
A Syllabus for Usability Engineering
in Multi-Project Courses

Jan Ole Johanssen, Dominic Henze, and Bernd Bruegge

Technical University of Munich, Munich, Germany

jan.johanssen@tum.de, henzed@in.tum.de, bruegge@in.tum.de

Abstract
Usability engineering is an important activity in to-
day’s application development, which raises the need
to focus on its teaching efforts. However, in contrast
to theoretical concepts, learning usability engineering
is most successful in a hands-on environment. Fur-
thermore, a challenge exists in efficiently applying
usability assessment techniques to carry out usability
engineering over time. We developed the UE4MP syl-
labus, a four meeting-based teaching approach for ag-
ile multi-project courses using cross-functional teams.
The syllabus enables students to gain usability engi-
neering knowledge and experience through hands-on
learning and to make use of a platform for usability
engineering. The overall goal is to relate usability
concepts closely to applications that are developed
by the students themselves. We applied the UE4MP
syllabus over the course of one semester and report
on our observations and challenges.

1 Introduction
With the availability of software for a great range of
platforms, reaching from desktop computers to mobile
devices, usability engineering gained high importance.

Typically, software engineering classes focus only
on teaching development practices and engineering
theory and miss out on the usability of an application,
which results in a situation in which developers design
user interfaces [26]. Nevertheless, students usually
have a general understanding of usability engineering
(UE) that raises from different sources: (a) common
knowledge, intention, or personal interest in the topic,
or (b) lectures, that either are focused on teaching
usability concepts to the full extend or discuss usabil-
ity engineering as a subtopic [17]. In any case, the
students usually lack a real-world scenario in which
they can apply new knowledge.

Problem 1: Students are barely able to apply us-
ability engineering in real-world applications.

In addition, many concepts require a well-defined
environment to be applied, which is not easy to pro-
vide. For example, the Thinking Aloud protocol by
Nielsen [18] might require a time-consuming setup;

this does not scale and is not easy to apply in the given
time frame of a semester, even when the students
know how to do it. Furthermore, it requires more
steps beforehand, such as creating an understanding
of the feature under test, how it can be measured, and
delivering the feature to the end user.

Problem 2: Usability engineering concepts cannot
easily be applied by students due to high setup efforts.

To approach both problems, our hypothesis is that
students require a well-aligned teaching concept and
tool support to enhance the effectiveness of teach-
ing usability engineering. Furthermore, we argue
that such a teaching concept needs to be set within a
project course that provides a hands-on environment
to apply usability engineering concepts over a con-
siderably longer timeframe in a practical manner as
already suggested by Wohlin and Regnell [29].

We describe a teaching syllabus and present an ex-
perience report, in which we show how the teaching
concept is interweaved with the usage of a usability
engineering platform. We build upon the assumption
that the combination of theoretical concepts and prac-
tical elements helps to make the usability engineering
more tangible for students [18].

This paper makes the following contributions:
• Description of a cross-functional team for usability

engineering that allows to transfer knowledge into
project teams, which reduces the need do this with
every individual team member.

• A teaching syllabus that can be applied in a multi-
project course to promote the hands-on applica-
tion of theoretical usability engineering concepts.
The syllabus incorporates the use of a usability
engineering platform.

• Results from the application of the syllabus over
the course of a semester, which allows to derive
useful insights for further teaching efforts.

The presented work and its contributions are moti-
vated by the idea of encouraging interaction and col-
laboration when teaching usability engineering as sug-
gested by [6]. Furthermore, we foster transparency
by using collaborative tools and interactive teaching
units that have a high dependency on applications
that are developed by the students themselves.

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 133



This paper is structured as follows. Section 2
presents related work in the context of teaching us-
ability engineering. Section 3 provides the descrip-
tion of a multi-project capstone course. This course
forms the environment for a syllabus consisting of four
meetings that are described in Section 4. Section 5
reports on an experience report which we discuss in
Section 6 through highlighting observations and chal-
lenges. Section 7 concludes the paper.

2 Related Work
We follow Nielsen’s advice on teaching usability en-
gineering by ”bas[ing] the course firmly in the labo-
ratory” [18] and thus teach in applied, project-based
courses to prepare students for their later careers
[9, 23, 29]. Nielsen stresses that—besides learning a
required set of skills through theoretical lessons—the
hands-on approach is indispensable for students to
not only learn and understand the concepts of usabil-
ity engineering, but also to trigger a ”revolutionary
change in [their] attitudes” [18]. This hands-on ap-
proach is also supported by others, such as Basili et al.
and Ghezzi et al., who stress that students need to
apply their theoretical knowledge in practical projects
[2, 11] to benefit from them [3, 8, 10, 28].

Offering students the chance to acquire the basic
skills motivated our theory sessions at the beginning of
the syllabus to be followed by hands-on exercises. Ac-
cording to Nielsen, this experience is in particular valu-
able if the students investigate the usability of appli-
cations they developed on their own [18]. Chan et al.
present research on how to integrate teaching human-
computer interaction aspects into the curriculum of
master classes and highlight the importance of real
customers and ongoing discussions [7]. As a result,
we describe a syllabus that integrates usability engi-
neering in a project course in which students develop
applications for real customers from industry.

The need for teaching usability engineering was
highlighted by Perlman in 1988 [25]. The fact that he
continued to work on teaching usability engineering
in 1995 [26]—almost 10 years after the initial work—
shows that teaching usability engineering needs both
continuous refinement and adjustments over time. We
achieve this by adding agile concepts and incorporat-
ing state-of-the-art technology into our syllabus.

Newer research of teaching usability engineering is
presented by Ovad et al., who try to get developers
in an agile industry setting to perform basic usability
tasks, such as A/B tests, on their own [24]. Bruun et al.
use a similar approach in an industrial setting to teach
developers usability evaluations. With only three par-
ticipants, the level of generalizability is limited, but
nevertheless the results of developers quickly learning
the core concepts of usability engineering look promis-
ing [5]. As shown by these researches and supported
by others [20, 21], experienced developers are often
the audience to teach usability engineering.

3 Course Environment
The syllabus targets an agile, multi-project course en-
vironment, the iPraktikum, which we describe in this
section. We further outline the role of cross-functional
teams and the CUU platform.

