
Using Mini-Projects to Teach
Empirical Software Engineering

Michael Felderer1 and Marco Kuhrmann2

1University of Innsbruck, michael.felderer@uibk.ac.at
2Clausthal University of Technology, kuhrmann@acm.org

Abstract
Empirical studies have become a central element of
software engineering research and practice. Yet, teach-
ing the instruments of empirical software engineering
is challenging, since students need to understand the
theory of the scientific method and also have to de-
velop an understanding of the application of those in-
struments and their benefits. In this paper, we present
and evaluate an approach to teach empirical software
engineering with course-integrated mini-projects. In
mini-projects, students conduct small empirical stud-
ies, e.g., surveys, literature reviews, controlled ex-
periments, and data mining studies in collaborating
teams. We present the approach through two im-
plementations at two universities as a self-contained
course on empirical software engineering and as part
of an advanced software engineering course; with 101
graduate students in total. Our evaluation shows a
positive learning experience and an improved under-
standing of the concepts taught. More than a half
of the students consider empirical studies helpful for
their later careers. Finally, a qualitative coding and
a statistical analysis showed the proposed approach
beneficial, but also revealed challenges of the scien-
tific work process, e.g., data collection activities that
were underestimated by the students.

1 Introduction
Empirical software engineering aims at making soft-
ware engineering claims measurable, i.e., to analyze
and understand phenomena in software engineering
and to evaluate software engineering approaches and
solutions, and to ground decision-making processes
in evidence. For this, an extensive portfolio of instru-
ments for empirical software engineering has been
developed. For instance, Wohlin et al. [27] provide a
collection of instruments, e.g., controlled experiments,
surveys and case studies, to be used for empirical stud-
ies in software engineering. Kitchenham et al. [13]
extended these instruments by a detailed guideline for
conducting systematic reviews. For most of the basic
instruments used in empirical software engineering
today, extended and more detailed (pragmatic) guide-

lines exist, such as for systematic reviews [16, 28],
systematic mapping studies [23, 24], multi-vocal re-
views [10, 11], or surveys [12, 21]. All these instru-
ments are meant to support researchers and practi-
tioners alike in conducting empirical studies and to
ground their work and decisions in evidence.

Conducting empirical studies is challenging and
requires careful preparation and a disciplined work
approach. Quite often, students consider empirical
studies of little to no help when it comes to software
development and project work, since the relation to
actual development tasks is not obvious. Yet, many
of today’s applications rely on data, e.g., machine
learning systems like text and speech recognition, IoT
devices, and autonomous cars. Empirical methods
as such are about data analysis and, thus, provide
a suitable approach to teach data analysis—or data
engineering in general—that is a core competence
in data-intensive applications. Furthermore, modern
software development paradigms, such as DevOps
including continuous integration and deployment, uti-
lize data, e.g., to analyze a system’s performance, to
predict defects, and to make informed decisions in
the development process as practiced in continuous
experimentation [5]. Therefore, it is necessary for
teachers to open the students’ minds for a rigorous
and evidence-based work approach.

In this paper, we present and evaluate the concept of
course-integrated mini-projects to teach empirical soft-
ware engineering instruments. Our approach helps
students learn how to conduct empirical studies and
understand the instruments and challenges coming
along with such studies. Collaborating project teams
conducting small empirical studies form the basis of
our approach. We implemented the approach in two
courses at the University of Southern Denmark (2016,
68 students) and University of Innsbruck (2017, 33
students). Mini-projects allow students to learn em-
pirical instruments by practically applying them. Our
evaluation shows a positive learning experience and
an improved understanding of (empirical) software
engineering concepts. More than half of the students
perceive empirical studies helpful for their later ca-

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 75

reers. Our evaluation also shows that notably data
collection activities (e.g., for surveys and experiments)
are underestimated by the students. Our findings thus
lay the foundation for improving research-oriented
courses that require data and data analysis.

The remainder of the paper is organized as follows:
Section 2 gives an overview of background and re-
lated work. Section 3 describes the mini-project ap-
proach, and Section 4 presents the approach’s evalua-
tion based on two implementations at the University
of Southern Denmark and the University of Innsbruck
respectively. We conclude the paper and discuss future
work in Section 5.

2 Background and Related Work
Using empirical studies in software engineering ed-
ucation is not a new idea [2]. However, empiri-
cal studies—notably (controlled) experiments—are
mainly used as a tool to support research using stu-
dents as subjects, but got little appreciation as a teach-
ing tool in software engineering in the first place.
That is, students only get in touch with empirical
studies as subjects in an empirical inquiry, and they
have to carry out tasks, e.g., in an experiment as for
instance reported in [7, 8, 18, 20]. Yet, teaching em-
pirical software engineering as a subject requires a
setup in which empirical studies are the main sub-
ject or at least provide a significant contribution to
a course. In this regard, Wohlin [26] proposes three
levels for integrating empirical studies in software
engineering courses: (i) integration in software en-
gineering courses, (ii) as a separate course, and (iii)
as part of a research method course. Wohlin men-
tions that introducing empirical software engineering
will provide more opportunities to conduct empirical
studies in student settings, but that educational and
research objectives need to be carefully balanced. Dil-
lon [4] comes to the same conclusion and considers
a successful observation of a phenomenon as part of
an empirical study not be an end in itself. Students
need time to get familiar with ideas and concepts
associated with the phenomenon under observation.
Finally, Parker [22] considers experiments distinctive
and more participative. Students are likely to remem-
ber lessons associated with experiments.

In this paper, we present an approach that considers
empirical studies major subjects of a course and that
uses such studies as teaching tool. Referring to estab-
lished learning models such as Bloom’s Taxonomy of
Learning [1] and Dale’s Cone of Learning [3], we aim
to include as many active learning parts as possible
in the courses. Still, we use passive learning methods
to transfer knowledge about theoretical basics, such
as methods and their application contexts. Address-
ing the active learning levels, however, is challenging.
In “ordinary” software engineering education, project
courses are used to train software project work. For
empirical studies, it is required that the students carry

out actual research to practice the application of the
empirical instruments. In our previous work [17–19],
we presented different, self-contained classroom ex-
periments and developed a guideline to select the best-
fitting study type for a specific context [6]. In [14], we
introduced a teaming model that helps implementing
empirical studies in larger project courses.

