tenant to tenant.

While implicit bearer tokens cannot be refreshed, token
refresh is supported when users provide their own client
application keys and login via the Resource Owner Password
Credentials Flow[8] shown in 1b. For users familiar with any
of the Agave SDK or CLI, the local authentication cache file
created by those tools can be dropped onto the sign in form and
used to authenticate. If a refresh token is present, Agave will
automatically refresh the user’s bearer token when it expires.

Server-side implementations provide an additional Autho-
rization Code Flow. This allows them to handle token refresh
on behalf of their users without exposing sensitive information
to the browser.

3) Multitenant aware: ToGo supports the use of multiple
tenants. Tenant information can be looked up dynamically
using the public Agave Tenants API, or it can be provided
via a configuration file. By default, ToGo only requires the
tenant code, URL to redirect the user after login, and a valid
client key. Additional information can be included to support
account creation and references to the help and project pages.

It is common for developers to interact with more than
one tenant at a time. They may frequently interact with
development and staging tenants when preparing a release.
Once a user is authenticated to a tenant, their session, prefer-
ences, and request cache are namespaced with the tenant code
and authenticated username. This allows transparent account
switching both within and between tenants.

4) Modular API support: Unlike science gateways built for
a specific domain or use case, ToGo provides a “kitchen sink”
environment where users can interact with the Platform and
developers can find real world examples of how the services
can work together in a synergistic way.

Support of individual APIs is enabled through the inclu-
sion their library as a dependency. In AngularJS, they are
implemented as modules. In Angular, they are implemented
as components. In either case, the UI dynamically builds
navigation, routes, contextual menus, and page views based
on the included APIs. Enabling and disabling a particular
API is simply a matter of commenting out a couple lines of
Javascript. Within the individual API libraries, all interaction
with the Agave Platform is handled by one of the Agave SDKs.
The AngularJS version of ToGo uses the AngularJS SDK, the
Angular implementation uses the TypeScript SDK, etc.

Each API has basic form-based CRUD support. Addition-
ally, wizards are available to simplify some of the more
complex forms such as system registration, app definition, and
job submission. Figure 2 shows the collapsible split panel view
featured in every wizard. The form and JSON editor share a
two-way binding so a changes to the form are immediately
reflected in the editor and vice-versa. Users have found this
particularly helpful to developers authoring JSON to use when
building external integrations in other contexts.

5) Async and realtime support : Agave provides access to
its event stream through the Realtime API and through event
publication to realtime services such as PushPin, Fanout, and
Pusher. Because the Realtime API is an optional service and
not available in every tenant, ToGo will use a websocket con-
nection to subscribe and listen for realtime notifications when
available, and fall back on asyncronous polling otherwise.

Regardless of the implementation, it is possible that ToGo
will at some point become unavailable to receive an event
for one reason or another. In this situation, it will query
the Notifications API for all notifications missed since the
last recorded message receipt and process them in order.
Regardless of how ToGo recieves messages, when a new
message arrives, ToGo forwards it to an internal alerting
system. Alerts will then be displayed as Toastr notifications
in the top right of the page (as shown in Figure 3, an icon
indicator in the top menu, and, if enabled by the user, a

2



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

Fig. 2: Agave ToGo wizards feature two-way binding to a
JSON editor allowing users to validate existing JSON or
generate new JSON with a form interface.

Fig. 3: Agave ToGo presents toastr notifications upon realtime
and async message delivery.

desktop notification. Both message verbosity and display are
configurable through user preferences.

B. Frontend implementation

ToGo was first implemented as a front-end only web appli-
cation. The goal was to provide users a full-featured example
of a science gateway with zero ongoing operational costs and
answer the question, ”How does one build a Science Gateway
for under a million dollars?” [9]. The AngularJS version of
ToGo accomplishes just that. In fact, for the last 2 years, the of-
ficial Agave ToGo deployment at http://togo.agaveplatform.org
is actually hosted directly out of the project’s Github repository
using Github Pages.

In addition to the financial advantages of this approach it
also,

• Democratizes availability of science gateways to any-
one with basic web development competency: html, css,
javascript.

• Exposes students to skills and technologies heavily de-
sired by employers.

• Dramatically lowers the time to first gateway by replacing
all hosting, DNS, and publishing infrastructure with a
simple fork of a Github repository.

• Removes the success penalty experienced by many sci-
ence gateways when their usage outgrows their original
budget and/or timeline.

