
Stager: Simplifying the Manual
Assessment of Programming Exercises

Christopher Laß, Stephan Krusche, Nadine von Frankenberg, Bernd Brügge

Technische Universität München

christopher.lass@tum.de, krusche@in.tum.de, nadine.frankenberg@in.tum.de, bruegge@in.tum.de

Abstract
Assessing programming exercises requires time and ef-
fort from instructors, especially in large courses with
many students. Automated assessment systems re-
duce the effort, but impose a certain solution through
test cases. This can limit the creativity of students and
lead to a reduced learning experience. To verify code
quality or evaluate creative programming tasks, the
manual review of code submissions is necessary. How-
ever, the process of downloading the students’ code,
identifying their contributions, and assessing their
solution can require many repetitive manual steps.

In this paper, we present Stager, a tool designed
to support code reviewers by reducing the time to
prepare and conduct manual assessments. Stager
downloads multiple submissions and adds the stu-
dent’s name to the corresponding folder and project,
so that reviewers can better distinguish between dif-
ferent submissions. It filters out late submissions and
applies coding style standards to prevent white space
related issues. Stager combines all changes of one
student into a single commit, so that reviewers can
identify the student’s solution more quickly.

Stager is an open source, programming language
agnostic tool with an automated build pipeline for
cross-platform executables. It can be used for a va-
riety of computer science courses. We used Stager
in a software engineering undergraduate course with
1600 students and 45 teaching assistants in three sep-
arate programming exercises. We found that Stager
improves the code correction experience and reduces
the overall assessment effort.

1 Introduction
The number of students in university courses is in-
creasing. The number of new undergraduate students
at our computer science department increased by 81 %
between 2013 (1110 students) and 2017 (2005 stu-
dents)1. Practical programming exercises are essential
in computer science education and help students ac-
quire important skills in software development [Staub-
itz et al., 2015]. However, a manual assessment of

1https://www.tum.de/die-tum/die-universitaet/
die-tum-in-zahlen/studium

programming exercises in large courses can take a
considerable amount of time and effort. Automatic
assessment systems (also called auto-graders) aim at
flexibility and scalability in large courses, and allow
to integrate exercises into lectures [Krusche et al.,
2017b]. These systems utilize, among others, version
control systems (VCS) to store the code solutions of
students in repositories and test cases that are exe-
cuted on a continuous integration server to assess
the solution to a programming exercise automatically
[Heckman and King, 2018; Krusche and Seitz, 2018].

While automated assessment systems significantly
reduce manual assessment effort, they have draw-
backs. Predefined test cases cannot cover all possible
solutions and therefore impose a certain solution on
the students. Some students are limited in their pro-
gramming skills, while other students can exploit the
test cases by repetitive trial-and-error submissions.
Especially first year students who are new to program-
ming often experience problems when trying to for-
mulate their solution and thoughts as an executable
computer program [Robins et al., 2003]. Such sub-
missions can be overly complicated, and assessment
systems cannot (yet) provide enough useful feedback
in that regard. Furthermore, some programming exer-
cises cannot be assessed automatically. The automated
grading of creative assignments with open problem
statements is hardly possible because different solu-
tions exist [Knobelsdorf and Romeike, 2008; Krusche
et al., 2017a]. An example for such an assignment
is to implement a creative collision strategy in a 2D
racing game. Automated test cases could be able to
validate a collision, but are incapable of assessing
the creativity or code quality of the solution. As a
result, manual assessment can be beneficial, even in
large courses that have fully implemented automated
grading solutions.

However, the process of manually assessing multi-
ple students’ solutions requires repeated manual steps.
Tasks such as finding the next student’s repository,
downloading the source code, and renaming the fold-
ers and projects names for standardization can be
time-consuming and error-prone. Determining a stu-
dent’s contribution is challenging when the exercise
builds upon a provided code template and when the

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 34



students use multiple commits in their code repository.
Then it becomes difficult to separate the provided
template and the final solution.

In this paper, we present Stager, a tool that is de-
signed to support the manual assessment of program-
ming exercises. Reviewers, e.g. teaching assistants or
instructors, can automate the manual steps that are
necessary to prepare the students’ code repositories,
for instance download all repositories at once, and
thereby reduce the manual assessment time. The idea
for Stager evolved during an undergraduate university
course with 1600 students and 45 teaching assistants.
An initial implementation was used for three separate
programming assignments.

The remainder of the paper is organized as follows.
We describe related work focusing on existing auto-
mated assessment solutions and the limitations of
automated assessment approaches in Section 2. In
Section 3, we cover Stagers’ approach to automat-
ing the recurring manual steps during the correction
of programming exercises. We describe design deci-
sions, the exercise workflow with Stager, the configu-
ration possibilities of the tool, and the concrete tasks
of Stager, e.g. the Download repositories task. We ana-
lyze the improved code assessment experience of the
teaching assistants by means of an experience report
in Section 4, where we also present the results of a
quantitative analysis of Stager’s use in three program-
ming exercises. Section 5 concludes the paper and
provides directions for future work.