3.1 The iPraktikum
We describe the capstone course iPraktikum, which
provides the environment for teaching usability engi-
neering in agile project courses. The iPraktikum is a
multi-project course which takes place every semester
with 70-90 student developers who work in up to
12 project teams to create an application with a mo-
bile context for real customers from industry solving
their real problems [4]. While the mobile context
is realized using Apple’s iOS platform, resulting in
iPhone and iPad applications, most projects are not
standalone solutions, but include application servers,
sensors, actuators, or wearable devices.

As shown in Figure 1, each Project Team consists of
a Customer from industry, a Project Management Team
consisting of a Project Lead and a Coach, as well as
the Development Team. Both the project lead and the
coach fulfill a role similar to a scrum master. While
the project lead is a teaching assistant who is experi-
enced in leading projects, the coach is a student who
already participated as a developer. Thus, they are fa-
miliar with the infrastructure and teaching methodol-
ogy. The Developers are students from second Bachelor
semester up to their last Master semester.

Project Team 1

Customer

Project Lead

Project Management Team

Team Coach

Development Team

…

Developer

Developer

Project Team 2

Customer

Project Lead

Project Management Team

Team Coach

Development Team

…

Developer

Developer

Project Team N

Customer

Project Lead

Project Management Team

Team Coach

Development Team

…

Developer

Developer

Figure 1: Overview of the iPraktikum’s team struc-
ture, which consists of multiple project teams that are
composed of different roles and sub-teams.

The iPraktikum fosters an event-based methodology,
which enables the students to continuously interact
with the customer [15]. Furthermore, the iPraktikum
puts a special emphasize on the development of early
prototypes and their vivid presentation to customers
[31]. Over the course of multiple semesters, it has
been shown that the iPraktikum’s format and pro-
cesses contribute to increased skills of students re-
garding both technical and non-technical aspects [4].

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 134



3.2 The Cross-Functional Teams
The iPraktikum uses cross-functional teams [4, 15, 31]
to focus on special topics. Each of these teams is
run by multiple cross-functional coaches and led
by a cross-functional instructor (Figure 2). Cross-
functional coaches are students experienced in the re-
spective field. A cross-functional instructor is a teach-
ing assistant who ensures the teaching methodology.

Project Team NCross-Functional Team Project Team 1

Usability 
Instructor

Usability 
Coach 1

Usability 
Coach 2

Usability 
Coach N

Usability 
Manager

Modeling 
Manager

Release & Merge 
Manager

Developer

Usability 
Manager

Modeling 
Manager

Release & Merge 
Manager

Developer

… …
Usability Engineering

Modeling Management

Release & Merge Management … …

Figure 2: The iPraktikum cross-functional team struc-
ture focusing on the usability engineering team.

The cross-functional coaches work almost indepen-
dently with the cross-functional teams: They elaborate
on relevant topics and spread that knowledge to the
cross-functional managers. These managers are de-
velopers from each team that have—in addition to
their development tasks—the responsibility to share
the knowledge they acquired in the cross-functional
teams with their fellow team members.

While most of the work is concentrated at the be-
ginning of the course, support and review sessions
are conducted until the end of the projects to ensure
an adequate quality. This approach allows the course
organizers to spread knowledge from instructors to
the cross-functional coaches, followed by an informa-
tion sharing via the cross-functional managers to all
other students of the course. Major challenges are the
timing and coordination between project and cross-
functional teams, as well as with course-wide events,
such as course-wide lectures, or intermediate and final
presentations, in which the project teams present their
current status to the whole course and all customers.

So far, the iPraktikum addressed a variety of cross-
functional teams. For instance, a modeling manage-
ment team was established to support the project
teams with creating, reviewing, and refactoring soft-
ware models created during the iPraktikum [1]. Like-
wise, a release & merge management team helps de-
velopment teams to setup the basic infrastructure for
their team, including continuous integration and de-
livery as well as ensuring the branching model and
the code review process introduced in [16]. With this
work, we introduce a syllabus that extends the iPrak-
tikum by adding a dedicated usability engineering
cross-functional team.

3.3 The CUU Platform
To enable Continuous Software Engineering (CSE), the
iPraktikum makes use of tool support—one of which is
the CUU platform: It aims for supporting developers in
understanding user behavior [12]. The overall vision
of the platform is to enable usability engineering in
a rapid development environment such as CSE. It is
available as an open source project.1

CUU does not impose a particular feature definition
to usability engineers: everything that is developed
on a feature branch can be understood as a feature.
We further address the definition of a feature and its
meaning in the syllabus in Section 4.2. Generally, CUU
analyzes whether users started, finished, or canceled
the usage of a feature and visualizes this information
in widgets [13], as shown in Figure 3.

A

B

Figure 3: A screenshots of the CUU dashboard. Users
select one or more commits for inspection in a graph-
like representation (A). Related usage information is
then presented in one or more widgets below (B).

This is enabled by the Feature Crumbs concept [14],
a lightweight approach to mark feature specifics for
detection during run-time. Feature crumbs are a single
line of code, similar to breakpoints during debugging
of code. Feature crumbs form the basis for referenc-
ing a variety of usability testing techniques, such as
an automated implementation of the Thinking Aloud
protocol [18]. In particular, we plan to add a widget
that displays a summary of processed user feedback
in relation to a feature crumb.

Besides the extract shown Figure 3, CUU hosts a
Project Overview screen; a CUU project acts as the
counterpart of a code repository. Furthermore, a Ser-
vices screen allows UE manager to connect external
services; we elaborate on this aspect in Section 6.