We contribute a generalized concept grounded in
[6,14] that allows for including empirical studies as
course units. We implemented and evaluated our
approach in a course on empirical software engineer-
ing and an advanced course on software engineering
and demonstrate how to implement and scale course-
integrated empirical studies.

3 Course-Integrated Mini-Projects
We present the course-integrated mini-projects ap-
proach in Section 3.1. The presentation includes the
description of the team setups, project and task de-
scriptions, and examples for which we present details
in Section 3.2. Section 3.3 demonstrates two inte-
gration strategies: the first integration strategy is a
self-contained course on empirical software engineer-
ing [14] and the second strategy is a topic-specific
part of an advanced software engineering course.

3.1 Mini-Projects and Project Teams
Figure 1 shows the general organization model for the
mini-project approach. A MiniProject has a Topic, a
Schedule, and optional Reference Literature and
Input Data. It is always carried out using at least one
Method, e.g., an experiment [27], a case study [25],
and a survey [21]. Finally, every mini-project consists
of a Project Team and an Advisory Team, which we
describe in more detail in the following.

Service Team

joint research

shared
research design

1

1..*

Mini Project

Advisory Team Project Team
provide
advice

request
advice1

1..*

I

S

0..*

0..*

1

Student

1

2..*

Teacher

External Advisor

Advisor

1

- Topic [1]
- Schedule [1]
- Method [1..*]
- Reference Literature [*]
- Input Data [*]

Practice Team

Method Team

Result
1..*1

Figure 1: Overall organization model of mini-projects.

Advisory Teams An advisory team bundles all advi-
sors involved in a specific mini-project—usually one
or two persons. An Advisor is either the teacher of
the course or an external advisor, such as an external

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 76

Style Description

Isolated The “normal” way of doing a mini-project is
the isolated way of working. Isolated means
that a project team has a self-contained task
that can be worked on without any interaction
with other teams.

Joint This style is applied if project teams collabo-
ratively work on a joint (research) project. A
complex project is broken down into a num-
ber of smaller projects. Project teams thus
have to be coordinated in terms of task distri-
bution, scheduling, and result synthesis.

Shared This style is applied if project teams competi-
tively work on the same (research) topic. Two
or more teams are assigned the same task;
team-specific methods can be varied and re-
sults can be compared. That is, this style helps
conducting controlled experiments or imple-
menting independently conducted studies.

Table 1: Overview of the different interaction styles
among mini-project teams.

project topic sponsor [14]. Besides offering and pro-
moting project topics, advisors regularly interact with
the project teams for which they handle individual
support requests, and they provide general technical
and methodical support.

Project Teams A project is composed of all students
working on a specific problem. Project teams can
interact with each other. We distinguish the three in-
teraction styles isolated, joint, and shared, which are
explained in Table 1. Furthermore, we distinguish
three types of project teams according to the type
of task they are working on: a Practice Team per-
forms an “active” task, e.g., a development task or a
research task. A Method Team deals with methodologi-
cal expertise, i.e., it develops competencies regarding
specific (scientific) methods and offers “consultancy
services” in terms of applying a specific method “right”
to practice teams. Finally, a Service Team develops
skills in more general topics, such as data analysis or
presentation, and offers respective “services” to other
teams—practice teams and method teams alike.

3.2 Project- and Task Descriptions
Every mini-project is supposed to produce at least
one Result. In this section, we provide a blueprint
for a 1-page project- and task description, which also
illustrates the manifestation of the different attributes
of the class Mini Project (Figure 1).

For every project, a description that includes tasks,
dates, and expected results is necessary. Table 2 pro-
vides a summary and a description of task-description
items that we consider relevant. The work descrip-
tion requires special attention as it comprises the de-
tailed activity list, input material, and the description
of expected results. The expected results are speci-

Item Description

Metadata This section contains all information rele-
vant to a task, e.g., hand-in date.

Title A project needs a telling title and an ID
Context This section briefly describes the context of

the project and provides a short summary
of the basic tasks. Recommendation: the
context section should be treated as an ab-
stract, such that it can be used as a teaser
and a small piece of information, e.g., used
in a course management system.

Work
Description

The detailed work description contains at
least:

1. A detailed task list.

2. A list of input/reference material.

3. A list of deliverables to be shipped.

Note: The level of detail depends on the
actual task, i.e., for an “explorative” task,
the description needs to be more open while
a specific development task requires a more
detailed task description.

Schedule The basic schedule lists all deadlines and
the respectively expected results.

Related
Projects

Our concept allows for collaborative and
competitive work (Figure 1 and Table 1). If
such a collaborative/competitive work style
is implemented, this section provides the in-
formation about the other teams. If method
or service teams provide useful services to
a project, such teams are referred here too.

Literature This section lists selected reference litera-
ture relevant to a project.

Table 2: Structure of a mini-project task description
(recommended minimal elements).

fied right here; alternatively, a separate catalog of re-
sults has to be provided, e.g., including templates and
mandatory/recommended outlines. Relevant types
for project outcomes are, e.g., (research) data1, es-
says or reports, presentations, tutorials, and software.
The second important item of the task description is
the list of related projects. For instance, if a task is a
collaborative task, this list refers to all related projects
that contribute to the overall project goal. Further-
more, this list also refers those method and service
teams that provide useful support, e.g., if the project
is concerned with developing and conducting a survey,
this list can refer to a method team that is focused
on the theoretical aspects of survey research. Finally,
the task description can also be used to develop a
checklist, which is used for the final submission. This
checklist helps students to check if their delivery pack-
age is complete, and it helps teachers validating the
delivery and grade its components. Figure 2 shows

1Recommendation: If students conduct a research task, analyzed
data that is necessary for the project documentation must always
be complemented with the original raw data.

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 77

Figure 2: Example of a mini-project task description.

a practically used example of a task description as
described in Table 2. This task description is taken
from the course given at University of Southern Den-
mark and describes a survey research task, which
was performed collaboratively with two external re-
searchers [9]. This particular project was a collabora-
tive project. Specifically, two teams (No. 15 and 16;
see the related projects part) were assigned one task,
but had to conduct the survey with different target
groups. Each team submitted its own data and report,
but, both teams gave only one joint presentation.