1) Static frontend implementation: Since the initial devel-
opment of ToGo, the next generation of AngularJS, simply
called Angular, was released. Work is currently underway to
port the existing AngularJS version of ToGo to Angular. This
represents a significant change in the application architecture,
but brings with it some welcome changes, such as the use
of Typescript, ECMA 6, better modularization of individual
Agave and external API support through the use of Angular
components, and reduction on 3rd party libraries, and overall
performance improvements.

2) React, Vue, and Ember: Just as our use of Backbone in
GatewayDNA gave way to AngularJS in Agave ToGo, several
other Javascript frameworks are gaining popularity in the
developer community. Among them, React and Vue have seen
the greatest adoption for new application development. While
no work is currently underway on ToGo implementations in
these frameworks, we are actively looking for opportunities to
work with the user community on such implementations.

C. Full stack implementations

Over the last year, we worked with several groups who
presented use cases that necessitated the use of a server-
side component. Their use cases can be summarized by the
following 4 scenarios:

• The gateway provides access to one or more shared
resources from which, access must be granted and tracked
using a privileged account.

• The gateway needs to perform one or more actions
in response to an event from the Platform. The event
involves manipulating the webhook’s contents and using
that in a request back to the Platform on behalf of a user.

• The gateway presents a view that requires information
from multiple Science APIs. The gateway can greatly
speed up the view rendering by handling its own caching
and response generation.

• The gateway is meant to be an internal application for a
specific group of users. Only those users should be able
to login to the application. Once logged in, they should
remain logged into the gateway on that computer until
they login from somewhere else, or they manually log
out.

As we continued to work with these groups, we realized
that formalizing a server-side version of ToGo with general
solutions to the above use cases could be something of value to
the community. Over the last 6 months we have integrated code
contributed back from the community into server-side versions
of ToGo. This summer we will release implementations based
on the 3 top languages and web frameworks as published by
the Science Gateway Community Institute [10].

3



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

1) PHP and Laravel: Laravel is a free, open-source PHP
web framework intended for the development of web applica-
tions following the modelviewcontroller architectural pattern.
Currently on the fifth major release, Laravel has become
arguably the top web application framework for PHP de-
velopers. The ToGo Laravel implementation uses the Agave
PHP SDK to communicate with the Platform, Eloquent for
application persistence, Larvel Echo for realtime communi-
cation, Socialite for OAuth2 authentication, and Passport for
webhook authentication. Dependency management is handled
by Composer. The project is available as source and as a
Docker image. An included Docker Compose file will stand
up a development version of the gateway out of the box. Initial
gateway configuration and management are available through
custom Artisan commands included with the gateway.

2) Python and Flask: Flask is a microframework for Python
based on Werkzeug and Jinja 2. While somewhat less popular
than Django for full blow application development, Flask is
particularly well suited for light administrative apps like ToGo.
A popular colloquial idiom comparing the two frameworks is
that “Pirates use Flask, The Navy uses Django.” Given the
target audience of ToGo, Flask appears to be the appropriate
choice at this time.

The ToGo Flask implementation uses the Agave Python
SDK to communicate with the Platform, the native ORM
for application persistence, “Flask-SocketIO” for realtime
communication, “Python Social Auth” library for OAuth2
authentication, and “Flask-JWT” for webhook authentication.
Dependency management is handled by pip. The project is
available as source and as a Docker image. An included
Docker Compose file will stand up a development version
of the gateway out of the box. Initial gateway configuration
and management are available through custom utility scripts
included with the gateway.

3) Server-side Javascript and Express: Express is a free,
minimal open source Node.js web application framework that
provides a robust set of features for web and mobile applica-
tions. Express is fully asynchronous and makes heavy use of
”middleware” to provide its functionality. The ToGo Express
implementation uses the Agave Node SDK to communicate
with the Platform, MongoDB and mongoose for application
persistence, Redis for caching, Passport for OAuth2 and web-
hook authentication. Dependency management is handled by
the Node Package Manager. The project is available as source
and as a Docker image. An included Docker Compose file
will stand up a development version of the gateway out of
the box. Initial gateway configuration and management are
available through custom npm commands included with the
gateway.