1https://github.com/cures-hub

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 135



Organizational
Aspects

Organizational
Aspects

Usability
Engineering

Usability
Engineering

Homework
Presentation

CUU Platform
Introduction

CUU Platform
Setup

Organizational
Aspects

Homework
Integration

Experience
Discussion

First UE Meeting Course-Wide LectureSecond UE Meeting Third UE Meeting Fourth UE Meeting

Unit 2

Unit 1

Unit 6

Unit 3

Unit 9

Theory
Basic

Usability
Engineering

CUU Platform
Introduction

CUU Platform 
Usage

Unit 5

Unit 4

Unit 7

Unit 8

Unit 10

Unit 11

Unit 12

Unit 13

UE Cross-Functional
Retrospective

Organizational
Aspects

Unit 15

Unit 14

Theory
Advanced

Theory
Advanced

Practice

Practice

Practice

Theory
Basic

Theory
Basic

Practice

Practice

Figure 4: Visual overview of the UE4MP syllabus, a schedule for teaching usability engineering in cross-functional
teams. A column represents a full meeting, which lasts for approximately 90 minutes; the UE content in the
course-wide lecture might be shorter. Every box represents a Unit U, which encapsulates related content and is
presented as one block within a meeting. The order of units suggests their actual position within the meeting
and the size correlates with the time required for the unit. Arrows indicate constrains: for instance, Unit 2 must
precede Unit 3 and 4, while Unit 10 can be hold at any time. Units with blue, single-stroked lines address
usability engineering content (4 units), while units with orange, dashed lines deal with the CUU platform
(6 units). Units with double-stroked lines related to organizational aspects of the course. The Theory and
Practice tags distinguish content presentation from hands-on units; theory units vary in their difficulty level:
basic content includes overviews and topic introductions, while advanced content extends basic unit knowledge.

4 Teaching Usability Engineering in
Multi-Project Courses

In this section, we introduce the UE4MP syllabus,
which provides a guideline for teaching usability engi-
neering in cross-functional teams within multi-project
courses. The UE4MP reads Usability Engineering (UE)
for multi-project (MP) teams, while the number 4
also represents the number of meetings during the
semester. A broad overview is provided in Figure 4.

The goal of the syllabus is to step-wise introduce
important concepts and to reduce the theory parts in
favor of practical elements over time. A course-wide
lecture, which all students of the course attend, serves
as a general point of reference and milestone for the
usability managers. More details about this lecture is
provided in Section 5.1, while in the following, we
detail every meeting with its content and goals.

4.1 First UE Meeting
The focus of the first UE meeting is the theory of
usability engineering, which we base on fundamental
work [18, 22]. The meeting should further clear up
any organizational questions the UE managers might
have at the beginning of the course.

The first UE meeting consists of many organiza-
tional aspects (Unit 1) and starts with an introduction
round of all usability managers. Furthermore, they are
asked to include a brief overview of the projects they
are working on. This should prepare them to provide
feedback to any of the developed applications during

a later point in time of the project. Hereafter, we in-
troduce them to the role of the usability engineering
manager. We summarize them as follows:
• Learn, repeat, and consolidate the general con-

cepts of usability engineering.
• Integrate a framework for user understanding in

teams’ project and promote its application.
• Drive the realization of new insights that they

gained from usage data and usability testing.
As the major element of the first UE meeting, the

UE coaches prepare and hold a presentation of the
usability engineering basics. This is roughly based on
the book Usability Engineering by Jakob Nielsen [18].
The coaches are asked to focus the presentation on
the following key aspects:
• overview of usability slogans;
• introduction to the usability engineering lifecycle;
• different forms of prototyping and their benefits

and challenges, including tools and best practices;
• overview of usability heuristics to prepare the

homework for the next meeting;
• how to use the Thinking Aloud protocol as one

example of usability testing;
• idea of discount usability engineering.

The presentation should be interactive, and the
coaches are encouraged to invite the managers to
contribute ideas and descriptions while presenting the
slides; usually, the managers already have a common
sense of the concepts, however, they cannot formally
refer to it (e.g., the Thinking Aloud Protocol.)

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 136



The homework is clarified at the end of the meeting;
it reflects a first step of applying theoretical concepts
to the team’s applications. We ask the managers to
pick and research on one usability heuristic and share
their results within the second UE meeting as part of
a two-minute talk. In Figure 5, we outlined a wiki
page that we prepared for that purpose, in which each
manager has to fill in one row.

A

C

B

D E F G

H

Figure 5: Wiki page created for the Usability Heuris-
tics homework; figure modified for visualization. (A)
Description of homework. (B) Help on how to access
supportive material. (C) Heuristic name. (D) Link
to further reading. (E) Brief summary of the heuris-
tic. (F) Name of the team that worked on the heuris-
tic. (G) Concrete example of the heuristic within the
team’s application. (H) An instance for an entry of a
usability heuristic within the table.

We are particularly interested in the UE managers’
results on (G), the application of the usability heuristic
to their application. We ask them to create mockups
of good and bad examples of the heuristics. Therefore,
it is important to ensure that the UE managers have
access to the book, either by lending a copy from the
university library or having access to an online version
of the book. We enriched the wiki page, on which UE
managers were asked to add their homework, with a
brief introduction on how to access the online library.
The homework fits the setup of this course, since there
are usually 10 teams and 10 usability heuristics; how-
ever, other allocations will also work.

The meeting closes with more organizational as-
pects, i.e., discussion on the meeting time of the next
meeting and an overview of the upcoming meetings,
as well as clarification of questions.

Before and after the first UE meeting, the coaches
are asked to publish additional content that is relevant
for the managers, such as information pages about
prototyping and links to popular tools. Not only do

they create and maintain these pages, they actively
inform the usability managers about the availability
through the chat messaging platform. The coaches
further ensure that the usability managers work on
their homework; this is achieved by issues that are
part of the issue tracking system. This should prevent
UE managers from forgetting the homework, which
would reduce the learning effect for all of the others
during the second UE meeting.

4.2 Second UE Meeting
The second UE meeting starts with a short presenta-
tion of the usability heuristics homework by each UE
manager (Unit 3). During the presentation of this first
homework, the UE instructor facilitates the presenta-
tions of the usability managers. This idea is based on
the assumption that the usability instructors have a
broader perspective on the topic; they can assess the
heuristic and know how to apply it and therefore can
ask for typical problems and situations in which they
occur, in case the UE manager did not mention that
aspect as part of their summary. Furthermore, the UE
instructors help to put the heuristic into context, e.g.,
by noticing relationships between them. Overall, the
goal is to encourage discussions about the topics and
thereby sharpen the usability managers’ senses and
understanding for the topic.