2 Related Work
Several automated assessment system approaches for
programming assignments exist [Heckman and King,
2018; Knobelsdorf and Romeike, 2008; Krusche and
Seitz, 2018; Pieterse, 2013]. Advantages include a de-
crease in the workload of course instructors and timely
feedback for students [Pieterse, 2013]. Automated
systems work well to grade programming assignments
consistently and evaluate specific aspects, e.g. the
functionality [McCracken et al., 2001] or efficiency of
a system [Jackson and Usher, 1997]. However, they
are missing the benefit of personal feedback which
a manual grading approach could provide. The test
cases used by such systems cannot assess the code
quality and “elegance” of the solution [Poženel et al.,
2015].

Building a robust automated assessment system
amounts to a heavy workload, whereby the definition
of the test cases is (usually) the most time consuming
activity [Cerioli and Cinelli, 2008]. This workload is
amplified when designing tasks with some degree of
freedom of solutions [Chen, 2004]. The degree of free-
dom of solutions indicates the difficulty of the exercise
[Striewe and Goedicke, 2013], meaning that a diffi-
cult exercise has more possible solutions and therefore
has an increased workload to design the automated
assessment system. Depending on the class size, it

can therefore be less time consuming to manually as-
sess solutions rather than to design the automated
assessment system [Ala-Mutka, 2005].

Further, students can become distracted by au-
tomated feedback. For instance, students may be
tempted to fix only the failing tests instead of focus-
ing on the assignment [Heckman and King, 2018].
Automated assessment systems circumvent the de-
tection of frequent mistakes or misunderstandings
among students. The understanding and resolution
of common errors is an essential learning experience
for students. Semi-automated systems combine the
mentioned aspects by providing automated grading,
as well as manual feedback. Such systems offer per-
sonalized feedback to some extent, for instance the
instructor can annotate a static assessment [Gerdes
et al., 2017]. Other systems give the student instant
feedback if the student’s solution is correct. If it is
not, the instructor reviews each solution and can give
additional feedback if required [Insa and Silva, 2015].
Many systems focus on the grading itself, but not on
the process the instructor has to follow to obtain the
students’ solutions.

Some commercially available systems and tools that
are used in computer science (CS) courses offer fea-
tures that aim at simplifying this process. In 2000,
Jackson proposed an approach that pre-processes stu-
dent submissions (sent via e-mail) by removing irrele-
vant information or unpacking files [Jackson, 2000].
For submissions via repositories, pull requests (also
called merge requests) in GitHub2, GitLab3, or Bit-
bucket4 allow students to commit their changes into
separate branches. After requesting the code to be
merged into the main branch, i.e. a submission, re-
viewers can highlight the student’s contribution as
difference to the template code and provide feedback
by requesting changes. While pull requests can also
be integrated with continuous integration systems,
e.g. using TravisCI5 to detect compile errors and to
run automated tests, reviewers might still need to
download the source code and execute it to verify if
all requirements of the problem statement have been
solved.

GitLab introduced a “Squash and Merge” option
which “applies all of the changes in a merge request
as a single commit, and then merges that commit us-
ing the merge method set for the project”6. This cleans
up the commit history and can make it easier to iden-
tify the contribution of one particular student. Tools
and services, such as Gerrit7, support code reviews
that enable the reviewer to see the code difference,
and provide the option to leave in-line comments.

2https://github.com
3https://gitlab.com
4https://bitbucket.org
5https://travis-ci.org
6https://docs.gitlab.com/ee/user/project/merge_

requests/squash_and_merge.html
7https://www.gerritcodereview.com

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 35



However, such tools primarily focus on continuous
feedback rather than assessing a student’s solution.

3 Stager’s Approach
This section presents an approach that automates man-
ual steps during the correction of programming ex-
ercises in order to prepare student repositories for
easier assessment. We show how code reviewers can
use Stager. Furthermore, we explain the different
tasks that are automatically executed by Stager.

Figure 1 illustrates the exercise workflow including
the manual assessment with the help of Stager as a
UML activity diagram. As precondition for this work-
flow, every student must have their own repository
with the code template for the exercise in a VCS8. Af-
ter the students complete the exercise, they commit
and push their solutions to the VCS (action 1.3).

Before reviewers start to work, they need to config-
ure Stager (action 2.1). Then, they trigger Stager to
process different tasks (actions 3.1 ... 3.6), such as
Download repositories or Normalize code style. Finally,
the reviewer can manually assess the pre-processed
submissions and give qualitative feedback (action 4.2
and 5.) to the students in any arbitrary form (e.g.
uploading the feedback into an exercise management
system such as Moodle9).

The action 2.1 Configure Stager of the Reviewer is
described in Section 3.1. Stager’s actions are described
as tasks in Section 3.2. The numbering in Section 3.2
aligns with the corresponding action in Figure 1.

