
Future Skills: How to strengthen
computational thinking in all

software project roles
Gudrun Socher*, Sarah Ottinger*, Veronika Thurner*, Ralph Berchtenbreitero

*Department of Computer Science and Mathematics | oDepartment of Tourism

Munich University of Applied Sciences, <firstname>.<lastname>@hm.edu

Abstract
The digital transformation leads to software systems
pervading almost all spheres of private and profes-
sional life. To ensure that these software systems are
designed and successfully implemented as needed, in-
tensive collaboration is essential in the key roles in
software projects, in particular for the roles of product
owner, user experience designer, as well as software
engineer. The collaboration of people with usually dif-
ferent levels of IT-savviness requires the appropriate
skills of those involved, which are also called Future
Skills. Computational thinking is an important skill
for everyone involved in software projects, no matter
which role they are in.

We describe an interdisciplinary tool-based
teaching-and-learning program where we build
virtual voice-based assistants (voice apps for Amazon
Alexa) in interdisciplinary student teams to train
computational thinking and collaboration skills. A
first competency test validates the effectiveness of our
approach.

Motivation: Future Skills1

In current digitalization initiatives, there is a lot of
discussion on how to increase graduation numbers
in software engineering related study programs in or-
der to have more skilled people driving the ongoing
digital transformation. In this discussion, however,
we often forget that digitalization is always related
to an application domain. The digital transformation
benefits strongly if software-related skills are strength-
ened not only for the core software engineering roles,
but also for less-technical roles in software projects

1With ’Future Skills’ we refer to ’competencies’ required by uni-
versity graduates across all majors in the coming years. These
competencies are necessary to meet digital requirements as they
are currently expected in business and society (cf. (Kirchherr et al.,
2018)).

like product owners, or user experience designers (see
Figure 1), as well as for even more general roles such
as product management or project management.

Figure 1: Key roles in software projects.

Software products can only be successful if the key
roles work hand in hand in software projects: prod-
uct owners with their knowledge of the application
domain and product vision, user experience designers
who guide human-computer interaction, and software
engineers being responsible for software implemen-
tation. The skills and competencies related to these
roles are essential in successful projects. They are
required to successfully meet the challenges of digital
transformation.

How do we best train the talents for the ongoing
digital transformation, and what exactly do future em-
ployees need to learn? Stifterverband, a joint initiative
of German organizations, has published a discussion
paper in September 2018 together with McKinsey &
Company where they address three core competency

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 56



Figure 2: Future Skills: Digitalization and new job profiles lead to two challenges for companies. (1) Jobs shift
towards IT related profiles. (2) Work processes and work requirements change for the majority of employees.
Many employees thus need a modified set of digital and non-digital key competencies (cf. (Kirchherr et al.,
2018)).

categories driving the digitalization (Kirchherr et al.,
2018). Figure 2 illustrates competencies related to
the digital transformation as well as to new forms of
work.

With changes in the job portfolios and new forms
of work, there has been an expected shortage of quali-
fied people for some time now. In particular, the job
market will be increasingly dominated by job profiles
that are heavily related to software engineering. Ac-
cordingly, a lot of effort is spent on increasing the
number of graduates of software engineering related
degree programs, in order to increase the number of
software engineers in the market and thus to meet the
growing demand for qualified specialists.

At the same time, it is essential to strengthen ev-
erybody’s digital and non-digital key competencies.
Digitalization is not just an IT issue. Digitalization
is inherently linked to the digital transformation and
thus the creation of digital automation or digital assis-
tance systems in an application domain. Therefore, it
is just as important for employees and students of all
application domains to acquire software engineering
competencies.

Stifterverband (Kirchherr et al., 2018) stresses that
both digital and non-digital key competencies are a
must-have for all current students. Key digital skills in-

clude - among others - data literacy, collaborative skills
and digital learning skills. Based on Wing (2006),
computational thinking can be considered as a pre-
requisite for digital learning. By now, the relevance
of all these skills for virtually any member of our
professional work force is undisputed and widely rec-
ognized.