As part of Unit 4, the UE coaches again provide a
theory session on other usability engineering topics.
This time, however, the information is notably shorter
(approximately half of the time invested as in Unit 2),
focusing on the following topics:
• small repetition of the topics of Unit 2;
• an introduction to scenarios as an instrument;
• an open discussion on the definition of a feature;
• common practices, with minor focus on UE testing

approaches different from Thinking Aloud and
usability evaluation through heuristics.

The second and third aspects of these topics are
the most important ones. Typically, the UE managers
are familiar with scenarios as a way to capture and
describe requirements of a system. They also receive
a repetition of this topic in a proceeding course-wide
lecture, which is not solely focused on usability en-
gineering. However, in this unit, we focus on the
usage of scenarios for usability engineering [19]. This
prepares their understanding of feature crumbs as de-
scribed in Section 3.3. The open discussion intends to
strengthen their understanding of features, how they
might be represented, and to prove the point that the
feature understanding is often a question of definition.
They are defined by the way they are managed, e.g.,
user stories, scenarios, epics, and that they vary in size
as well as other characteristics, such as the involved
systems, stakeholders, criticality, and more.

The last major unit of the second UE cross-
functional meeting is an introduction to the CUU plat-
form (Section 3.3) following these three aspects:

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 137



• Present the platform’s functionality theoretically.
• Introduce the feature crumbs concept, in particu-

lar walk through the feature path and status. Fea-
ture paths represent a concatenation of feature
crumbs [14], which allows statements about the
feature state using the Unique Devices per Feature
Path Observation widget as shown in Figure 3.

• Explain the platform’s goals and align them with
the previously presented approaches for usability
testing and evaluation. In particular, this includes
an introduction of how feature crumbs can be
used to perform Heuristics Evaluation [18], based
on the knowledge that the usability managers
gained through the homework.

To be able to respond to the managers’ questions
about the platform and the crumbs, we ask the
coaches to carefully inform themselves using relevant
literature [13, 14]. We also provide a short, informal
summary of the two papers in form of a wiki page.

We close the meeting with Unit 6, organizational as-
pects, which, for the most part, introduces the home-
work: For the next meeting, the UE managers are
asked to prepare a feature path of a specific scenario
in their application as a preparation for the third UE
meeting. Therefore, we provide a wiki page, as de-
picted in Figure 6, which we ask every UE manager
to copy into their team’s space and provide a URL for
reference in a shared table.

The managers start by creating a table that is simi-
lar to a formal representation of a scenario as shown
in Figure 6 (A). Each row describes a feature crumb,
split by its name, a short description and the ratio-
nale of the crumb, and under which circumstances
the crumb is triggered. Then, we ask them to add
comments to their source code where they think the
individual crumbs from the table should be triggered.
We use the comments as a first step toward the actual
tracking of features. This dry run requires to put a
focus on designing the feature, rather than starting
with the tool that is able to track the execution of the
feature. We provide an example of how we expect
this comment to look like in Figure 6 (B); we put an
emphasize on the naming, since it should follow the
exact same spelling as in Figure 6 (A). This should
highlight the requirement that the same name of one
row needs to be exactly spelled as in the code. The
same holds true for the JSON file that needs to be pro-
vided in Figure 6 (C). Here, the UE managers design
a machine-readable version of the feature represen-
tation that they previously described as a wiki page.
As with the comment-styled crumbs, this prepares an
easy transition into using the tool in the next meeting.

4.3 Third UE Meeting
The third UE meeting is mainly hands-on. It enables
each team to use the platform independently. We pro-
vide step-wise guidance on how to setup the platform
and integrate the needed framework for an example

A

B

C

Figure 6: Wiki page created for the feature crumbs
homework; figure modified for visualization, i.e., the
description text has been removed. (A) List of crumbs
to describe the UE managers’ rationale when design-
ing the crumbs. (B) Example of how to add the
crumbs on a code level. (C) A JSON file that allows
them to formally specify the feature path.

feature (Unit 7), followed by the integration of their
first own application-related feature (Unit 8) that they
prepared in their homework from the previous meet-
ing. As a result, Unit 7 forms the basis for Unit 8.

As this meeting brings results from multiple units,
synchronization becomes a major challenge when
preparing this meeting. The teams require a code
basis which can be released and run on a device;
this puts out requirements for both, the code and the
workflow for its processing. Furthermore, in practical
terms, the UE managers require the hardware (com-
puter and mobile device) to run the tasks described
in the following to setup and use the platform.

For Unit 7, we prepare seven wiki pages that de-
scribe everything required to set up the platform and
make use of it. Since they contain potential pitfalls,
we walk the UE managers through them step by step:

Step 1 Login and Navigate to Project. Since the man-
agers have never used the platform before, it needs to
be ensured that they know where to find the platform
and how to access it.

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 138



Step 2 Define new Feature and link Feature Branch.
This step ensures that the UE managers adhere to the
iPraktikum’s development process: Every feature and
its related branch is based on an issue. Therefore, we
repeat the steps to formally create a branch. Hereafter,
the managers need to switch back to their CUU project
and create a feature representation in the platform.
This can be done by providing a feature name and the
initial commit on which the branch is based on.

Step 3 Initialize Client in Code Project. The CUU
framework requires a client-side software develop-
ment kit (SDK) that observes the execution of the ap-
plication. The managers integrate this SDK into their
projects. They need to register the SDK with a Track-
ing Token and Project ID; this information is extracted
from the services screen (Figure 8) and ensures that
the SDK can push information to the platform.

Step 4 Add Feature Crumbs to Code Project. In this
step, we introduce the managers to the notation of
triggering a feature crumb. At the bottom line, this
is a method call with the feature crumb name as a
string parameter. We ask them to seed a feature crumb
called My First Crumb in the startup sequence of the
application. Hereafter, the managers need to push all
the latest changes to the remote server.

Step 5 Add Commits to Branch. The latest changes
lead to a new feature increment, which needs to be
registered with the platform. Therefore, they need to
copy and paste the latest commit hash to their feature
in the CUU platform.

Step 6 Add new Feature Path. Finally, to associate a
commit with a feature path, they select the commit
in the CUU platform and use a popup window to add
a feature path in the JSON format. In this case, we
ask them to only use a single-step path, with step in-
formation 1 and feature crumb name My First Crumb.