3.1 Stager’s Setup
Stager is free, open source, and available under the
MIT license10. It is platform independent and pro-
gramming language agnostic, making Stager univer-
sally applicable. It is written in the Go programming
language11 and makes use of the distributed version
control system git12. Cross-platform executables can
be downloaded from the automatic build pipeline or
compiled from the source code.

Stager’s configuration is separated into two files
students.csv and config.json, based on how frequently
the settings change. The list of students in students.csv
might not change during the course duration, while
config.json changes for every exercise. The configu-
ration procedure must be completed after the code
template was finished and before Stager is executed.
Stager or its configuration does not add any precon-
ditions or constraints on the students. The following
settings can be edited:

1. Credentials: Remote git repositories can be ac-
cessed via the SSH or HTTP protocols [Lawrance et
al., 2013]. For HTTP, the JSON keys username and

8There are multiple tools available that automate this step, e.g.
ArTEMiS, Github Classroom, etc.

9https://moodle.org
10https://github.com/arubacao/stager
11https://golang.org
12https://git-scm.com

Reviewer

2.2. Trigger
Stager

4.1 Manually
assess

prepared
repositories

4.2 Give
qualitative
feedback

Stager

3.1 Download
repositories

3.2 Rename
folders

3.4 Rename
projects

3.5 Normalize
code style

3.3 Filter late
submissions

3.6 Combine
commits

Student

1.2 Solve
exercise

1.1 Receive
exercise and

code template

5. Receive
qualitative
feedback

2.1 Configure
Stager

1.3 Commit and
push solution

Figure 1: Exercise workflow with Stager: students
complete the exercise and upload their solutions to a
VCS. The reviewer configures and triggers Stager to
process different tasks, e.g. 3.1 Download repositories.
Afterwards, the reviewer manually assesses the pre-
pared repositories and gives qualitative feedback to
the students.

password have to be set with valid credentials and
access rights to the VCS. For SSH, Stager uses the
operating system’s global SSH settings and therefore
does not require further configuration.

2. Latest commit hash of a programming exer-
cise template: The programming exercises that are
distributed to the students build upon a given code
template. The SHA hash of the latest commit for
the code template, meaning the latest code changes
the reviewer included, must be set for the JSON key
squash_after. This setting is required for Stager to
distinguish between the given code by the reviewer
and code written by the student. This configuration
option is used by the task Combine commits and is
further elaborated in Section 3.2.

3. Deadline for homework submission: Students
have to submit their homework in a given time-frame.

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 36



For example, the homework must be submitted by
Sunday midnight because the programming exercises
will be discussed in class on Monday morning. How-
ever, VCSs have limitations when it comes to time-
based repository access. As described in more detail
in Section 3.2, the task Filter late submissions allows
to overcome these VCSs limitations. The deadline for
students submitting their homework is set with the
JSON key deadline. The standard datetime format
YYYY-MM-DD HH:MM:SS must be used. For example,
2018-08-31 23:59:59 is valid.

4. Remote repository URL schema: Each student
has a personal repository that can be accessed with
a unique URL. A general URL schema can be derived
from these unique URLs, where the students’ identi-
fiers are substituted by a placeholder. For example, for
the repository URL (1) of student 10001, the derived
general URL schema is (2). If the repositories are ac-
cessed using HTTP as in the example, two additional
placeholders must be set for the reviewer’s credentials
(3). The resulting schema is set for the key url.

https://repo.uni/cs101/exercise01-10001.git (1)

https://repo.uni/cs101/exercise01-%s.git (2)

https://%s:%s@repo.uni/cs101/exercise01-%s.git (3)

5. List of students: In addition to the mentioned
settings, Stager requires a list of students the reviewer
wants to assess. The students’ names and identifiers
are defined in the students.csv file with the format
shown in Listing 1. All mentioned people and courses
in this paper are placeholder names and do not exist
in reality.

Listing 1: Sample students.csv
name , id
John Doe,10001
Jane Roe ,10002

After configuration, the Stager executable, con-
fig.json, and students.csv are placed in a dedicated
and empty folder. Stager can then be executed via a
double click or from the terminal. Listing 2 illustrates
this workflow. After Stager terminates, the students’
repositories are locally available and prepared by the
tasks described in the following Section 3.2.

Listing 2: Folder setup and execution of Stager
$ cd ~/cs101 / assessment3
$ l s
con f i g . j son s t age r s tudent s . csv
$ . / s t age r

3.2 Stager’s Tasks
Stager provides an extendable framework which
makes it easy to add or remove tasks according to
the reviewer’s requirements. Tasks are functions that
modify the repository or its contents and have a single

purpose. For example, the Rename folders task ap-
pends the student’s name to the corresponding folder.
Stager is composed of multiple tasks (shown in the
Stager swimlane in Figure 1) that adhere to certain
rules and are sequentially performed during the tool’s
execution. The implementation allows a clear distinc-
tion of tasks, such that each task addresses a separate
purpose. Therefore, it is easy to add new tasks or re-
move existing ones conceptually and implementation-
wise in the future. For example, when the reviewer
does not need a certain task, only one line of code
within the array of tasks has to be removed. Fur-
thermore, tasks must be idempotent, meaning that
multiple executions of the task lead to the same out-
put. Even though tasks are independent, they are
processed sequentially, i.e. the order of the tasks is
relevant. For instance, repositories first have to be
downloaded before other tasks have local file access.