How can we integrate the development of these
competencies into study programs? Curricula are of-
ten overfull and the amount of available (and often
essential) knowledge is increasing in almost every
application domain. Solutions have to be found to
systematically integrate key competencies required
for the digital transformation into the teaching-and-
learning processes without weakening the core foun-
dation in the respective application domains.

Project-based learning is a successful instructional
learning format that has been proven to systematically
strengthen some of the required future skills (Bell,
2010). Interdisciplinary project-based learning is even
more effective, as team diversity is an additional suc-
cess factor for creative, goal-oriented collaboration in
addition to the future skills mentioned above (Digital-
isierung, 2016; Meier et al., 2007).

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 57



Related work
Wing (2006) introduced the importance of compu-
tational thinking for computer science-related tasks
12 years ago. She defines computational thinking as
the interplay of decomposition and abstraction and
recommends strengthening computational thinking in
all study programs.

The ability of abstract thinking, in turn, has long
been recognized as a key competency of many techni-
cal disciplines, especially for computer science (Bucci
et al., 2001; Kramer, 2007) and software engineer-
ing (Ghezzi et al., 2002). A distinction is made be-
tween static and dynamic abstraction, i.e. the abstrac-
tion of structural entities (static) and of processes or
behavior (dynamic) (Davis et al., 2014).

The central element of computational thinking is a
problem-oriented (as opposed to a solution-oriented)
approach (Lorenz and Wurzer, 2014). It is essential to
get to the root of a problem or task, to abstract it and
to understand contexts and regularities. The goal is to
reduce the complexity of the task (keyword: decom-
position (Wing, 2006)) and to systematically limit the
choice of possible solutions. Only then are potential
solution components identified and abstracted into
an overall behavior. Computational thinking requires
not only the ability to decompose, but also the ability
to abstract behavior (Wing, 2006), thus requiring a
very high degree of dynamic abstraction in particular.
Since algorithms always work on data entities, a cor-
responding degree of static abstraction is necessary.

In teaching-and-learning practice, it can be ob-
served that not all students have a sufficient level
of abstraction and computational thinking to be able
to cope with the study program requirements. This is
especially true for students of subjects related to com-
puter science. Accordingly, various approaches have
been developed to systematically strengthen these
abilities (Hazzan and Kramer, 2007; Böttcher et al.,
2016). These approaches mainly focus on promot-
ing computational thinking in students of computer
science related majors, but do not provide teaching-
and-learning concepts for strengthening these skills in
students of non-technical subjects, where little to no
IT-affinity can be expected.

Goals
In this work, we develop and apply a teaching-and-
learning program for promoting computational think-
ing in students – and, as an essential basis for this,
for fostering students’ static and dynamic abstraction
competency. To this end, we develop a teaching-and-
learning program for interdisciplinary, project-based
learning that addresses computer science students as
well as non-IT students. Our concept takes into ac-
count our students’ prior knowledge as well as their
individual learning requirements.

In our teaching-and-learning program, we create
an easy introduction to digital projects for interdis-

ciplinary student teams. To achieve this, we use a
tool-chain for creating voice-based virtual assistants
(such as Amazon Alexa), as well as by using Github.
Over the last years, the usability of many tools for
creating software systems has evolved and improved
significantly. Digital tools in the context of software
engineering are nowadays no longer editors that are
specifically tailored to computer nerds. Rather, nowa-
days they often are web-based interactive tools that
are fun to use and that guarantee good results even
for people without IT- and software engineering skills.

Our student teams include tourism majors and com-
puter science students. Github is used as a source code
repository by computer science students, as well as a
ticketing and project communication tool for all stu-
dents. We furthermore use the Github project board
as a virtual agile board. In this way, we enable all
students to make an active, creative contribution in
a digital software project even without programming
knowledge.

The non-IT students (i.e. students of an application
domain) are either in the role of product owner or
user experience designer. The role of product owner in-
cludes gathering and aggregating the users’ needs and
desires which requires static abstraction capabilities.
The user experience designer role focuses on reflecting
what users expect. This definitely requires consid-
eration of dynamic processes. In parallel, computer
science students deepen their experience in the role
of software engineer by using new technologies for the
implementation of voice-based assistants.