After they performed these six steps, the feature
is ready for usability assessment. To test whether
the setup was correct, they need to release the latest
commit. We introduce them to the different widgets
and how they can be harnessed to derive informa-
tion about the feature’s performance. By asking the
managers to add only one crumb with the same name
and at the same position, we eliminate any possible
confounding factors that might distract the UE man-
agers from their actual goal: setting up the feature
for tracking. Only after they were successfully able to
follow steps 1 to 6 and see a change in feature usage,
we can be sure that everything works as expected.

To bring the focus back to their projects, we return
to their prepared tasks from the homework in Unit 8.
This is usually much more complex, but of actual
relevance for the UE managers. As a side effect, they
get to know the inner workings of the platform even
better. They learn how to add new crumbs to a feature
path and what this means for the analysis, i.e., a

new feature version, by replacing the prepared crumb
comments with actual method calls.

At the end of this meeting, every team has created
at least one feature that can be fully tracked using the
CUU platform. This serves as the input for a hands-on
exercise (Unit 12) in the course-wide lecture.

The meeting is closed by another round of organi-
zational aspects (Unit 9). In particular, we explain to
the managers how they can invite their team members
to the project using a user management screen that
is part of the CUU platform. As this is an important
requirement for the course-wide lecture, we track this
progress in order to ensure the effectiveness of the
lecture. Eventually, we encourage the managers to
continue using feature crumbs from this meeting on,
collect and note down any observations, feedback,
and lessons-learned, as a preparation for the fourth
UE meeting.

4.4 Fourth UE Meeting
The fourth UE meeting serves as an opportunity to
stimulate the discussion between the UE managers.
The goals of this meeting are manifold, however, the
focus lies on Unit 13, in which every UE manager
presents a feature in more depth. This includes the
presentation of individual feature paths. Since this UE
meeting is set at a later point of the project, we expect
that the managers not only present the feature com-
position, but also report on how the tracking helped
them in terms of usability evaluation and assessment.
Ideally, the managers elaborate on knowledge gained
from the feature crumbs observations and how it sup-
ported them to solve a problem. These in-depth de-
scriptions of actual insights in real applications can be
beneficial for the UE managers of other teams.

Unit 14 is a retrospective in which the managers
provide feedback on both the work with the platform
and the overall composition of the UE cross-functional
role and the composition of the syllabus.

Eventually, Unit 15 closes the meeting with a set of
information regarding the remaining semester, such
as their responsibilities for future deliverables or how
they can approach us if questions remain.

5 Experience Report
We applied the UE4MP syllabus from Section 4 during
the summer term of 2018 in an instance of the iPrak-
tikum, as described in Section 3. We followed the
intention of a case study as defined by Wohlin et al.
by ”provid[ing] a deeper understanding of the phe-
nomena under study in its real context” [30].

Overall, we set out to ensure the applicability of the
UE4MP syllabus and in particular the acceptance of
tool usage and theory concepts by the usability man-
agers. Therefore, this section reports on the temporal
instantiation (Section 5.1), the results of the practi-
cal units, i.e., the homework, (Section 5.2), and the
number of feature crumbs usage (Section 5.3).

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 139



W1
MS

W2
MS W3

W4
UE

W5
UE W6

W7
UE

W8
CW W9 W10

W11
MS W12

W13
UE W14

W15
MS W16

W17
SB

W18
SB

W19
SB

W20
SB

W21
SB

W22
SB

W23
SB

W24
SB

Figure 7: Chronological sequence of the iPraktikum in the summer term 2018. W1 is the first week of the
semester, while W24 the last one. Supported by abbreviations, different box colors are used to map iPraktikum
milestones, semester events, and UE meetings of the syllabus to semester weeks as follows. Blue boxes indicate
usability engineering meetings (UE) and red boxes iPraktikum course milestones (MS). The green box highlights
the usability engineering course-wide lecture (CW), while grey boxes relate to the semester break (SB).

5.1 Temporal Instantiation
To make the UE4MP syllabus transferrable to other
courses, we mapped the meeting units to a typical
semester of six month as shown in Figure 7.

As stated in Section 4, the syllabus builds up on
cross-functional teams. These cross-functional roles,
as described in Section 3, require project teams and
therefore can only be assigned after the initial iPrak-
tikum student assignment to project teams has fin-
ished. As a result, the first two weeks of the semester
W1, W2 were reserved for the iPraktikum setup, while
W3 got the projects started and the cross-functional
managers of each project team assigned. In W4,
we ran the first usability engineering meeting (Sec-
tion 4.1), in which we focused on the organization,
the usability engineering basics and a first homework
assignment. In the following week W5, the second us-
ability engineering meeting took place (Section 4.2),
containing the first practical exercises and the intro-
duction to the platform. In the third usability engi-
neering meeting (Section 4.3) in W7, the tool support
in form of the CUU platform was integrated in each
team’s project by the usability managers, followed by
a first contact with the platform within each project.

After finishing the setup and explaining all concepts
to the usability managers of each team, in W8 all
course participants were introduced to the concepts
of usability engineering and the platform as part of
a course-wide lecture. The course-wide lecture is an
optional addition to the UE4MP syllabus; it intends
to provide an overview of the first three usability en-
gineering meetings. As shown in Figure 4, Unit 10
ensures a short theoretical introduction that sets the
stage. In Unit 11, we introduce the platform, how
it can be used, and what it aims for. Finally, with
Unit 12, we make use of the prepared features from
the third UE meeting, which allows all students to
benefit from a pre-defined feature within their own
application to experience the usability assessment and
evaluation methods of the platform.

The timing of the course-wide lecture left the teams
enough time to use the offered features until the sec-
ond milestone of the iPraktikum in W11, which is

an intermediate presentation of their work. In W13,
two weeks after the intermediate presentation, but
before the final presentation in W15, the fourth us-
ability engineering meeting (Section 4.4) took place,
gathering feedback for the UE cross-functional team
and discussing feature paths and the corresponding
feature crumbs.

5.2 Practical Unit Results
In this section, we report on the results from the home-
work of the usability engineering meetings, since they
can serve as an indicator whether the UE managers
understood the topic and were able to successfully
apply the concepts.