The goal of Stager is to simplify the manual assess-
ment of programming exercises by modifying source
code, files, and repositories. Repetitive manual steps
that are required for the reviewer to start the assess-
ment should be reduced or eliminated by Stager. We
identified the following relevant tasks (listed accord-
ing to the order of execution) and describe each of
them in detail in the following:

1. Download repositories

2. Filter late submissions

3. Rename folders

4. Rename projects

5. Normalize code style

6. Combine commits

1. Download repositories: In order to better de-
termine the software quality and verify if all require-
ments of the problem statement have been solved by
the students’ submissions, it is necessary for the re-
viewer to compile and execute their homework source
code locally. Hence the repositories must be available
on the reviewer’s computer. The initial task clones all
repositories of the predefined students as-is and all at
once to a given folder on the reviewer’s computer. This
first task takes potential existing local repositories into
account and overwrites them. It ensures that each lo-
cal repository is in sync with the remote repository
and in a clean state.

The following tasks modify files and therefore
require write access to the repositories. These
modifications can only be performed when the
repositories are locally available. Consequently, the
Download repositories task must be first.

2. Filter late submissions: Homework submis-
sions are tied to a hard deadline. With web-based
VCSs like Bitbucket or GitLab, it is hardly possible to
block student commits after a given deadline. Stu-
dents could exploit this situation and extend their

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 37



time to finish the exercise as shown in Figure 2. The
Filter late submissions task analyzes the commit times-
tamps and sets the repository to the state of the pre-
configured deadline in config.json. Commits after the
deadline are not considered anymore. This way time-
based limitations of web-based VCSs are bypassed.
However, this procedure is not fully forgery-proof,
since commit timestamps can be manipulated.

File changes made prior to this task would be
striped out, since the repository is set to the state
of the pre-configured deadline. Therefore, the Fil-
ter late submissions task must be executed before any
other task can modify files.

Figure 2: Filter late homework submissions by exclud-
ing commits after the homework submission deadline.
The two commits above the red line are after the
deadline while the two commits below the red line
are before the deadline.

3. Rename folders: Depending on the naming
convention, only the student’s identifier is used for
the repository name. The resulting folders can be
hard to keep separate and to associate with the correct
student. For obfuscation and identity protection this
is reasonable, but counterproductive on the reviewer’s
local system since it is easier to identify a student
by their name and not through their id. Once the
repositories are locally available, the Rename folders
task appends the student’s name to the corresponding
folder as illustrated in Figure 3.

Figure 3: Append names to folders to better distin-
guish between students. Without the names john_doe
and jane_roe, it would be difficult to identify which
folder belongs to which student.

4. Rename projects: As precondition of Stager,
each student must have their own repository for each
published exercise. The content of these repositories
is always identical. As a result, the project names
are also identical for all students. This leads to the
problem that reviewers could only import one project
at the same time into Eclipse in order to review and
execute the code. Renaming all projects manually is
time-consuming and error-prone. Analogue to the Re-
name folders task, a student’s name is prepended to the
corresponding project name. This makes it possible to

distinguish between students within source code edi-
tors or integrated development environments (IDEs),
e.g. Eclipse13 (Figure 4), and allows to import mul-
tiple projects at the same time. Eclipse, for instance,
does not allow to import multiple projects with iden-
tical names, which makes it impossible to compare
multiple solutions without renaming the projects.

Figure 4: Prepend student names to projects so that
the submissions of multiple students can be imported
into Eclipse and reviewed at the same time. Jane
Roe and John Doe are prepended to the project name.
Otherwise the reviewer could only import one Eclipse
project at the same time.

5. Normalize code style: The encoding and code
style of the provided code template and the final
student’s contribution should be consistent. Windows
and Unix-based systems use different line breaks for
code files by default. Windows uses carriage return
and line feed “\r\n” as a line ending, whereas Unix
based systems use just line feed “\n”. Also, IDEs
might automatically enforce a different code style
standard than desired. As illustrated in Figure 5, this
could lead to non-relevant changes and obscured
code differences in commits, thereby making it harder
to assess the submission. To avoid these non-relevant
file changes by the student, Stager invokes a linter
that automatically normalizes the code to the same
standards as the initial template. This means that all
white space related changes, e.g. line breaks, empty
spaces and tabs are removed, so that the reviewer
does not need to analyze them. Each programming
language has its own linting strategies, utilizing
existing tools like eslint14 for Javascript or checkstyle15

for Java. This hides pure white space and encoding
changes and allows code reviewers to focus on the
actual contributions by the students.