We use pseudonymized pre- and post-tests to ana-
lyze to what extent our interdisciplinary tool-based
teaching-and-learning program actually fosters the ad-
dressed competencies of static and dynamic abstrac-
tion in the students.

Computational thinking and
voice-based assistants
Voice-based virtual assistants (voice apps) are cur-
rently being massively pushed by major software com-
panies. Examples are Amazon Alexa, Google Assistant,
Cortana, and many more. In particular, Amazon and
Google provide well-designed, web-based tools that
developers can use to create new voice apps with their
cloud offerings. These tools and cloud offerings are
available free of charge for educational use. In ad-
dition, the tools are so sophisticated that it’s fun to
play with them. In just a few minutes, cool voice-user-
interfaces can be created without previous knowledge,
so first success can be achieved quickly. Figure 3 shows
the Alexa Developer Console, a tool for creating voice
apps for Amazon Alexa.

To develop an application for voice-based assistants,
the development team must design the Voice User
Interface (Voice UI) and implement the business logic.
A voice UI must be structured in such a way that
the dialogue appears natural to the users. At the

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 58



Figure 3: Alexa Developer Console: Web-based tool to create voice apps for Amazon Alexa.

same time, the dialogue must be designed so that the
goals expressed by the users or the intentions behind
them can be clearly identified and assigned to the
implemented business logic. In the jargon of voice UIs,
these intentions are called intents. Each intent must
clearly invoke a feature of the implemented business
logic.

Figure 4 shows an example dialog with Alexa for
an application called the "joke-of-the-day". A person
starts the voice app and gets told one joke. More jokes
can be requested. If no more joke is desired, the voice
app closes.

Structuring a dialogue into intents strengthens both
static and dynamic abstraction abilities.

The identification of the individual intents in a dia-
logue requires a static abstraction. For example, the
joke-of-the-day application is structured into the fol-
lowing intents and the resulting dialog steps:

• welcome

• joke

• closing

The individual dialog steps or intents must then
be arranged in a meaningful sequence (the dynamic

behavior). This process is rather simple for the joke-
of-the-day application (see Figure 5).

The design of a dialog for a voice-based virtual
assistant is thus well suited to train both static and
dynamic abstraction skills, and to guide students to-
wards computational thinking. Therefore, we use
dialog design and implementation for a voice-based
assistant as a task for an interdisciplinary tool-based
teaching-and-learning program to strengthen compu-
tational thinking.

Interdisciplinary project to
strengthen computational thinking
Our didactic concept for the promotion of computa-
tional thinking and communicative future skills struc-
tures the learning process into several phases (see
Table 1). Initially, the students are taught core con-
cepts in non-interdisciplinary groups.

More precisely, the computer science students first
learn the technical basics of voice-based assistants,
and are introduced to tools for designing and imple-
menting them. Furthermore, computer science stu-
dents learn requirements engineering. Having that
down their belts, these students are well equipped to

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 59



Task Computer Science Students Students of Application Domain

Introduction to voice-
based assistants

Examples and tutorial for creating a
first voice app

Examples and simulation of dia-
logues between two partners

Idea for voice app and
its structure

Invocation, intents, slots Generating ideas and defining MVP

Concept for Voice App Requirements engineering Specification of a first dialogue

Using tools Alexa Developer Console, Github
Invocable, Alexa Developer Console,
Github

1st Pitch: Students of application domain pitch their ideas to find computer science students for their
developer team.

1st Sprint 1st Release Refining the dialogues

2nd Sprint 2nd Release Test 1st Release → Change Requests

2nd Pitch: Voice app demos by computer science students.

3rd Sprint 3rd Release
Test 2nd Release → Final changes and
improvements

3rd Pitch: Final presentation with guests.

Table 1: Structure of the teaching-and-learning process throughout the semester for our interdisciplinary
tool-based teaching-and-learning program for developing Alexa voice apps.

take on the role of software engineer in the interdisci-
plinary teams that are formed later on.