The first homework regarding the usability heuris-
tics (presentation in Unit 3) was well perceived by
the managers. Everyone was able to fill in the core
components of the heuristic table. However, apply-
ing the heuristic to their actual application was only
successfully performed by two teams; the other teams
chose to use examples from well-known applications
such as Microsoft Word.

In the second homework, we asked the managers
to define a feature that could be tracked using feature
crumbs and the platform (Section 4.2). We were able
to derive more quantitative data as shown in Table 1,
which allows to derive further assumptions in the
discussion section (Section 6).

Table 1 shows that every team successfully defined
crumbs for one of their application’s features. At min-
imum, two feature crumbs were required, while 14
was the maximum amount of feature crumbs used to
describe a feature. On average, a feature consisted of
more than five crumbs. Except for one team, all teams
successfully described the feature path within a JSON
file. However, as it can be seen in the following sec-
tion, team 4 was able to track their feature at a later
point in time, which suggests that they forget to define
the feature path, but did it within the platform. Out of
the twelve features, ten can be considered as a proper,
meaningful feature, which makes sense to be tracked
and assessed for usability assessment. However, this
was not the case for two features, highlighted with a
red background in Table 1.

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 140



Table 1: Each team described at least one feature as
part of their homework; every row depicts a feature.

Team Number of 
Crumbs

Feature Path 
Correct?

Feature 
Meaningful?

1 3 Yes Yes
2 12 Yes Yes
3 3 Yes No
4 14 No No
5 3 Yes Yes
6 3 Yes Yes

6 Yes Yes
6 Yes Yes

7 6 Yes Yes
8 3 Yes Yes

2 Yes Yes
9 3 Yes Yes

Team 3 implemented the feature path as three in-
dependent actions, that all started a new feature on
their own. Team 4, on the other hand, described a
massive feature execution, which depicted almost all
of the application’s features. This led to a situation in
which multiple consecutive features were described as
one feature, which hinders the individual assessment.

5.3 Platform Usage
To provide more quantitative data, we counted the
number of features that were created by the teams
throughout the semester. Table 2 shows the results.

Table 2: The number of features created in CUU
separated by team; 20 features were created in total.

Team 1 2 3 4 5 6 7 8 9

Features 3 3 1 1 2 2 2 3 3

Comparing the numbers with the features that were
created during the third UE meeting, which can be
derived from Table 1, eight additional features were
added over the course of the semester. Furthermore,
we collected more data: Of the 20 features listed in
Table 2, approximately 2200 feature executions were
recorded successfully, more than 850 were stopped
with the possibility to be successfully finished, and
more than 1500 were actually canceled. In total, more
than 6500 feature crumbs were triggered.

Overall, the number of features created within CUU
fall short of our expectations. On average, every team
created two features in CUU—one of which originated
from the third UE meeting. We discuss this aspect in
The Effect of Tool Support in Section 6.

5.4 Threats to Validity
This section briefly outlines the threats to the validity
of the reported experiences centered around the four
dimensions of validity [27], namely the construct,
internal, external, and reliability validity.

Regarding the disparity between the intended and
actual study observations, there might be the chance
that the UE4MP syllabus and the introduction did not
contribute to the gain of knowledge. Since there has
not been a dedicated focus of usability engineering
in the course before, we can assume that any infor-
mation to that topic is beneficial to the students. In
addition, to ensure that the concepts are straightfor-
ward, easy-to-understand, and consistent, we involved
multiple instructors from other cross-functional teams
to mediate the risk of ambiguous knowledge transfer.

The correlation between investigated and other fac-
tors might become visible in the way the managers
made use of the taught concepts. In particular other
duties, such as the actual coding or other courses,
might have affected the extent to which they were
working in the role of a usability manager. We tried to
mediate this effect by reducing extra efforts, as well
as providing help whenever needed.

The degree of generalizability of the study is low,
since we can only report of one instantiation in the
agile multi-project course iPraktikum. However, we ar-
gue that the presented syllabus is in general highly re-
lated to the structure of the iPraktikum, which makes
generalization difficult. Still, we think that many
observations and results can help other lectures to
improve their teaching efforts regarding usability en-
gineering. To be able to report more generalizable
results, we plan to repeat the application of UE4MP
to gain more reliable insights.

With respect to reliability, the fact that only one
instructor supervised the cross-functional team might
have biased the application of the UE4MP syllabus.
However, since this cross-functional team was inte-
grated in a broader course, we argue that the effect
was rather low.

6 Discussion
This section discusses the results from the experience
report, provides interpretations of the presented num-
bers, and points out challenges regarding various as-
pects of teaching usability in cross-functional teams.

The Effect of Tool Support. In general, we can sum-
marize that the combination of the UE4MP syllabus
and the tool support in form of the CUU platform
enabled the students to perform actual usability engi-
neering in their real-world development setting.

At the same time, the quantitative analysis of the
platform usage indicates that—after an initial phase
of using the platform—the teams reduced their efforts
in designing feature paths and working with feature
crumbs. This might have various reasons; for one,
they have additional tasks which can hinder them
from doing usability engineering. Other reasons might
be found in the challenge of designing features, as
described in the next paragraph.

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 141



The numbers suggest that we need to further sup-
port the teams in making use of the platform, pointing
out the benefits which can encourage them to invest
more time in usability engineering. We continue our
efforts as part of our future work (see Section 7).

Usability Engineering is Difficult. A more detailed
analysis of the homework illustrates that the students
struggle in applying usability concepts to their own
applications. Regarding the first homework, the fact
that only two teams were able to create applied exam-
ples of good and bad usability heuristic cases within
their own application might be an indicator that these
heuristics are difficult to understand. The challenges
in defining and understanding features become more
obvious when analyzing the two cases highlighted as
”No” in the column ”Feature Meaningful?” of Table 1.
The creation of a well-defined feature representation
in form of feature crumbs requires effort.

Notably, in case a team provided a name for their
feature, they always correctly defined the feature. This
might explain the reason, why two teams created
wrong feature path descriptions: They had a different
mental model of a feature definition. This allows us
to draw the conclusion that it is not enough to only
provide a platform, which strengthens our goal of
aligning the syllabus next to the platform usage.