3.3 Course-Integration Strategies
We describe two implementation strategies for the
presented approach using two graduate courses. For
these implementations, we provide a short summary
of the respective courses and their learning goals, and
we provide an overview of the projects implemented
in the respective courses (Table 3). Furthermore, this
section lays the foundation for the approach’s evalua-
tion, which is presented in Section 4.

3.3.1 Implementation as a Self-Contained
Empirical Software Engineering Course

A course on the Scientific Method (SCM, University
of Southern Denmark, SDU, 2016) implemented the
presented approach as a self-contained master-level
course. Figure 3 illustrates the overall organization of
the SCM course showing the introduction parts and
the active learning/project parts.

The goal of the SCM course was to teach empirical
software engineering as main subject by letting the stu-
dents perform small studies themselves [14]. Specifi-

Study Type SCM ASE
Gr Top Gr Top

Theory (tutorial) 3 9 9 7

Experiment 3 1 1 3 2 1
Survey 3 4 2 3 3 1
Systematic Review 3 3 2 3 1 1
Mapping Study 3 1 1 7

Simulation 3 2 2 7

Data Mining Study 7 3 7 3

Table 3: Overview of the study types implemented
including the number of groups for a specific method
(Gr) and the number of topics per study type (Top).

Le
ct

ur
e

E
xe

rc
is

e
M

od
el

S
el

f-
di

re
ct

ed
 le

ar
ni

ng
: w

or
ki

ng
 o

n
th

e
se

le
ct

ed
 to

pi
cs

,
e.

g.
, S

LR
s

or
 s

ur
ve

ys
 (i

nc
l.

pr
es

en
tin

g
an

d
w

ri
tin

g)

Introduction and
Fundamentals

theory experts
help practice

teams…

Presentation and
Scientific Writing

Paper Reviews

Introduction to
Empirical Research

Presentations: Theory and
Tutorial Topics

Status Control and
Guest Lectures

Status Control and
Guest Lectures

Presentations: Secondary Studies

Presentations: Experiments and
Simulations

Presentations: Survey Research

Group Papers’
Peer Review

Evaluation and
Wrap-Up

Figure 3: Overview of the topics and the general orga-
nization of the SCM course.

cally, the major learning goals of the SCM course were
defined as follows:

• After the course, students know the basic terminol-
ogy and the key concepts of the scientific method.

• After the course, students know and understand
the most important empirical research methods.

• After the course, students have shown their ability
to practically apply one research method, conduct
and report on a small research project.

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 78

In total, 30 research topics were presented to the stu-
dents. According to their preferences, students could
apply for up to three topics, which built the founda-
tion for the final team setup. Finally, 20 projects were
started with two to three students each. Besides the
theoretical topics, five research methods were covered
by the projects (Table 3).

The SCM course implements the concept from Fig-
ure 1 as follows: method teams became theory teams
for those students that did not want to carry out
a study, but wanted to learn more details about a
specific method or technique, e.g., the systematic re-
view method [13]. Service teams became cross-cutting
teams that build up a specific expertise and consulted
theory and practice teams. The 20 teams were con-
nected with each other, e.g., a theory team supported
one or many practice teams, and both were supported
by cross-cutting teams. The teacher supervised the
individual teams as well as the groups of collaborating
teams. The teams were formed right in the first ses-
sion of the course and, thus, the projects became the
main subjects to build the learning experience upon.
3.3.2 Integration in an Advanced Software

Engineering Course
A course on Advanced Software Engineering (ASE, Uni-
versity of Innsbruck, UI, 2017) implemented the pre-
sented approach as part of a master-level course on
software engineering in which empirical studies com-
plemented the (technical) software engineering topics.
These technical software engineering topics were or-
ganized around the concept of models in software
engineering and covered software process models (in-
cluding agile process models), modeling languages
including UML and DSLs, model transformations as
well as predictive models, e.g., for defect prediction.
Figure 4 illustrates the overall organization of the ASE
course showing the introduction parts and the active
project parts.

The overall goal of this course was to teach students
advanced topics in software engineering and to let stu-
dents make the experience of the value that empirical
studies have to support software engineering activi-
ties. Specifically, the major learning goals of the ASE
course were defined as follows:

• After the course, students know and understand
different advanced software engineering concepts.

• After the course, students know the basic empir-
ical research methods and know how to utilize
empirical studies in the different software engi-
neering activities.

• After the course, students have shown their abil-
ity to practically apply one research method to a
specific software engineering activity, conduct and
report on a small research project.

In total, eight topics have been proposed to the stu-
dents and students could apply for the topics. Finally,

Te
ch

ni
ca

l S
of

tw
ar

e
E

ng
in

ee
ri

ng

Le
ct

ur
es

S
el

f-
di

re
ct

ed
 le

ar
ni

ng
: w

or
ki

ng
 o

n
th

e
se

le
ct

ed

to
pi

cs
, e

.g
.,

S
LR

s
or

 s
ur

ve
ys

 (i
nc

l.
pr

es
en

tin
g

an
d

w
ri

tin
g)

Overview Software
Engineering

Empirical Methods in
Software Engineering

Software Process
Models

Overview: Empirical Methods in Software
Engineering (Experiments, Surveys, Data

Mining, Secondary Studies)

Presentation of Project Topics

Complementing
Material/Activities:

Topic-specific
empirical studies

and tutorials

Topic Selection and Team Building

Project Evaluation

Modeling Languages

Model
Transformations

Predictive Models

Initial Project Feedback

Final Project Presentations

Final Project Feedback

Weekly Standup (Project Progress)

Figure 4: Overview of the topics and the general orga-
nization of the ASE course.

13 projects were started with two to three students
each. The projects covered four research methods and
six topics (Table 3).

The concept from Figure 1 was implemented as fol-
lows: the 13 project teams were formed as practice
teams. Since the empirical studies were designed to
complement selected topics of the ASE course, no ex-
plicit method teams or service teams have been formed.
That is, all practice teams worked on specific topics
and developed the technical skills and parts of the
required methodological skills themselves. Additional
methodological skills were delivered to the teams by
the teachers and guest lectures, who also acted as
advisors. Teams were formed when the mini-projects
were assigned to the students.