6. Combine commits: Reviewers provide code
templates as a starting point for the programming
exercise, in which the student has to make changes
across multiple files. These changes can be small com-
pared to the provided template and consequently hard
to identify by the reviewer. In order to determine the
student’s contribution more effectively, it is helpful to
see the exact difference between the template and the
final submission instead of only looking at the final
submission. VCSs provide easy comparison methods

13https://www.eclipse.org
14https://github.com/eslint/eslint
15https://github.com/checkstyle/checkstyle

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 38



Figure 5: There is no visual change in the two code
blocks in this figure. However, non-visible line breaks
cause the comparison tool to show these lines. This
can make it time-consuming for the reviewer to iden-
tify relevant changes.

where the difference made by a single commit is vis-
ible. However, a submission can consist of multiple
commits. The reviewer would have to compare each
commit and memorize the changes themselves, which
makes the standard comparison method impractical
and error-prone.

The combine commits task combines the students
commits into one single commit. The reviewer does
not need to review multiple changes within the same
code line and can omit changes that have been added
in one commit and removed again in a later commit.
This single commit also contains all Stager related
changes (e.g. white space changes). As a result, it is
easy for the reviewer to quickly identify the student’s
contribution and to decide if the solution is correct.
In addition to the existing branches with the complete
commit history, Stager adds the combined commit into
a separate branch. Thus, information is only added
and not removed from the repository and the reviewer
could still see the whole commit history. Web-based
VCSs like GitHub also offer a squash feature, however,
the reviewer would have to trigger it manually for
each repository.

Figure 6 illustrates this process with an example
student John Doe and an Instructor. The Instructor
provides a code template. John Doe works on the
given exercise. Over a period of one day, John submits
his work separated across multiple commits. As seen
in the bottom right corner of Figure 6, one assignment
was to Add new car types to the game. Since John
submitted multiple code changes and removed the
“TODO” lines within the code, the reviewer would
have to actively scan all nine commits to identify
John’s solution. Stager solves this time-consuming
process by combining all student commits into one
single commit that includes all changes by John. This
single commit is selected in the top of Figure 6. The
reviewer can see every file that has been modified by
the student and quickly identify, whether John has
completed the assignment correctly.

4 Experience Report
The following experience report describes the lecture-
based course Introduction to Software Engineering
(EIST16) in which we used Stager to improve the man-
ual assessment of programming exercises. EIST is a
second semester bachelor’s course with a heteroge-
neous group of students including computer science,
business informatics, and business students.

The course assumes that students have successfully
completed an introductory course in computer science
(e.g. CS1) and are familiar with object-oriented pro-
gramming in Java. The course’s learning goals are
that students are able to apply relevant concepts and
methods in all phases of software engineering projects
including analysis, design, implementation, testing,
and delivery. Further, students know the most im-
portant terms and concepts and can apply them in
modeling and programming tasks. They are aware
of the problems and issues that generally have to be
considered in software engineering projects. Table 1
shows the schedule and the content of the course.

Week Content

1 Introduction

2 Model-Based Software Engineering

3 Requirements Elicitation and Analysis

4 System Design I

5 System Design II

6 Object Design

7 Model Transformations and Refactorings

8 Pattern-Based Development

9 Lifecycle Modeling

10 Software Configuration Management

11 Testing

12 Project Management

13 Repetitorium

Table 1: The course Introduction to Software Engineer-
ing lasts 13 weeks.

1600 students were registered for the course in
2018. One lecturer and three exercise instructors
were involved in the organization of the course. 45
teaching assistants were responsible for holding 74
exercise group sessions per week. Teaching assistants
were mainly bachelor students in the fourth semester,
who successfully completed the same course in the
previous year.

The course design is based on interaction and as-
sumes active participation from students. The interac-
tive parts include in-class exercises, in-class quizzes,
and exercise sessions. Students need to bring their
laptops to the class and to exercise sessions. Stu-
dents can earn bonus points for completing in-class
and homework exercises successfully. They can use
these bonus points to improve their final exam grade.

16The German title is “Einführung in die Softwaretechnik”.

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 39



Figure 6: Student commits are combined into one discrete change set: the commit at the top highlighted in
blue. This commit displays the difference between a provided code template by the instructor and the submitted
solution by the student. All commits of the student John Doe are still available.

For instance, if they score more than 90 % of the to-
tal exercise points, their grade in the final exam is
improved by 1.0. This possibility motivates the stu-
dents to participate in the in-class exercises and in
the homework exercises. In-class exercises consist
of quizzes (similar to the quiz exercises described in
[Krusche et al., 2017c]), modeling and programming
exercises. Homework exercises include modeling, text
and programming exercises.