Synchronizing Efforts. Synchronizing the UE4MP
can become an issue regarding the following aspects:
• communicating the teaching materials and home-

work between the project leader, coaches, usabil-
ity managers, and the individual team members;

• aligning the four meetings across the semester, as
described in Section 5.1;

• ensuring that the teams’ progress is mature
enough that it fits to the UE4MP syllabus;

• connecting UE managers with other cross-
functional managers, such as the release and
merge managers, to ensure that they have access
to the repository when setting up CUU, or are al-
lowed to update third party repositories, which is
a requirement to make the CUU platform’s client-
side SDK work; Figure 8 provides more descrip-
tion concerning this aspect.

Enable Collaboration. Besides setting up an instant
messaging channel for every project team, we also
created a channel for the usability engineering cross-
functional team. It turns out that this is a very inter-
esting place for discussions, which is important for
usability engineering. Usability engineering is a collab-
orative process, which requires multiple participants,
both experts and users. The students of other teams
can act as proxy users; while they only have a rough
idea of the topic of the other applications, they know
just the right amount of details to assess the usability
of the application from the perspective of a user.

A

B

Figure 8: Screenshot of the Services screen of the CUU
platform. Usability managers need to add the tracking
token to their mobile application to enable the flow
of usage data from the SDK’s usage monitoring com-
ponent to the CUU web platform (A). This requires a
mature code basis, which might need several weeks
until it is available. Furthermore, the credentials for
connecting the code repository with the CUU project
can be obtained from the services screen (B).

In general, we conclude that usability engineering
can be taught better with hands-on examples, which
are shared with others to collect different opinions.
An instant communication channel promotes the col-
laboration, while wiki pages—that we used for the
homework to collect usability heuristics as described
in Figure 5—represent another point of interaction.

However, we noticed that many UE managers still
contacted us directly in case of questions via a direct
message and refrained from using the ”public” channel
to ask the questions to all the other students. We
actively encouraged them to change this and continue
to work on this in future semesters.

Acknowledging Privacy Aspects of Users. Usabil-
ity engineering inherently relies on the interaction
with users. With the CUU platform and SDK, the stu-
dents obtain access to a tool that allows for learning
more about the way a user interacts with an applica-
tion. This includes, besides the ability to determine
whether a feature has been started, completed, or
canceled, additional knowledge sources that provide
fine-grained information about the application usage.
Generally, no personal data is collected in a way that
would allow for conclusions toward an individual user.
Within the units of UE4MP, we intend to sensitize the
students for these aspects and the responsibility as
a consequence thereof. In particular, we ask the stu-
dents to let their end users, i.e., the customers, know
about the addition of CUU before they start using it.
Technical mechanisms inform the users about the data
collection and provide the ability to opt out.

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 142



Providing the Environment. One challenge arises
in providing the environment that is required to make
use of the UE4MP syllabus. To take full advantage of
the syllabus, an extensive set of tools in form of an
infrastructure is required:
• an issue management system to enable tracking

of tasks and development progress;
• a wiki system to share information, as well as

enable a space to collaborate on the homework;
• a version control, continuous integration, and con-

tinuous deployment system that covers the full de-
velopment process before the CUU platform can
be utilized;

• an instant messaging service.
Providing and maintaining this environment repre-

sents a major challenge and is only feasible for large-
scaled project courses.

7 Conclusion and Future Work
Usability engineering is an important activity during
software engineering. However, usability engineering
can only be taught successfully in a hands-on environ-
ment, using real-world projects in which students use
their own applications for usability assessment. There-
fore, additional, hands-on teaching approaches need
to be developed to further support students besides
their general software engineering curriculum.

In this paper, we introduced the UE4MP syllabus,
a teaching concept based on four meetings that aims
to integrate usability engineering into multi-project
courses. This is enabled by establishing a cross-
functional role, in which students take over the role of
usability managers. Furthermore, it incorporates the
CUU platform for usability engineering, which reduces
the effort for setting up usability assessment activities.

We applied the UE4MP syllabus during one semester
in the iPraktikum. Our observations suggest that the
syllabus can be applied to teach usability engineer-
ing through cross-functional teams in a multi-project
course. We were able to apply the syllabus as de-
scribed and in particular the theory aspects were well-
perceived by the students. Likewise, students success-
fully applied the CUU platform. However, it requires
major efforts to teach the tool and point out benefits.

Therefore, as part of our future work, we plan to
extend both the UE4MP syllabus as well as the CUU
platform. Regarding the syllabus, we plan to add
one-on-one meetings after or as a replacement of the
fourth UE meeting, in which the usability coaches
meet with the managers to discuss their work. Re-
garding the CUU platform, we intend to continue its
development to offer more usability assessment func-
tionalities that could be provided through additional
widgets. This should increase the platform’s overall
usefulness and thereby increase its usage. Further-
more, we are working on simplifying the setup steps
described in Section 4.3.

Acknowledgements
This work was supported by the DFG (German Re-
search Foundation) under the Priority Programme
SPP1593: Design For Future – Managed Software Evo-
lution (CURES project). We thank the iPraktikum ’18
students for their feedback and Simon Lang, Jan Philip
Bernius, and Lara Marie Reimer for their support.

References
[1] Lukas Alperowitz, Jan Ole Johanssen, Dora

Dzvonyar, and Bernd Bruegge. Modeling in agile
project courses. In MODELS (Satellite Events),
pages 521–524, 2017.

[2] Victor R. Basili. The role of experimentation
in software engineering: past, current, and fu-
ture. In International Conference on Software
Engineering, pages 442–449. IEEE, 1996.

[3] Barry Boehm, Alexander Egyed, Dan Port, Ar-
chita Shah, Julie Kwan, and Ray Madachy. A
stakeholder win-win approach to software engi-
neering education. Annals of Software Engineer-
ing, 6(1/4):295–321, 1998.

[4] Bernd Bruegge, Stephan Krusche, and Lukas
Alperowitz. Software engineering project
courses with industrial clients. ACM Trans-
actions on Computing Education, 15(4):17:1–
17:31, 2015.

[5] Anders Bruun and Jan Stage. Barefoot usability
evaluations. Behaviour & Information Technology,
33(11):1148–1167, 2014.

[6] John M. Carroll and Mary Beth Rosson. A case
library for teaching usability engineering: De-
sign rationale, development, and classroom ex-
perience. Journal on Educational Resources in
Computing (JERIC), 5(1):3, 2005.