The task of the application domain students is to
develop an idea for a voice-based assistant (in this
case an Alexa voice app). For this idea, they then
define the dialogue between the user and the voice-
based assistant required for a Minimum Viable Product
(MVP). This dialog thus contains at least those steps
and procedures that are necessary for the minimal
functional implementation of the idea. It is important
to break down the dialogue into short, simple steps
and to structure it. The complexity of creating the
voice app is significantly greater than the example
of the "joke-of-the-day" shown in Figure 4. Suitable
ideas for voice apps are (quiz) games, guides, or useful
assistants.

The dialogue is tested and tuned by the students
of the application domain. Then, using Invocable2,
the students of the application domain create a first
interactive but hard-coded prototype of the voice app.

The interdisciplinary collaboration in the teams be-
gins when the students of the application domain
present their ideas to the computer science students.
The students of the application domain pitch the pro-
totypes of their voice-based assistants to computer
science students and try to motivate them to join their

2Invocable: https://www.invocable.com

development team. Following these pitches, mixed
teams are formed each consisting of computer science
students and students of the application domain.

Within the interdisciplinary teams, the computer
science students give feedback to the students of the
application domain on the design of the dialog that
underlies the respective prototype. Based on this, the
voice user interface is subsequently refined together.
The computer science students take their "natural role"
as software engineer in the interdisciplinary project.
The application domain students, on the other hand,
are both product owner and user experience designer.
So they design the interaction between the user and
the voice-based assistant in such a way that this in-
teraction is technically meaningful and needs-based
from their own perspective. So far in our didactic con-
cept, user experience design is not explicitly taught
due to lack of time. However, it would be desirable to
improve this in the future.

Computer science students implement the back-end,
while students of the application domain are respon-
sible for the front-end in the implementation phase
of the voice-based assistant. A simple form of Scrum
is useful for organizing the development process into
sprints, thus structuring the semester process. Github
repositories, including the integrated project boards
and the integrated ticketing system (Github issues),

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 60



Figure 4: An example dialogue with a voice-based
virtual assistant telling jokes.

support team collaboration through an appropriate
tooling infrastructure.

This teaching-and-learning program was used for
the first time in the winter semester 2018/19 at Mu-
nich University of Applied Sciences. Four computer
science students (3rd semester) and two to three stu-
dents of tourism management (6th semester) form a
mixed team for the pilot run of our program.

Even if static and dynamic abstraction are not ex-
plicitly addressed, all students in this one-semester
interdisciplinary tool-based program train their static
and dynamic abstraction abilities by structuring and
specifying the dialogue between a person and the
voice-based assistant in such a way that a correspond-
ing Alexa voice app can be built. All students (in-
cluding application domain students) work with the
Alexa Developer Console and Invocable tools. The use
of tools enables all students to work with a working
interactive voice app. The working prototype provides
rapid feedback so that in particular the students of
the application domain can immediately check their
dialogue structuring.

From our perspective, this interdisciplinary tool-
based teaching-and-learning setting is well suited to
foster our students’ abstraction skill and more effective
in this area than regular class exercises. Furthermore,
standardized processes, such as completing Github
Issues in team communication, help to structure col-
laboration.

Figure 5: Dynamic structure of the example applica-
tion joke-of-the-day.

Assessing computational thinking
skills
As we were interested in investigating the develop-
ment of our students’ computational thinking skills
during the interdisciplinary tool-based teaching- and
learning program, students were requested to work
on a competency test at the beginning (week 2) and at
the end of the semester (week 11). The test covered
two facets of computational thinking, namely static
and dynamic abstract thinking processes.

The test was taken by two groups of students, all of
which were working on voice-based virtual assistants
in a project based way. The first group are computer
science students and students of the application do-
main who worked together in interdisciplinary teams.
The other group, our control group, consisted purely
of computer science students.

All these students were asked to solve two tasks
that both form our competency test and that require
static and dynamic abstract thinking processes, re-
spectively. Using pseudonyms allowed us to match the
students’ pre- and post-tests and thus, to analyze their
individual learning outcomes. (Regarding the tourism-
management students’ test performances, we will dis-
cuss the results in the next section “Coding scheme
of the abstract thinking test & first results”. The test
performances of the computer science students have
also been analyzed, but will not be presented in this
paper.)