4 Evaluation

In this section, we present the research design and
evaluation strategy in Section 4.1, the results and a
discussion in Section 4.2, and threats to validity in
Section 4.3.

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 79

Research Questions

RQ 1 Do course-integrated empirical studies (mini-
projects) help students improving their work ap-
proach? We aim to study if course-integrated
empirical studies (mini-projects) help students
better understand the value of structured scien-
tific work approaches. For this, we investigated
the following detailed questions:

RQ 1.1 Do mini-projects support a better/more effective
learning?

RQ 1.2 Do mini-projects support a better understanding
of concepts?

RQ 1.3 What are the perceived learnings of mini-
projects?

RQ 2 Do course-integrated mini-projects help students
better understand the role of empirical studies?
We aim to study the general attitude towards
empirical studies, i.e., do students change their
attitude once they actively conducted an em-
pirical study. For this, we investigated two
detailed questions:

RQ 2.1 Do mini-projects change the attitude towards
empirical studies?

RQ 2.2 Do course-integrated empirical studies studies
help understanding challenges (revealing mis-
conceptions)?

RQ 3 What are the perceived pros and cons of the
mini-project approach? We aim to study dis-
/advantages perceived by students that partici-
pated in mini-projects.

Table 4: Overview of the research questions studied.

4.1 Research Design and Evaluation
Strategy

We evaluated our approach in two master-level
courses at two universities and by surveying the par-
ticipating students. In this section, we present our
research questions, outline the survey instrument, and
describe the data collection strategies.

Research Questions To evaluate the proposed mini-
project approach, we aim at answering the research
questions listed in Table 4. Our three top-level re-
search questions address the (general) learning ex-
perience, the usefulness of the approach in terms of
improving the understanding of the role of empirical
studies, and the perception concerning the pros and
cons of the approach presented.

Data Collection To collect the data, we (initially)
developed two online questionnaires for the SCM
course based on Google Forms [14]. The first question-
naire was used in a mid-term evaluation; the second
(extended) questionnaire was used for the final eval-
uation. While preparing the ASE course, we revised
both questionnaires and conducted the first data col-
lection before we started the mini-projects in the ASE

course, and the second data collection, again, in the
course’s final evaluation when the mini-projects have
been finished. All four questionnaires including a
summary are available online2.

Our questionnaire design allows for a 2-staged data
collection that helps observing changing student per-
ceptions and evaluating the courses over time. The
questionnaires share a number of questions to allow
for comparing courses, the implementations of our
approach, and to qualitatively analyzing the student
feedback. As a learning from the SCM data collection,
the two ASE questionnaires put more emphasis on the
single phases of the scientific workflow, e.g., by specif-
ically asking for challenges and difficulties regarding
the design of research instruments and conducting
the data collection. Different to the questionnaires
used in the SCM course, is the ASE questionnaires,
students were asked to provide nicknames (to ensure
anonymity), such that tracking individual students
was possible to evaluate specific ratings and to evalu-
ate such ratings over time.

Analysis Procedures All four questionnaires pro-
duce quantitative and qualitative data. For the quanti-
tative analysis, we primarily use descriptive statistics
to analyze the four measurements individually, over
time per course, and for analyzing both courses. Fur-
thermore, due to the questionnaire’s evolution, for
the ASE course we could conduct additional inferen-
tial statistical analyses, e.g., hypothesis testing and
correlation analysis.

To qualitatively analyze the data, we used the free-
text answers provided by the students. For the ASE
course, an analysis of general learning and learning
outcomes was performed using the questions for the
expected learning outcomes, and the questions about
the learning regarding the mini-project topics and
the way of conducting empirical research (Appendix;
variables MP6–MP8). An overall analysis of the course
as such (in both courses) was performed using the
questions for the courses’ appropriateness, the lectures
and exercises, and the perceived relation to practice
(Appendix; variables GC2–GC4; interpreted as school
grades). The coding of the feedback into categories
was jointly performed by the two authors.

Validity Procedures To mitigate threats and to en-
sure the validity of the instrument, we reused a ques-
tionnaire design that was already applied to other
courses and that received an external quality assur-
ance [15,18]. The original questionnaire design was
extended by specific questions to evaluate the suitabil-
ity of the mini-project approach.

Demographics In total, 68 students were enrolled
in the SCM course of which 39 students participated

2Appendix: https://kuhrmann.files.wordpress.com/2018/
11/appendix-draft.pdf

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 80

Category SCM, n=38 ASE, n=29
Mean SD Mean SD

Course complexity 2.87 0.66 2.62 0.55
Course speed 3.05 0.76 2.83 0.38
Course volume 2.58 0.91 2.10 0.76

Relation to Practice 2.11 0.99 2.34 1.03

Table 5: Results of the final course evaluation.

in the initial evaluation, and 38 in the final evaluation.
In the ASE course, 33 students were enrolled, and 29
students participated in both evaluations. From the
29 ASE-students, 27 provided a nickname that was
used in the subject-based analyses. Table 5 gives an
overview of the general course evaluation. Students
of both courses perceived the course complexity, speed
and volume as moderate and see a good relation of
the course to practice.

4.2 Results and Discussion
This section presents the findings of the evaluation of
our proposed course-integrated mini-project approach.
The following sections present the findings according
to the research questions described in Table 4.
4.2.1 RQ 1: Improved Work Approach
With RQ1, we aim to study if course-integrated mini-
projects help students understand the value of a struc-
tured scientific work approach. To better structure
the findings, we defined three sub-questions (Table 4),
which we discuss in the following.

RQ 1.1: Support for a better learning This sub-
question is addressed by the answers to the state-
ment: “The mini-projects improve the learning experi-
ence”, which was quantitatively analyzed.

17

9

19

8

1

6

1

5 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SCM

ASE

Fully Agree Somewhat Agree Indifferent Somewhat Disagree Fully Disagree

Figure 5: Results for the learning experience from
final questionnaires (SCM: n=38, ASE: n=29).

Figure 5 shows the results (taken from the final
evaluation) for both courses and shows that 95% of
the SCM-students consider the mini-project approach
contributing to an improved perceived learning expe-
rience (3% each rate the teaching format neutral or
less effective than other teaching formats). For the
ASE course, 59% consider the mini-project approach
more effective, and 21% each rate it neutral or less
effective. In summary, mini-projects contribute to an
improved perceived learning experience, especially in
the SCM setting, but also in ASE, where mini-projects
were only one part of the course.