[7] Susy S. Chan, Rosalee J. Wolfe, and Xiaowen
Fang. Issues and strategies for integrating hci
in masters level mis and e-commerce programs.
Int. Journal of Human-Computer Studies, 59(4):
497 – 520, 2003. ISSN 1071-5819.

[8] David Coppit and Jennifer M. Haddox-Schatz.
Large team projects in software engineering
courses. In Proceedings of the 36th SIGCSE Tech-
nical Symposium on Computer Science Education,
pages 137–141, New York, USA, 2005. ACM.

[9] Norman Fenton, Shari L. Pfleeger, and Robert L.
Glass. Science and substance: a challenge to
software engineers. IEEE Software, 11(4):86–95,
July 1994.

[10] Christopher K. Hobbs and Herbert H. Tsang. In-
dustry in the Classroom. In Proceedings of the
Western Canadian Conference on Computing Edu-
cation, pages 1–5, New York, USA, 2014. ACM.

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 143



[11] Paola Inverardi and Mehdi Jazayeri. Software
Engineering Education in the Modern Age: Soft-
ware Education and Training Sessions at the In-
ternational Conference, on Software Engineering,
ICSE 2005, St. Louis, MO, USA, May 15-21, 2005,
Revised Lectures, volume 4309. Springer, 2006.

[12] Jan Ole Johanssen. Continuous user understand-
ing for the evolution of interactive systems. In
Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS
’18, pages 15:1–15:6, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-5897-2.

[13] Jan Ole Johanssen, Anja Kleebaum, Bernd
Bruegge, and Barbara Paech. Towards the vi-
sualization of usage and decision knowledge in
continuous software engineering. In 2017 IEEE
Working Conference on Software Visualization
(VISSOFT), pages 104–108, September 2017.

[14] Jan Ole Johanssen, Anja Kleebaum, Bernd
Bruegge, and Barbara Paech. Feature crumbs:
Adapting usage monitoring to continuous soft-
ware engineering. In Product-Focused Software
Process Improvement, pages 263–271, Cham,
2018. Springer International Publishing. ISBN
978-3-030-03673-7.

[15] Stephan Krusche, Lukas Alperowitz, Bernd
Bruegge, and Martin O Wagner. Rugby: an agile
process model based on continuous delivery. In
Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering, pages
42–50. ACM, 2014.

[16] Stephan Krusche, Mjellma Berisha, and Bernd
Bruegge. Teaching code review management
using branch based workflows. In International
Conference on Software Engineering - Companion
Volume, pages 384–393, 2016.

[17] Stephan Krusche, Nadine von Frankenberg, and
Sami Afifi. Experiences of a software engineer-
ing course based on interactive learning. In Soft-
ware Engineering im Unterricht der Hochschulen,
SEUH ’17, pages 32–40, 2017.

[18] Jakob Nielsen. Usability Engineering. Interac-
tive Technologies. Elsevier Science, 1994. ISBN
9780080520292.

[19] Jakob Nielsen. Scenarios in discount usability
engineering. In John M. Carroll, editor, Scenario-
based Design, pages 59–83. John Wiley & Sons,
Inc., 1995.

[20] Jakob Nielsen and Rolf Molich. Teaching user
interface design based on usability engineering.
SIGCHI Bull., 21(1):45–48, August 1989. ISSN
0736-6906.

[21] Jakob Nielsen, Rita M. Bush, Tom Dayton,
Nancy E. Mond, Michael J. Muller, and Robert W.

Root. Teaching experienced developers to de-
sign graphical user interfaces. In Proceedings of
the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’92, pages 557–564, New
York, NY, USA, 1992. ACM.

[22] Donald A. Norman and Stephen W. Draper. User
Centered System Design; New Perspectives on
Human-Computer Interaction. L. Erlbaum As-
sociates Inc., Hillsdale, NJ, USA, 1986. ISBN
0898597811.

[23] Tom Nurkkala and Stefan Brandle. Software
studio: Teaching professional software engineer-
ing. In Technical Symposium on Computer Science
Education, pages 153–158. ACM, 2011.

[24] Tina Øvad, Nis Bornoe, Lars Bo Larsen, and Jan
Stage. Teaching software developers to perform
ux tasks. In Proceedings of the Annual Meeting
of the Australian Special Interest Group for Com-
puter Human Interaction, OzCHI ’15, pages 397–
406, New York, NY, USA, 2015. ACM.

[25] Gary Perlman. Teaching user interface develop-
ment to software engineers. Proceedings of the
Human Factors Society Annual Meeting, 32(5):
391–394, 1988.

[26] Gary Perlman. Teaching user interface devel-
opment to software engineers. In Conference
Companion on Human Factors in Computing Sys-
tems, CHI ’95, pages 375–376. ACM, 1995. ISBN
0-89791-755-3.

[27] Per Runeson, Martin Host, Austen Rainer, and
Björn Regnell. Case Study Research in Software
Engineering: Guidelines and Examples. John Wi-
ley & Sons, 2012.

[28] Mary Shaw, Jim Herbsleb, Ipek Ozkaya, and
Dave Root. Deciding what to design: Closing
a gap in software engineering education. In
International Conference on Software Engineering,
ICSE ’05, pages 607–608, 2005.

[29] Claes Wohlin and Björn Regnell. Achieving in-
dustrial relevance in software engineering edu-
cation. In Conference on Software Engineering Ed-
ucation and Training, pages 16–25. IEEE, 1999.

[30] Claes Wohlin, Per Runeson, Martin Hst, Mag-
nus C. Ohlsson, Bjrn Regnell, and Anders
Wessln. Experimentation in Software Engineer-
ing. Springer Publishing Company, Incorporated,
2012. ISBN 3642290434, 9783642290435.

[31] Han Xu, Stephan Krusche, and Bernd Bruegge.
Using software theater for the demonstration
of innovative ubiquitous applications. In Joint
Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, pages 894–897, 2015.

A Syllabus for Usability Engineering in Multi-Project Courses
Jan Ole Johanssen, Dominic Henze and Bernd Bruegge, TU München

V. Thurner, O. Radfelder, K. Vosseberg (Hrsg.): SEUH 2019 144