Our hypothesis is that the computational thinking
skills of students that actively participated in our inter-
disciplinary tool-based program increased significantly.
More specifically, we assume that all students benefit
from developing and implementing their innovative
ideas on Alexa voice apps, as both the design and
the creation of voice-user-interfaces require static and
dynamic abstract thinking processes. Note that even
though we expect that students working in interdisci-

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 61



plinary teams strongly train their collaboration skills
during the course, we have not explicitly assessed
theses skills in a test.

The first task of our competency test includes a
menu of 22 different coffee specialties and requests
the students to teach a new barista about the coffee
recipes. The menu contains pictures and ingredient
lists for each coffee specialty. The challenge is to
structure the various coffees and their ingredients in
such a way that a new barista can quickly grasp and
learn them. In the second task, students are asked to
generalize the abstraction process they applied when
solving the first task.

To successfully accomplish the second task, the par-
ticipants first have to become aware of their own
actions, identify and structure those processes, and
derive a procedure that would be transferable to simi-
lar tasks. Therefore, they have to dynamically abstract
from their own approaches and accurately document
their solutions. From our perspective, task 1 mainly
deals with static abstract thinking processes, whereas
task 2 covers dynamic abstract thinking processes.

Students are allowed 20 minutes for working on the
first task and 15 minutes for completing the second
task. Once the students begin working on task two,
they are not allowed to use the documents they have
generated in task one. In winter semester 2018/2019,
18 tourism students and 54 computer science students
participated in the computational thinking compe-
tency test.

Coding scheme of the computational
thinking competency test & first
results
To analyze the competency test of computational
thinking skills, a comprehensive coding scheme was
developed incorporating five criteria to evaluate static
abstract thinking processes (S1-S5) and three crite-
ria to measure dynamic abstract thinking processes
(D1-D3). We defined two additional criteria opera-
tionalizing one’s ability for self-reflection (R1) and for
identifying the requirements needed (R2). All crite-
ria differentiate between four levels of competency
(outstanding, good, satisfactory, not yet satisfactory).
Score 1 characterizes the lowest level of competency,
score 4 the highest one.

We attempted to capture static abstract thinking
processes by evaluating students’ performances along
these four criteria:

• Criterion S1: developing categories that ideally
simplify the given representations (of coffee spe-
cialties) and structuring ingredients;
Levels of competency may be described as ’un-
refined’, ’put together’, ’structured’ and ’orga-
nized’ (Hershkowitz et al., 2001).

• Criterion S2: identifying and parameterizing at-
tributes.

• Criterion S3: presenting categories in a
structurally-sound way, e. g. as UML-diagrams.

• Criterion S4: using formal notations in a logically
consistent way.

• Criterion S5: recognizing familiar structures and
realizing that the structures are coherent in a
given situation.

Dynamic abstract thinking processes are opera-
tionalized by defining these three criteria:

• Criterion D1: identifying a coherent chain of pro-
cesses.

• Criterion D2: presenting a coherent chain of pro-
cesses in a structurally sound way.

• Criterion D3: relating the identified chain of pro-
cesses to one’s own solution, e. g. using one’s own
approach as a basis for generalizing and inferring
appropriate processes.

We considered two additional criteria, character-
izing one’s ability for self-reflection as well as meta-
cognitive thinking skills:

• Criterion R1: identifying errors and reflecting
one’s own approach.

• Criterion R2: taking the users’ preferences into
account, as well as the requirements.

First results indicate that the computer science
students demonstrate a significantly higher initial
level of static abstract thinking skills (mean-value
M=2.04; standard-derivation SD=0.49), in compar-
ison to the tourism majors (M=1.77; SD=0.46)
(t=2.119; df=70; p=0.030).

Regarding the students’ initial dynamic abstract
thinking skills, we found no statistically significant
differences between the performances of computer
science students (M=2.12; SD=0.51) and tourism
students (M=2.28; SD=0.43; whereby U=384.00;
p=0.210). It seems that tourism students have
reached a slightly higher level of dynamic abstract
thinking skills than computer science students.