RQ 1.2: Support for a better understanding of con-
cepts A key to provide value to the students is to
make software engineering concepts better/easier to
understand. For this, students were asked to rate the
statement: “The mini-projects helped me understanding
concepts better”, i.e., whether or not the understanding
of concepts of interest has been improved. In this con-
text, an investigation of the role of empirical studies is
provided in Sect. 4.2.2. Again, the majority of the stu-
dents (92% for the SCM course and 69% for the ASE
course; Figure 6) considers the mini-project approach
advantageous for gaining a better understanding of
software engineering concepts.

13

6

22

14

2

5

1

3 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SCM

ASE

Fully Agree Somewhat Agree Indifferent Somewhat Disagree Fully Disagree

Figure 6: Results for the improved understanding
from final questionnaires (SCM: n=38, ASE: n=29).

RQ 1.3: Perceived Learning The question for the
perceived learning is answered using five statements
(Appendix, MP2.4–MP2.8). In particular, we were inter-
ested to learn about the perceived impact to the later
career (“The practiced scientific work approach will help
me in my later career.”) and shareable expertise built
in the course (“I built a specific exercise that I could
share with other teams.”), and a retrospective rating
of the group work in the mini-projects (looking back:
“contributed to my learning expericence”, “team work
[..] was good” and “collaboration [..] was good”).

Figure 7 shows the aggregated results for the per-
ceived learnings. Approximately 63% of the SCM
students and 59% of the ASE students think that the
courses provide take-aways that will have a positive
impact on their later careers. Concerning the share-
able expertise, 53% of the SCM students state that
they have obtained knowledge and expertise that they
can share with others; 29% are indifferent. In the ASE
course, even though the course has more “practical”
elements, only 41% of the students think that they
built a shareable expertise, but 48% are indifferent.

Concerning the general perceived learning experi-
ence and the teamwork within the project team, the
vast majority of the students rate the courses as good
and very good. However, the cross-team collaboration
shows a different picture—notably in the SCM course
in which interdisciplinary work was enforced by the
course design. In the SCM course, 29% of the students
considered the cross-team collaboration good to very
good, but 55% rated the cross-team collaboration bad
to very bad. Analyzing this phenomenon, we found
the necessity for the different teams to interact with
each other to obtain required knowledge from other

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 81

13

10

16

13

3

8

4

2

9

7

21

11

13

10

8

8

16

10

15

10

3

4

7

2

6

7

11

14

9

6

1

2

2

2

14

2

6

2

2

3

2

2

7

4

1

1

3

3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SCM

ASE

SCM

ASE

SCM

ASE

SCM

ASE

SCM

ASE

Le
ar

ni
ng

ex
pe

rie
nc

e
Te

am
w

or
k

C
ro

ss
-te

am
co

lla
bo

ra
tio

n
Ex

pe
rti

se
 to

 s
ha

re
H

el
p

in
 la

te
r

ca
re

er

Fully Agree Somewhat Agree Indifferent Somewhat Disagree Fully Disagree

Figure 7: Results for the perceived leanings from final
questionnaires (SCM: n=38, ASE: n=29).

teams by also trying to keep their own schedule the
most disappointing aspect. On the other hand, we
found an “understanding” for this kind of work, which
reflects reality in interdisciplinary collaboration and,
thus, students eventually considered this a significant
learning. Considering the ASE course, we wanted to
learn whether a similar behavior can be observed. As
Figure 7 shows, cross-team collaboration is still con-
sidered a problem, even though the heterogeneity of
the project teams and thus the need to collaborate
was reduced.

An in-depth analysis of the perceived learnings of
mini-projects was performed by qualitatively coding
the responses of the free-form text questions (GC1:
“What was your major take-home asset [..]?”, MP7:
“What did you learn about the topic of your research
project?” and MP8: “What did you learn about empir-
ical research?”). For GC1, 26 students from the SCM
course provided feedback. In the ASE course, 27 stu-
dents provided feedback for MP7 and MP8. In total,
we extracted 38 statements from the SCM course and
60 statements from the ASE course (for both ques-
tions). The students’ statements were categorized
based on keywords, and the threshold for building a
category was set to three references.

Table 6 provides the condensed qualitative feed-
back on the perceived learnings in eight categories.
Summarized, topic specific learnings (e.g., application
of DSLs or comments in programming languages) as
well as learnings related to the application of empiri-
cal methods (e.g., formulation of research questions
or application of specific empirical methods like sur-
veys) were frequently mentioned. Also, data manage-
ment (i.e., data collection, preparation and analysis

Category Total SCM ASE

Topic specific (i.e., mini-project topics) 16 2 14
Empirical methods (e.g. experiments) 16 6 10
Reporting findings (from studies) 13 13 0
Importance, meaning (emp. research) 12 2 10
Data management (in studies) 11 1 10
Effort (to plan/conduct a study) 10 0 10

Technical skills 3 2 1
Soft skills 17 12 5

Table 6: Qualitative feedback for the perceived learn-
ings of mini-projects from final questionnaires.

of data) and reporting results of empirical studies are
highlighted. Students experienced that conducting an
empirical study causes effort and might be a complex
endeavor (“It is hard to get results, which have a strong
meaning”). On the other hand, students also built an
understanding of the importance and the meaning of
empirical research in software engineering (“The topic
exists and is very useful if done correctly”). Finally, stu-
dents hardly report learnings regarding technical skills
(e.g., using LATEX or R). However, manifold learnings
about soft skills (e.g., reviewing techniques) are re-
ported, notably concerning teamwork and cross-team
collaboration (see also Figure 7).
4.2.2 RQ 2: Improved Understanding
This research question aims at investigating if students
built an understanding of the role of empirical stud-
ies. Specifically, if students consider empirical studies
a valuable instrument to complement the technical
software engineering activities in a beneficial way.

RQ 2.1: Changed Attitude towards Empirical Stud-
ies To learn about the students’ understanding of
the value of empirical studies, we asked the students
whether their view on empirical studies has changed
once they actively conducted an empirical study them-
selves (“I like the mini-project part”).