III. TOGO MICROSITES

A growing trend for large organizations and small labs is
the deployment of smaller, single-purpose applications called
Microsites. Like their web service counterparts, microservices,
microsites are single-paged web applications that providing
a single, task-oriented experience to the user. Common use

cases for microsites are job submission sites tailored for a
single code, data transfer sites to schedule and move data, ETL
(extract, transform, and load) applications for importing and
scrubbing datasets, chat and messaging sites, and publication
sites to control the release, approval, and publication of data.

While the Agave ToGo web application can, and in some
cases already does solve these use cases, ToGo can feel like
overkill when the use case is simply to enable a single task.
In those situations, we recommend Agave ToGo Microsites.

Agave ToGo Microsites are single-purpose, single-page web
applications that satisfy the basic need of many projects to
run code, collaborate, and share results. Each instance is
self-configurable, comes bundled with multiple theme and
style options, has an optional backend server, and comes
with devops tooling built in. There are currently 3 microsites
available. We present each in turn.

A. Application oriented

The first microsite was developed to enable execution of a
single application code. A screenshot of the microsite is shown
in Figure 4. Unlike Agave ToGo, each application microsite is
configured for a specific tenant, app, and storage enviroment.
These values enable the site to streamline the UI, auto-generate
and job submission form with client-side validation, auto-
generate archive locations for each job, and create boutique
notifications to update the user about their activity.

An optional Express server is included with the microsite.
When activated, the microsite leverages server-side authentica-
tion, provides automated token refresh, and supports an access
control list of users allowed to login to the microsite.

B. Data focused

The second microsite developed was focused on data move-
ment. The need for reliable data transfer, sync, and replication
is one of the most common use cases that bring new users
to Agave. The data microsite provides a simple UI for the
Agave Files and Transfers services, making it easy to move
data to, from, and between multiple storage solutions. The
microsite tracks transfer progress, sets notifications, and pro-
vides a simple way to set up one-off and repeating scheduled
transfers. The data microsite requires a server-side component
to run. The server provides automated scheduling, webhook
processing, and automated token refreshing.

C. Impact dashboard

The third microsite, still under development, is a dynamic
dashboard builder focused on presenting real-time stats and
reporting information about the Agave Platform from a user
perspective. Application publishers and tenant administrators
frequently request usage and impact stats from our operations
team. While this information is easily available by querying
the Platform’s REST APIs, users frequently ask for a way to
pull together this information in views and reports similar to
those found in the Agave Stats Dashboard, show in Figure 5.

The impact dashboard microsite allows users to build cus-
tom dashboards made up of graphs, tables, and widgets from

4



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

Fig. 4: Screenshots of an application oriented microsite.
Clockwise from top left: execution history, app information,
submission form, output browser.

Fig. 5: Screenshots of four sample Agave Impact dashboard
microsite views.

Component Category Description

Dial graph Numeric value as an animated
dial

Progress bar graph Horizontal progress bar

Bar chart Color coded bar chart of a
dataset

Line chart Color coded line chart of
dataset

Pie chart Color coded pie chart of a
value in a dataset

Counter badge Displays a single value with
label

Ratio badge Displays a ratio with label

Profile badge Generates a user profile badge
with basic info and avatar

Status bar graph Displays a color coded status
value for a particular resource

Listing table
Dynamic table based on fields
in the response from a resource
collection

Search table
Dynamic table based on fields
in the response from a search
against one or more resources

Temporal table Search table with timepicker
and predefined timeframes.

Fig. 6: Components available in the impact dashboard mi-
crosite.

a collection of predefined components. The components cur-
rently available are listed in table 6. By default, all dashboard
changes are persisted in the browser’s local storage. Settings
can also be exported as a metadata record or flat file at the
user’s request. No server-side component is required.

IV. THE IKE WAI GATEWAY

Agave ToGo was used at the University of Hawaii (UH)
to build the Ike Wai gateway, Ike meaning knowledge and
Wai meaning water in Hawaiian [11]. The Ike Wai gateway
supports water research and provide tools in pursuit of the
question of water sustainability in Hawaii. The gateway aims
to provide centralized web based user interfaces to support
multi-domain data management, computation, analysis and
visualization tools to enable reproducible science, modeling,
data discovery and decision support for the Hawaii EPSCoR
Ike Wai research team and wider Hawaii water community. By
leveraging Agave ToGo, UH has was able to construct a gate-
way that ties data and advanced computing resources together
to support domains including microbiology, geochemistry,
geophysics, economics and humanities with computational and
modeling workflows delivered in a user friendly web based
interface in a rapid manner.