Furthermore, the results indicate that computer sci-
ence students (M = 2.07, SD = 0.78) and tourism
students (M = 1.81, SD = 0.73) do not differ signifi-
cantly in their self-reflection skills (U = 384.00, p =
0.210). We observe only a slight tendency in favor of
the computer science students.

Overall, the competency test gives some insight that
most of the students – computer science students (3rd

semester) as well as tourism students (6th semester) –
struggle with demonstrating their static and dynamic
abstract thinking skills. According to Wing (2006)
and based on our results, we strongly recommend the
integration of interdisciplinary teaching- and learning-
programs in students’ curricula to foster students’ com-
putational thinking skills.

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 62



Regarding students’ reflection skills, it seems to
be important to encourage students to reflect their
own approaches and to think about the requirements
needed.

The results of the pre- and post-tests provide empir-
ical evidence that the tourism students’ static abstract
thinking skills development can be characterized by
a significant increase (t = -3.986, p = 0.001) sup-
porting our hypothesis. After actively participating in
the interdisciplinary tool-based teaching-and-learning
program (M = 2.21, SD = 0.48) the tourism students
score significantly better in terms of their static ab-
stract thinking skills than before their participation in
this program (M = 1.77, SD = 0.46). The effect size
by Cohen (1992) is around r = 0.695, thus indicating
a strong effect. Regarding the tourism students’ dy-
namic abstract thinking skills, no significant effect can
be reported (t = -1,475, p = 0.159). However, there
is also a tendency towards an increase of dynamic
abstract thinking skills (M = 2.24, SD = 0.44). Our
hypothesis that tourism students improve their com-
putational thinking skills during the interdisciplinary
tool-based program can be confirmed.

Challenges and experiences
Project-based teaching presents many challenges to
teachers (Barron et al., 1998), among others:

• Formulate clear definitions of learning goals and
competencies students should acquire.

• Make sure that the project tasks cover the planned
learning content to the desired extent and ade-
quately demand and strengthen the competencies
to be acquired.

• Build social interaction structures within the
project teams that allow a balanced distribution
of roles and tasks.

• Create a good (i.e. applicable) schedule.

128 students in computer science and tourism man-
agement were in the pilot group in the winter semester
2018/19. We combined a software engineering mod-
ule and a module for digital marketing and manage-
ment. Both modules have their own learning objec-
tives and content. In addition to the learning objec-
tives of these respective modules, additional learning
objectives of the interdisciplinary tool-based teaching-
and-learning program include the increase in static
and dynamic abstraction abilities mentioned in this
paper as well as the improvement of collaboration and
communication skills in digital projects. Therefore, in-
structors need to encourage students in their learning
process. At the same time, instructors have to take
care to not overburden their students.

We solve the challenges of the different learning
objectives and content of the initial modules by run-
ning some part of the interdisciplinary collaboration

between the students in a purely virtual way, using
the cloud-based Alexa Developer Console as well as
Github and Github issues. The classroom events where
both computer science students and students of the
application domain are together are the three pitches
which are highlighted in gray in Table 1, i.e. the
pitch of the prototypes by the students of the appli-
cation domain, the pitch of the voice app demos by
the computer science students, and finally the joint
pitch during the final presentation. A mix of virtual
and physical collaboration creates enough space for
both teaching and learning sessions to accommodate
the specific contents of the respective modules and
the corresponding competencies according to the defi-
nition of learning goals.

The interdisciplinary project was a lot of fun for
everyone involved. For that reason alone, it is highly
recommended to repeat the project. The use of new
web-based development tools was well received by
all participating students independent of their field of
study.

The computer science students were motivated pri-
marily by the fact that new voice technologies were
used in the context of this project. In turn, tourism
students have grown into the role of product owner
during the project. Furthermore, by using the de-
velopment tools, they were in able to increase their
competency in using web-based tools. They also liked
to creatively integrate sound effects into the Alexa
voice apps.