9

5

23

10

3

3

1

9

2

2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SCM

ASE

Fully Agree Somewhat Agree Indifferent Somewhat Disagree Fully Disagree

Figure 8: Results for the changed view on science
from final questionnaires (SCM: n=38, ASE: n=29).

Figure 8 shows that 84% of the SCM students
changed their view on science and the value of em-
pirical studies after conducting an empirical study
themselves. The ASE course provides a different pic-
ture. Still 52% of the students changed their view, but
almost 38% did not change their view on science and
empirical studies.

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 82

RQ 2.2: Challenges of Empirical Studies Besides
the general perception of science and empirical stud-
ies, we are also interested in specific challenges. For
this, we revised the questionnaire (see Appendix) and
added questions that explicitly address the scientific
work process.

Activity Results p-value

Definition of research questions V = 80 0.5257
Working with scientific literature V = 55.5 0.4927
Design of research instruments V = 68 0.3254
Implementation of instrument V = 43 0.7808
Data collection V = 135 0.0277
Performing data analysis V = 107 0.9529
Writing the report V = 106 0.3698

Table 7: Results of the paired Wilcoxon signed-rank
test for the ASE course (n=27).

To study the perceived challenges students face
when implementing empirical studies, we asked the
students to rate the different parts of the scientific
work process (Appendix, variables MP5.1–MP5.7; see
also Table 7). Furthermore, 27 students enrolled in
the ASE course provided a nickname, which we used
to investigate challenges over time by evaluating the
initial and the final questionnaires. We performed
a Wilcoxon signed-rank test to compare if there are
significant differences between the initial perception
of the scientific work process and the final one after
the study has been performed. Table 7 shows the test
results for the various parts of the work process.

The results show that only for the activity data col-
lection there is a significant difference (p < 0.05).
This indicates the perceived difficulties and challenges
regarding the data collection changed for the partici-
pating students. A Spearman rank correlation coeffi-
cient for the initial and final feedback on the level of
challenges regarding the data collection is low (ρ =
0.2775), which further indicates that there is only a
weak positive correlation between between the data
collection challenges perceived initially and the chal-
lenges perceived at the end. Figure 9 shows the uncor-
related perceived challenges regarding the different
activities in the scientific work process (collected in
the ASE course; initial and final questionnaire).

We conclude that the data collection is an activity
in empirical studies for which challenges can be easily
over- and underestimated. When teaching empirical
software engineering it is therefore important to put
special emphasis on the important role of data collec-
tion and its challenges to prevent students from over-
or underestimating the required effort.
4.2.3 RQ 3: Perceived Dis-/Advantages
The third research question aims to investigate the
perceived advantages (“pros”) and disadvantages
(“cons”) of the mini-project approach. For this, we
qualitatively analyzed the students’ feedback by cod-

2

2

3

2

2

2

4

2

6

1

1

3

3

6

8

7

4

4

7

5

3

3

6

4

6

3

6

6

6

8

9

6

6

9

13

13

11

10

11

8

7

12

11

11

10

10

12

10

7

8

5

8

8

11

12

1

2

1

4

1

1

1

1

3

3

2

1

2

3

2

3

1

3

1

2

3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Initial

Final

Initial

Final

Initial

Final

Initial

Final

Initial

Final

Initial

Final

Initial

Final

D
ef

in
iti

on
 o

f
R

es
ea

rc
h

Q
ue

st
io

ns

W
or

ki
ng

 w
ith

Sc
ie

nt
ifi

c
Li

te
ra

tu
re

D
es

ig
n

of
R

es
ea

rc
h

In
st

ru
m

en
ts

Im
pl

em
en

ta
tio

n
In

st
ru

m
en

t
D

at
a

Co
lle

ct
io

n
Pe

rfo
rm

in
g

Da
ta

An
al

ys
is

W
rit

in
g

th
e

R
ep

or
t

St raightforward Fairly easy Indifferent Somewhat diff icult Very difficult Not applicable

Figure 9: Overview of the perceived challenges on the
different scientific work activities in the ASE initial
and final questionnaire (n=29).

ing the responses of the free-form text questions (GC2:
“Up to 5 things that were good” and GC3: “Up to 5
things that were bad”).

In the SCM course data for GC2 and GC3 was col-
lected in the initial and final questionnaire. For the
ASE course, data was collected in the final evalua-
tion only. Hence, for the data analysis presented in
the paper at hand, we only consider the data col-
lected in both final evaluations. In the SCM course, 29
students provided comments in the final evaluation.
Respectively, 21 ASE students provided feedback on
perceived dis-/advantages. In total, we extracted 72
pro- and 42 con-statements from the SCM feedback,
and we extracted 54 pro- and 23 con-statements from
the ASE feedback. Both feedback sets were catego-
rized and analyzed based on keywords (qualitative
coding), whereas the threshold for a category was set
to three mentions. Table 8 provides the aggregated
qualitative feedback on the perceived pros and cons of
the mini-project approach in nine categories grouped
by SCM, ASE, and in total.

General Perception In summary, the mini-project
approach was seen very positive. For both courses
SCM and ASE, the students identified considerably
more pros than cons on the mini-projects. In both set-
tings, i.e., SCM (a self-contained empirical software
engineering course) and ASE (a part of a software

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 83

Category SCM ASE Total
- , - , - ,

Structure, organisation 18 14 9 11 27 25
Knowledge transfer 18 3 3 2 21 5
Mini-projects 14 3 6 2 20 5
Research, tech. skills 6 2 8 1 14 3
Topics 6 4 7 0 13 4
Relevance 3 3 9 0 12 3
Guest lectures 5 7 6 0 11 7
Group work 2 1 6 1 8 2
Effort 0 5 0 6 0 11

Table 8: Qualitative feedback on the perceived pros
and cons of mini-projects from final questionnaires.

engineering course), the obtained research-related
and technical skills were perceived very positive. The
topics covered in the courses were positively evalu-
ated as well; especially in the ASE course in which
mini-projects were integrated as a part of a software
engineering course and focused on current (hot) top-
ics in software engineering. Feedback and knowledge
transfer were especially highlighted and considered
positive in the SCM course with its different types of
collaborating teams (dedicated practice, method and
service teams), in-depth introductions to empirical
methods, and introductions and exercises in scientific
reading and writing. Also, group work was generally
considered positive, yet, the ASE course with its more
uniform teams was perceived more advantageous. As
already discussed in Sect. 4.2.2, the setting from the
SCM course suffers from the teams’ heterogeneity and
the necessity to establish a cross-team collaboration,
which caused more effort for the project teams.