4.1 Programming Exercises

Between 600 and 1200 students have actively partici-
pated in each programming exercise throughout the
semester which is shown in Figure 7 and Figure 8. In
each exercise, the students had to write new source
code or adjust existing code based on a given prob-
lem statement. All students worked on the existing
template code of an exercise in their individual git
repository. The exercises were based on a 2D rac-
ing game called Bumpers. In the game, cars collide
with each other and each collision has a winner. The
course is designed so that each week’s exercises focus
on a different part of Bumpers in accordance with the
lecture’s content, e.g. in week 8, “Pattern-Based De-
velopment”, exercises include the implementation of

different design patterns to make the game extensible
for new requirements.

To submit their solutions, the students commit their
changes to a version control system. This automati-
cally triggers test cases on a continuous integration
server to verify the given solution. After the submis-
sion of their solution, students can automatically see
the test results as individual feedback and improve
their solution according to this feedback.

0

500

1000

1500

H01 H02 H07 H08 H11

637
794824

1.1041.070

Participations in Homework Programming Exercises

Figure 7: Number of students who submitted solutions
to homework programming exercises

However, not all aspects of a problem statement
can be automatically tested. Either it is difficult to test
a certain aspect of a solution, for instance complex
behavior tests, or the problem statement provides a

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 40



0

500

1000

1500

L02 L07 L08 L10 L11

765776863896

1.213

Participations in In-Class Programming Exercises

Figure 8: Number of students who submitted solutions
to in-class programming exercises

high degree of freedom which makes it difficult to
write test cases, e.g. open or visionary questions.

The following three homework programming ex-
ercises required manual assessment by the teaching
assistants. The second and third exercises were graded
semi-automated.
1. Collision Detection: The task was to implement
a creative collision detection algorithm for cars in
Bumpers. The students were given executable tem-
plate code and had to extend it with a new class that
included their solution. This exercise required manual
correction to test whether the new collision algorithm
performed as intended. Additionally, the most creative
solutions were awarded and shown in class.
2. Serialization of Code: The students had to in-
stantiate objects from two classes in Java. The main
task was to serialize and deserialize these object using
JSON. An automated assessment system was used to
test the input and output of the serialization. How-
ever, the students wrote their own serialization code,
so their solutions varied, e.g. in the naming of the ob-
jects or methods. This required the teaching assistants
to assess the implementations manually.
3. Adapter Pattern: Based on a code template, the
assignment was to extend the 2D car racing game
Bumpers with legacy code using the adapter pattern.
The legacy code for an existing analog speedome-
ter panel was provided separately. An automated
assessment system graded the students’ solution. In
addition, the teaching assistants had to verify if the
speedometer panel was shown in the game user inter-
face and displayed the velocity correctly.

4.2 Results
In order to determine how many manual steps during
a homework assessment can be automated by Stager,
we conducted a quantitative analysis for these three
programming exercises. For the qualitative analysis
we focused on:

1. Number of commits per student

2. Number of commits after the exercise deadline

3. Source code changes where only white spaces
have been added or removed

Table 2 displays an overview of the number of par-
ticipating students for each exercise together with

submission metrics. The number of commits per stu-
dent varies from 1.81 to 5.91 on average. Stager’s
combine commits task will combine student commits
into one single commit so that reviewers can distin-
guish the difference between the provided code tem-
plate and code submitted by the student immediately.
There are respectively 34, 8, and 7 late submissions
for the observed exercises. Stager will automatically
filter commits that are contributed after the defined
exercise deadline. There are between 118 and 183
students that submitted at least one commit where
they only changed white spaces. While reviewing the
student contributions, white space related changes
are visually distracting to the reviewer (see Figure 5),
since these changes are not relevant to the exercise.

In informal discussions, seven teaching assistants
reported that Stager reduced their reviewing effort
significantly. The workflow without Stager required
the teaching assistants to first filter the repositories
by student, then to check the commit dates and times,
clone or download the code, and to fix potential white
space problems in order to be able to assess the actual
sumbission. Depending on the amount of exercise ses-
sions, teaching assistants had to perform this manual
workflow for up to 50 student submissions. Further,
the repository names only include the student’s iden-
tifiers, not names, so that mix-ups could occur when
importing the solutions into an IDE.

4.3 Discussion
While using Stager, we identified four main advan-
tages: (1) Combining commits is particularly helpful
to review all changes of one student at a glance. This
allows the reviewer to immediately identify whether
the student has understood the problem statement
and has implemented a proper solution. (2) Renam-
ing the projects simplifies the assessment and compar-
ison of multiple solutions. The reviewer can import
multiple solutions at the same time with one click into
an IDE. It increases the confidence of the reviewers, so
that the assessment is associated with the correct stu-
dent. (3) While most students follow the deadline of
an exercise, some students have committed changes
after the deadline. It would be possible to remove
write permissions for all student git repositories at the
given deadline, but this might be hard to realize. En-
forcing the deadlines in Stager is easier and filters the
cases where students try to circumvent the deadline.
(4) Stager only depends on using git repositories for
programming exercises and other instructors can use
it without adaptions in their courses, e.g. in GitHub
Classroom or other git environments17. As Stager is
open-source, other instructors can adapt it to their
own needs.