The adoption of Agave ToGo enabled Ike Wai developers
to quickly stand up a working gateway and establish a tight

5



10th International Workshop on Science Gateways (IWSG 2018), 13-15 June 2018

(a) Ike Wai gateway login (b) Ike Wai gateway team data

(c) Ike Wai gateway map search (d) Ike Wai gateway shared links

Fig. 7: Screenshots of the Ike Wai gateway.

feedback loop with early adopters. The shorter feedback loop
paved a path to iterative development in collaboration the
project’s end users. The end result was the identification and
implementation of features that users needed much earlier in
the project.

The use of Agave ToGo availed the two UH developers to
a community of developers, adopters, and evangelists where
they could turn to ask questions and receive advice on feature
implementation such as the backend authentication service
used to white list users and provide persistent token refresh.
To date the Ike Wai gateway extends ToGo with interfaces to
annotate data files with Agave’s metadata API, perform full-
text and spatial search of annotated data files, and filter search
results using an interactive leaflet map.

V. CONCLUSION

Agave ToGo, like all software, must continue to evolve to
stay relevant to the changing needs of the the Agave Platform’s
user community. This year we introduce two new areas of
growth targeted at meeting emerging needs communicated
by our community. The first is a the availability of server-
side components to make offline activity, access control, and
token refresh easier to implement. To address this need, we
are releasing parallel implementations of ToGo in the Flask,
Express, and Laravel application frameworks. The second area
of growth is suppport for streamlined gateways focusing on a
single task or activity. To address this need we are introducing
three different Agave ToGo Microsites to provide a way to
rapidly deploy low cost, low maintenace solutions to a pain
point expressed by many users representing the long tail of
science.

Going forward, we expect to further expand ToGo’s server-
side componets to make building and registering boutique
APIs easier to do. We are also exploring ways to replicate the

functionality of ToGo’s server-side components using Agave’s
serverless solution, Abaco [12].

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation Plant Cyberinfrastructure Pro-
gram (DBI-0735191), the National Science Foundation Plant
Genome Research Program (IOS-1237931 and IOS-1237931),
the National Science Foundation Division of Biological
Infrastructure(DBI-1262414), the National Science Founda-
tion Division of Advanced CyberInfrastructure (1127210),
and the National Institute of Allergy and Infectious Diseases
(1R01A1097403).

REFERENCES

[1] R. Dooley and S. Cleveland, “The agave platform: An open science-
as-a-service cloud platform for reproducible science,” in Practice &
Experience in Advanced Research Computing, Jul. 2018.

[2] D. Rion and H. M. R., “Recipes 2.0: building for today and tomorrow,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 2,
pp. 258–270.

[3] “AngularJS Superheroic JavaScript MVW Framework.” [Online].
Available: https://angularjs.org/

[4] “Agave ToGo Github repository,” Apr. 2018, original-date: 2017-08-
09T18:28:19Z. [Online]. Available: https://github.com/agaveplatform/
agave-togo

[5] “Welcome | Flask (A Python Microframework).” [Online]. Available:
http://flask.pocoo.org/

[6] “Laravel - The PHP Framework For Web Artisans.” [Online]. Available:
https://laravel.com/

[7] “Express - Node.js web application framework.” [Online]. Available:
https://expressjs.com/

[8] D. Hardt, “The OAuth 2.0 Authorization Framework.” [Online].
Available: https://tools.ietf.org/html/rfc6749

[9] R. Dooley and M. R. Hanlon, “Recipes 2.0: building for
today and tomorrow: RECIPES 2.0: BUILDING FOR TODAY
AND TOMORROW,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 2, pp. 258–270, Feb. 2015. [Online]. Available:
http://doi.wiley.com/10.1002/cpe.3285

[10] K. A. Lawrence and N. Wilkins-Diehr, “Roadmaps, Not Blueprints:
Paving the Way to Science Gateway Success,” in Proceedings of the
1st Conference of the Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to the Campus and Beyond,
ser. XSEDE ’12. New York, NY, USA: ACM, 2012, pp. 40:1–40:8.
[Online]. Available: http://doi.acm.org/10.1145/2335755.2335837

[11] Sean Cleveland and Jennifer Geis, “Ike Wai ToGo.” [Online]. Available:
https://ikewai.its.hawaii.edu/

[12] “Actor based co(mputing)ntainers,” 2014, last access: 2015-11-11.
[Online]. Available: https://github.com/TACC/abaco

6