Guest Lectures In both courses, guest lectures were
given by external researchers. Considering the out-
comes from Table 8, guest lectures in the ASE course
were considered positive, whereas the guest lectures
in the SCM course received a more indifferent rating
(with a slight tendency towards a negative evaluation).
We argue that this perception is related to the selec-
tion of the speakers rather than the course setting, yet,
this remains subject to further investigation.

Course Organization From the organizational per-
spective, the courses were perceived indifferent and a
relatively high number of positive and negative com-
ments was provided. On the positive side, students
highlighted the organization and structure in general
(“Organization was good”), and, in particular, also
the course assessment mode (“Fair grading system”)
and the sequence of activities (“The mini-projects were
structured well—good planning of when to do the work,
when to make a presentation and when to turn in the
paper”). On the negative side, the overall flow was
mentioned (“Things started to slow down way too much
after the first 5 lectures”) as well as the speed of the lec-

ture (“A little slow lectures”) and the general schedul-
ing and coordination of the lecture with other obli-
gations (“During examination time, time overlap with
studying”).

Effort Finally, the effort caused by the courses was
perceived negative in both settings. Feedback for the
SCM course says “The volume does not fit well a 5 ECTS
point course” and, respectively, for the ASE course
“Sometimes a single task was too big”. This feedback re-
flects a side-effect of project work that typically causes
more effort than closed tasks—or even “listen-only”
classes. However, such comments motivate a revision
of the projects, e.g., splitting tasks into smaller units
to better support continuous work and to reduce the
perceived effort in a short time frame, but still keep
the learning effect of performing empirical research
as we received it also from the SCM comments “in my
opinion learning the scientific method without working
with the methods it’s only knowing about the methods,
not learning them.”

4.3 Threats to Validity
We discuss issues, which may have threatened the
construct, internal and external validity as well as
measures to mitigate them.

Construct Validity The construct validity might be
threatened by the two different implementations of
the approach presented and the instrument used for
its evaluation. Although the two courses differed with
respect to the applied integration strategy for mini-
projects, for both courses, we used the same yet tai-
lored questionnaire and combined the responses. To
increase construct validity, we developed the ques-
tionnaire from an external source [15], which both
authors reviewed and evolved. Furthermore, we col-
lected and combined quantitative and qualitative data
to answer and discuss the different research questions.

Due to the overall setup, the questionnaires differed
between the courses. Hence, some analyses like the
individual-based investigation of challenges over time
(RQ 2.2) were possible in the ASE course only. Fur-
thermore, analyses regarding perceived learnings of
the students had to be performed using different ques-
tions (SCM: GC1, ASE: MP7 and MP8; see Appendix),
which was handled using a multi-staged coding pro-
cess that resulted in common categories.

Internal Validity The internal validity might be
threatened by the rather low number of participants
and the participants’ self-reporting, which both might
affect the relationship between course-integrated mini-
projects and the investigated effects on learning and
understanding of concepts and the role of empirical
studies in software engineering. To mitigate these
threats, we studied the integration of mini-projects

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 84

in two settings with an acceptable number of partici-
pants (SCM: 39 and ASE: 29). We also introduced the
questionnaire to the students to minimize the risk of
misinterpretation.

To triangulate the results of quantitative analysis
and to investigate the relationship between course-
integrated mini-projects and their effects holistically,
we also applied qualitative analysis to analyze the
responses of the participating students.

External Validity The external validity might be
threatened by the issue of the rather low number of
settings in which the course was performed and eval-
uated. However, we implemented and evaluated the
course for each of the two course integration strategies
proposed in Section 3.3, i.e., self-contained empiri-
cal software engineering course and integration in
software engineering course. Two researchers from
two different institutions were involved in preparing,
conducting and evaluating the courses. Furthermore,
we combined quantitative and qualitative data to get
a broader view on teaching empirical software engi-
neering with course-integrated mini-projects.

The participants’ self-reporting might also affect the
generalizability of the results. To mitigate this threat,
we introduced the questionnaire to the students to
minimize the risk of misinterpretation. Since the pa-
per at hand is an initial study, we consider further
in-depth analyses, e.g., of course artifacts like final
reports, and replications of the courses as well as the
transfer of the approach presented and its evaluation
as future work.

5 Conclusion
In this paper we presented and evaluated an approach
to teach empirical software engineering with course-
integrated mini-projects. In such mini-projects stu-
dents conduct small empirical studies in collaborat-
ing teams within a software engineering course or
a research methods course. We illustrated the ap-
proach by presenting two integration strategies: first
a self-contained course on empirical software engi-
neering given at the University of Southern Denmark
and second as part of an advanced software engi-
neering course given at the University of Innsbruck.
Both implementations were complemented by a study
that showed a positive learning experience and an
improved understanding of (empirical) software engi-
neering concepts.

More than half of the participating students state
as a perceived learning of the course that empirical
studies are helpful for their later careers (systematic
and evidence-driven work). In addition, a statistical
analysis revealed that especially the data collection
activities are underestimated by the students, which
allows for future improvements of university courses.
We consider this aspect critical not only for empirical
software engineering in particular, but also due to the

increased importance of Data Science, Machine Learn-
ing and Artificial Intelligence courses or even programs
in general. In all these setting, effective and efficient
data collection and preparation for further analysis
is essential. Hence, we encourage other teachers to
put special emphasis on all data-related activities, not
only the data analysis.

In summary, students provided an overall positive
qualitative feedback on the course-integrated mini-
projects as well as on the skills achieved and their
relevance. This motivates to further explore and dis-
seminate the presented approach. However, on the
downside, the students pointed out the overall flow of
the courses and the perceived high effort to perform
mini-projects, which requires a further refinement of
the courses, e.g., by splitting it into smaller tasks of
uniform granularity. In future, we will therefore revise
our approach accordingly and further disseminate it.
We also plan to perform further in-depth analyses of
course artifacts, e.g., the students’ final reports, as
well as replications of the courses.