While Stager is easy to use as a standalone tool,
reviewers need to configure it for each exercise as
described in Section 3.1. It would further simplify the

17https://classroom.github.com

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 41



Metric 1. Collision Detection 2. Serialization of Code 3. Adapter Pattern

Total submission count 1104 657 794

Total commit count 1998 3880 2447

Average amount of commits per student 1.81 5.91 3.08

Total commits after exercise deadline 34 8 7

Total submission count with at least

one white space related change
125 118 183

Table 2: Quantitative analysis of submission metrics for three programming exercises of the course

configuration if Stager would be integrated into the
exercise management system, where the instructor
sets up the programming exercise. Then Stager would
automatically know the submission deadline, the lat-
est commit of the instructor in the code template, and
the remote repository URL. This would make the use
of Stager easier and seamlessly.

4.4 Limitations
Our experience report only included three exercises
that used Stager for code reviews. It would be in-
teresting to analyze the concrete time-savings with a
comparison and to use Stager throughout the whole
course. While we have first indications, we did not
evaluate whether the quality of the reviews improved
through the use of Stager.

In addition, Stager’s implementation currently has
the following limitations: (1) Reviewers have to man-
ually search for each student repository’s key the first
time they use Stager, before being able to use Stager
for the remaining steps. The previously mentioned
integration of Stager into an exercise management
system would overcome this step. (2) For every exer-
cise, the config.json file has to be changed accordingly
with the deadline, URL-schema, and commit of the
instructor. This could also be adapted to be automat-
ically included when creating exercises by means of
an exercise management system. (3) Reviewers have
to install Stager on their computer and start it via a
double-click or the command line interface. A web-
based solution or a plugin into an IDE (e.g. Eclipse)
in which the reviewers import the code would provide
a more user-friendly experience.

5 Conclusion
Manual code reviews are important for the learning
experience of students. While automatic tests can find
typical problems and check whether code works as
intended, they cannot find all problems, code smells,
and implementation issues. Automatic assessment
imposes certain solutions on the students and might
limit their creativity. Stager supports code review-
ers by automating steps in the manual assessment of
programming exercises to reduce effort for the prepa-
ration and the conduction of code reviews. Stager
downloads multiple students’ submissions, renames
folders and projects, filters out late submissions, and

fixes typical white space problems. All commits of one
student are combined into one discrete change-set
that is easier to review. Code reviewers can better dis-
tinguish between the submissions of multiple students
and identify students’ contributions more quickly.

Our experience in a course with 1600 students and
45 teaching assistants shows that Stager reduced the
reviewing effort and time for teaching assistants. The
reviewers used the saved time to write better reviews
and give more detailed feedback to the students. This
improved the student’s learning. A quantitative analy-
sis in three programming exercises shows that Stager
identifies several late submissions and fixes many
white space issues.

Stager is free, open source, and available under the
MIT license, so that other instructors can use it in their
courses18. We will continue the development and aim
to integrate the tool into the automated assessment
system ArTEMiS [Krusche and Seitz, 2018]. Our fu-
ture work also includes the integration of code quality
metrics to support the actual code assessment. This
could make it easier for reviewers to spot code quality
issues in the students’ solutions and be included, e.g.
as a text file, into the feedback pipeline.

In addition, we would like to evaluate the quality
of the code reviews when using Stager compared to
pure manual reviews with respect to the completeness,
helpfulness, and understandability of the review. De-
pending on the results of this evaluation, we could in-
tegrate strategies to semi-automatically propose com-
mon code review feedback. Automatic suggestions
would further reduce the effort of reviewers but al-
low them to tailor these suggestions to the concrete
situation.

References
[Ala-Mutka 2005] ALA-MUTKA, Kirsti M.: A Survey

of Automated Assessment Approaches for Program-
ming Assignments. In: Computer Science Education
15, pages 83–102, 2005.

[Cerioli and Cinelli 2008] CERIOLI, Maura ; CINELLI,
Pierpaolo: GRASP: Grading and Rating ASsistant
Professor. In: Proceedings of the Informatics Educa-
tion Europe III Conference, 2008.

18https://github.com/arubacao/stager

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 42



[Chen 2004] CHEN, P. M.: An automated feedback
system for computer organization projects. In: IEEE
Transactions on Education 47, pages 232–240, 2004.

[Gerdes et al. 2017] GERDES, Alex ; HEEREN, Bas-
tiaan ; JEURING, Johan ; BINSBERGEN, L. T. van:
Ask-Elle: an Adaptable Programming Tutor for
Haskell Giving Automated Feedback. In: Interna-
tional Journal of Artificial Intelligence in Education
27, pages 65–100, 2017.