Summary and outlook
It is important for all students to develop and to
strengthen their ability of computational thinking in
order to meet the requirements of the digital transfor-
mation. As a basis, it is helpful that the students first
develop the skills for static and dynamic abstraction
as these are a basic building block of the ability of
computational thinking. Computational thinking is
one of the Future Skills (Kirchherr et al., 2018), which
are important core competencies for the future work-
ing life as well as for the participation in business and
society in the era of the digital transformation and the
new forms of work linked to it.

We strengthen computational thinking through in-
terdisciplinary, tool- and project-based learning. As a
project topic and work context, we select the design
and implementation of voice-based digital assistants
(so-called voice apps). The students are encouraged to
use static and dynamic abstraction for the specification
of the dialogue between a human and a voice-based
assistant.

A competency test was developed in order to mea-
sure the effectiveness of our approach. The test was
run at the beginning and at the end of the semester.
(The evaluation of the post-test is not yet completed.)
The pseudonymized test results are used to determine
the extent to which the students were able to improve

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 63



their abilities of static and dynamic abstraction during
the program.

More tests are required for a more detailed analy-
sis of future skills through interdisciplinary tool- and
project-based learning in digital projects. Accordingly,
we plan to improve and further expand our approach
so that additional competencies are targeted and the
effects are captured by additional measuring instru-
ments.

References
Barron, B. J., D. L. Schwartz, N. J. Vye, A. Moore,

A. Petrosino, L. Zech, and J. D. Bransford
1998. Doing with understanding: Lessons from
research on problem-and project-based learning.
Journal of the Learning Sciences, 7(3-4):271–311.

Bell, S.
2010. Project-based learning for the 21st century:
Skills for the future. The Clearing House, 83(2):39–
43.

Bucci, P., T. Long, and B. Weide
2001. Do we really teach abstraction? In Pro-
ceedings of the thirty-second SIGCSE technical sym-
posium on Computer Science Education, New York,
USA. ACM.

Böttcher, A., K. Schlierkamp, V. Thurner, and D. Ze-
hetmeier
2016. Teaching abstraction. In 2nd International
Conference on Higher Education Advances, HEAd’16,
P. 357–364, València. Universitat Politècnica de
València.

Cohen, J.
1992. Statistical power analysis. SAGE Journals,
1(3):98–101.

Davis, D., T. Yuen, and M. Berland
2014. Multiple case study of nerd identity in a cs1
class. In Proceedings of the 45th ACM Technical Sym-
posium on Computer Science Education, SIGCS’14,
P. 325–330, New York, USA. ACM.

Digitalisierung, H.
2016. The digital turn – hochschulbildung im digi-
talen zeitalter. Edition Stifterverband, Berlin.

Ghezzi, C., M. Jazayeri, and D. Mandrioli
2002. Fundamentals of Software Engineering. Pren-
tice Hall PTR.

Hazzan, O. and J. Kramer
2007. Abstraction in computer science & software
engineering: a pedagogical perspective. Frontier
Journal, 4(1):6–14.

Hershkowitz, R., B. B. Schwarz, and T. Dreyfus
2001. Abstraction in context: Epistemic actions.
Journal for Research in Mathematics Education,
Pp. 195–222.

Kirchherr, J., J. Klier, C. Lehmann-Brauns, and
M. Winde
2018. Future Skills: Welche Kompetenzen in
Deutschland fehlen.

Kramer, J.
2007. Is abstraction the key to computing. Commu-
nications of the ACM, 50.

Lorenz, W. E. and G. Wurzer
2014. Algorithmisches denken. In Brickster Style –
Digitales Entwerfen eines Kulturzentrums in Wien-
Meidling, P. 7–10. Technische Universität Wien.

Meier, A., H. Spada, and N. Rummel
2007. A rating scheme for assessing the quality of
computer-supported collaboration processes. Inter-
national Journal of Computer-Supported Collabora-
tive Learning, 2(1):63–86.

Wing, J. M.
2006. Computational thinking. Commun. ACM,
49(3):33–35.

Future Skills: How to strengthen computational thinking in all software project roles
Gudrun Socher, Sarah Ottinger, Veronika Thurner und Ralph Berchtenbreiter, HS München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 64