Finally, this paper presents an approach that has
been implemented twice and it also provides initial
data. To get further insights and to improve the data
available, we cordially invite other teachers to adapt
and integrate our approach into their courses and to
share their experiences.

References
[1] L. W. Anderson and D. R. Krathwohl, editors. A

Taxonomy for Learning, Teaching, and Assessing:
A Revision of Bloom’s Taxonomy of Educational
Objectives, Abridged Edition. Pearson, 1st edition,
2000.

[2] V. Basili, R. Selby, and D. Hutchens. Experi-
mentation in software engineering. Trans. on
Software Engineering, 12(7):733–743, 1986.

[3] E. Dale. Audiovisual methods in teaching. Dryden
Press, 3 edition, 1969.

[4] J. Dillon. A Review of the Research on Practical
Work in School Science. Technical report, King’s
College, 2008.

[5] F. Fagerholm, A. S. Guinea, H. Mäenpää, and
J. Münch. Building blocks for continuous experi-
mentation. In Proceedings of the 1st International
Workshop on Rapid Continuous Software Engi-
neering, RCoSE 2014, pages 26–35, New York,
NY, USA, 2014. ACM.

[6] F. Fagerholm, M. Kuhrmann, and J. Münch.
Guidelines for using empirical studies in soft-
ware engineering education. PeerJ Computer
Science, 3(e131), September 2017.

[7] D. Fucci and B. Turhan. A replicated experiment
on the effectiveness of test-first development. In

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 85

International Symposium on Empirical Software
Engineering and Measurement, pages 103–112.
IEEE, Oct 2013.

[8] D. Fucci, B. Turhan, and M. Oivo. Impact of pro-
cess conformance on the effects of test-driven
development. In International Symposium on Em-
pirical Software Engineering and Measurement,
pages 10:1–10:10. ACM, 2014.

[9] V. Garousi, M. Felderer, M. Kuhrmann, and
K. Herkiloğlu. What industry wants from
academia in software testing?: Hearing prac-
titioners’ opinions. In Proceedings of the 21st In-
ternational Conference on Evaluation and Assess-
ment in Software Engineering, EASE’17, pages
65–69, New York, NY, USA, 2017. ACM.

[10] V. Garousi, M. Felderer, and M. V. Mäntylä. The
need for multivocal literature reviews in soft-
ware engineering: complementing systematic
literature reviews with grey literature. In Pro-
ceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineer-
ing, page 26. ACM, 2016.

[11] V. Garousi, M. Felderer, and M. V. Mäntylä.
Guidelines for including grey literature and con-
ducting multivocal literature reviews in software
engineering. Information and Software Technol-
ogy, 2018.

[12] M. Kasunic. Designing an effective survey. Tech-
nical report, Carnegie Mellon University Pitts-
burgh Software Engineering Institute, 2005.

[13] B. A. Kitchenham, D. Budgen, and P. Brereton.
Evidence-Based Software Engineering and System-
atic Reviews. CRC Press, 2015.

[14] M. Kuhrmann. Teaching empirical software en-
gineering using expert teams. In SEUH, pages
20–31, 2017.

[15] M. Kuhrmann, D. M. Fernández, and J. Münch.
Teaching software process modeling. In Interna-
tional Conference on Software Engineering, pages
1138–1147, 2013.

[16] M. Kuhrmann, D. Mendez Fernández, and
M. Daneva. On the pragmatic design of lit-
erature studies in software engineering: an
experience-based guideline. Empirical Software
Engineering, 22(6):2852–2891, Dec 2017.

[17] M. Kuhrmann and J. Münch. Distributed soft-
ware development with one hand tied behind
the back: A course unit to experience the role
of communication in gsd. In 1st Workshop on
Global Software Engineering Education (in con-
junction with ICGSE’2016). IEEE, 2016.

[18] M. Kuhrmann and J. Münch. When teams go
crazy: An environment to experience group dy-
namics in software project management courses.
In International Conference on Software Engineer-
ing, ICSE, pages 412–421. ACM, May 2016.

[19] M. Kuhrmann and J. Münch. Enhancing soft-
ware engineering education through experimen-
tation: An experience report. In 2018 IEEE Inter-
national Conference on Engineering, Technology
and Innovation (ICE/ITMC), pages 1–9, June
2018.

[20] K. Labunets, A. Janes, M. Felderer, and F. Mas-
sacci. Teaching predictive modeling to junior
software engineers—seminar format and its eval-
uation: poster. In Proceedings of the 39th In-
ternational Conference on Software Engineering
Companion, pages 339–340. IEEE Press, 2017.

[21] J. Linåker, S. M. Sulaman, R. M. de Mello, and
M. Höst. Guidelines for conducting surveys in
software engineering. Technical report, Lund
University, January 2015.

[22] J. Parker. Using laboratory experiments to teach
introductory economics. Working paper, Reed Col-
lege, http://academic.reed.edu/economics/
parker/ExpBook95.pdf, accessed 2014-10-23.

[23] K. Petersen, R. Feldt, S. Mujtaba, and M. Matt-
son. Systematic mapping studies in software
engineering. In International Conference on Eval-
uation and Assessment in Software Engineering,
pages 68–77. ACM, 2008.

[24] K. Petersen, S. Vakkalanka, and L. Kuzniarz.
Guidelines for conducting systematic mapping
studies in software engineering: An update. Inf.
Softw. Technol., 64:1–18, August 2015.

[25] P. Runeson, M. Höst, A. Rainer, and B. Reg-
nell. Case Study Research in Software Engineer-
ing: Guidelines and Examples. John Wiley &
Sons, 2012.

[26] C. Wohlin. Empirical software engineering:
Teaching methods and conducting studies. In
Proceedings of the International Workshop on Em-
pirical Software Engineering Issues: Critical As-
sessment and Future Directions, volume 4336 of
LNCS, pages 135–142. Springer, 2007.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
software engineering. Springer Science & Busi-
ness Media, 2012.

[28] H. Zhang, M. A. Babar, and P. Tell. Identifying
relevant studies in software engineering. Infor-
mation and Software Technology, 53(6):625–637,
2011.

Using Mini-Projects to Teach Empirical Software Engineering
Michael Felderer und Marco Kuhrmann, Uni Insbruck & TU Clausthal

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 86