[Heckman and King 2018] HECKMAN, Sarah ; KING,
Jason: Developing Software Engineering Skills Us-
ing Real Tools for Automated Grading. In: Pro-
ceedings of the 49th ACM Technical Symposium on
Computer Science Education, pages 794–799, 2018.

[Insa and Silva 2015] INSA, David ; SILVA, Josep:
Semi-Automatic Assessment of Unrestrained Java
Code: A Library, a DSL, and a Workbench to Assess
Exams and Exercises. In: Proceedings of the Con-
ference on Innovation and Technology in Computer
Science Education, pages 39–44, 2015.

[Jackson 2000] JACKSON, David: A semi-automated
approach to online assessment. In: SIGCSE Bulletin
32, pages 164–167, 2000.

[Jackson and Usher 1997] JACKSON, David ; USHER,
Michelle: Grading Student Programs Using ASSYST.
In: Proceedings of the 28th Technical Symposium on
Computer Science Education, pages 335–339, 1997.

[Knobelsdorf and Romeike 2008] KNOBELSDORF,
Maria ; ROMEIKE, Ralf: Creativity As a Pathway
to Computer Science. In: Proceedings of the 13th
Annual Conference on Innovation and Technology in
Computer Science Education, pages 286–290, 2008.

[Krusche et al. 2017a] KRUSCHE, Stephan ;
BRUEGGE, Bernd ; CAMILLERI, Irina ; KRINKIN, Kir-
ill ; SEITZ, Andreas ; WÖBKER, Cecil: Chaordic
Learning: A Case Study. In: Proceedings of the 39th
International Conference on Software Engineering:
Software Engineering Education and Training Track,
pages 87–96, IEEE, 2017.

[Krusche and Seitz 2018] KRUSCHE, Stephan ;
SEITZ, Andreas: ArTEMiS: An Automatic Assess-
ment Management System for Interactive Learning.
In: Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education, pages 284–289,
2018.

[Krusche et al. 2017b] KRUSCHE, Stephan ; SEITZ,
Andreas ; BÖRSTLER, Jürgen ; BRUEGGE, Bernd: In-
teractive Learning: Increasing Student Participation
through Shorter Exercise Cycles. In: Proceedings of

the 19th Australasian Computing Education Confer-
ence, pages 17–26, 2017.

[Krusche et al. 2017c] KRUSCHE, Stephan ; VON

FRANKENBERG, Nadine ; AFIFI, Sami: Experiences of
a Software Engineering Course based on Interactive
Learning. In: Tagungsband des 15. Workshops "Soft-
ware Engineering im Unterricht der Hochschulen",
pages 32–40, 2017.

[Lawrance et al. 2013] LAWRANCE, Joseph ; JUNG,
Seikyung ; WISEMAN, Charles: Git on the Cloud
in the Classroom. In: Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
pages 639–644, 2013.

[McCracken et al. 2001] MCCRACKEN, Michael ;
ALMSTRUM, Vicki ; DIAZ, Danny ; GUZDIAL,
Mark ; HAGAN, Dianne ; KOLIKANT, Yifat Ben-
David ; LAXER, Cary ; THOMAS, Lynda ; UTTING,
Ian ; WILUSZ, Tadeusz: A Multi-national, Multi-
institutional Study of Assessment of Programming
Skills of First-year CS Students. In: Working Group
Reports on Innovation and Technology in Computer
Science Education, pages 125–180, 2001.

[Pieterse 2013] PIETERSE, Vreda: Automated As-
sessment of Programming Assignments. In: Proceed-
ings of the 3rd Computer Science Education Research
Conference, pages 45–56, 2013.

[Poženel et al. 2015] POŽENEL, Marko ; FÜRST,
Luka ; MAHNIČ, Viljan: Introduction of the auto-
mated assessment of homework assignments in a
university-level programming course. In: 38th In-
ternational Convention on Information and Commu-
nication Technology, Electronics and Microelectronics,
pages 761–766, IEEE, 2015.

[Robins et al. 2003] ROBINS, Anthony ; ROUNTREE,
Janet ; ROUNTREE, Nathan: Learning and teaching
programming: A review and discussion. In: Com-
puter Science Education 13, pages 137–172, 2003.

[Staubitz et al. 2015] STAUBITZ, Thomas ; KLE-
MENT, Hauke ; RENZ, Jan ; TEUSNER, Ralf ; MEINEL,
Christoph: Towards practical programming exer-
cises and automated assessment in Massive Open
Online Courses. In: Teaching, Assessment, and Learn-
ing for Engineering, pages 23–30, IEEE, 2015.

[Striewe and Goedicke 2013] STRIEWE, Michael ;
GOEDICKE, Michael: Analyse von Programmier-
aufgaben durch Softwareproduktmetriken. In:
Tagungsband des 13. Workshops "Software Engineer-
ing im Unterricht der Hochschulen", pages 59–68,
2013.

Stager: Simplifying the Manual Assessment of Programming Exercises
Christopher Laß, Stephan Krusche, Nadine von Frankenberg und Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 43


