
Incremental Workflow Mining for
Process Flexibility

Ekkart Kindler, Vladimir Rubin, Wilhelm Schäfer

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany
[kindler, vroubine, wilhelm]@uni-paderborn.de

Abstract. Incremental workflow mining is a technique for automati-
cally deriving a process model from the on-going executions of a process.
This way, the process model becomes more and more accurate, and is
automatically adapted when the process is being changed. Therefore, in-
cremental workflow mining could help in flexible workflow support: In
this paper, we describe a setting that combines incremental workflow
mining with gradually increasing the control of a workflow system.

Process mining is an active research area. Most of the existing process
mining algorithms need a log of the activities resp. the tasks of the pro-
cess executions. In practice, however, many systems used for executing
the processes are not aware of the activities – they see only the docu-
ments and how they are changed. Therefore, they do not provide activity
logs. In order to make process mining available for this kind of systems,
this paper improves an algorithm that identifies the activities from the
accesses to documents. We call this algorithm task mining. In combina-
tion with our incremental workflow mining approach, task mining makes
process mining available for many areas that use document management
systems, version management systems or product data management sys-
tems.

Originally, our incremental workflow mining approach aimed at increas-
ing the maturity level of software enterprises. But, the methods can be
applied to any kind of processes that are supported by some kind of
system that is aware of documents and document changes during the
execution of the processes.

1 Introduction

Process mining [1, 2] denotes a bunch of techniques that automatically extract a
process model (process type) from the execution of one or more process instances
of the corresponding process. The information on the actual execution, typically,
comes from the logs of some workflow management system or of some standard
software. By using logs of more and more executions, the models become more
and more accurate and reliable. In combination with increasing the control of
the workflow system, workflow mining allows to gradually move from ad-hoc
workflows without any process model to strongly structured workflows.

178 Business Process Modeling, Development, and Support

Some process mining techniques do not require that all executions of the
processes need to be there right from the beginning. Rather, the process model
is changed, once new information on the execution of some of its instances is
available. This way, a process model will incrementally be changed when its ex-
ecutions change. Therefore, process mining is one technique for automatically
achieving process flexibility and, in particular, incremental process type evolu-
tion [3, 4].

Most process mining techniques rely on the fact that there are logs of the
tasks that are executed while a process is running. In our terminology, a task
denotes a unit of works represented in a process model. We call an execution of
a task, i. e. its instance, an activity. Therefore, we call a log of executed tasks an
activity log. A process mining algorithm extracts the order in which the activi-
ties have been executed from the activity log and reconstructs a process model
from this information. The problem, however, is that many systems that are
used for executing the processes do not provide activity logs. For example, doc-
ument management systems such as software configuration management (SCM)
systems or product data management (PDM) systems or version management
systems integrated in enterprise resource planning (ERP) systems are aware of
the documents and the changes made; but, they are not aware of the tasks resp.
activities of the underlying processes. Therefore, the event logs or audit informa-
tion of these systems do not provide the information on activities that is needed
for traditional process mining techniques.

In order to improve this situation, we had a fresh look to process mining and
devised a set of algorithms for mining processes from document versioning logs,
which we called incremental workflow mining [5, 6]. These algorithms allow us to
mine process models from audit information of document management systems.
Here, we will not go into the details of our approach. Rather, we will show how
to obtain the information necessary for mining tasks. This information is derived
from the versioning logs in combination with the model that needs to be defined
anyway in order to obtain a quality certificate, i.e. the model of dependencies
between documents.

In this paper, we present the task mining technique – which is the missing
ingredient for completing our incremental workflow mining approach. More im-
portantly, however, we discuss how the incremental workflow mining approach
in combination with gradual workflow support can be exploited for achieving
flexible workflow support.

The paper is structured as follows: We start with an overview of related
work. In Sect. 3, we discuss the relation of process mining and flexible workflow
support and how flexible workflow support could benefit from workflow mining.
Then, we discuss which information is available in typical document management
systems (Sect. 4) and how this information could be exploited for identifying the
activities (Sect. 5).

BPMDS'06 179

2 Related Work

A lot of work has been done in the area of process flexibility since the 90ties [7–9].
Flexibility, dynamic process change and process evolution belong to the major
research topics both in the area of business process management [4] and in the
area of software processes [3]. In these areas, people distinguish between process
model flexibility and process instance flexibility. This difference is also crucial
for the other important research domains, such as process mining.

The research in the area of process mining started in the mid 90ties with new
approaches to the grammar inference problem proposed by Cook and Wolf [1].
The first application of “process mining” to the workflow domain was presented
by Agrawal in 1998 [10]. The approach of Herbst and Karagiannis [11] uses
machine learning techniques for deriving the workflow models. The foundational
approach to workflow mining was presented by van der Aalst et al. [12]. Within
this approach, the α-mining algorithm for discovering workflow models, and its
improvements are presented.

The mining-based approach for process evolution and aligning the model and
the instance flexibility is researched by Weber et al. [13] and is based on adaptive
process management and case-base reasoning paradigms. This approach uses
activity logs and, thus, implicitly assumes the existence of a process management
system, which produces such logs. In contrast to this approach, in the present
paper, we start with the logs of document management system and gradually
introduce the workflow management system to the company.

So, current process mining approaches start dealing with rich and complex
sources of information about process instances. In this context, the problem of
type discovering discussed in Sect. 5 becomes more and more important. Sim-
ilar problems were also discovered in the other research areas, such as reverse
engineering and clustering. In reverse engineering, people use a program run-
time information (execution history) to assist building the class diagram that
reflects the real implementation [14]. Clustering data mining techniques [15], for
example, divide data into groups of similar objects (types, in our context).

3 Incremental Process Change

In this section, we describe our incremental workflow mining approach (for fur-
ther details, see [5]) and its advantages concerning flexibility in business pro-
cesses. This semi-automatic approach is used for constructing process models
from the information about process instances and, thus, for keeping the models
compliant to the rapidly changing instances.

The incremental workflow mining is useful for companies that utilize docu-
ment management systems for a collaborative work of their employees. We use
versioning logs of these document management systems (see Sect. 4) as a source
of information about process instances. So, the approach consists of the following
steps, see Fig. 1:

180 Business Process Modeling, Development, and Support

– First, we do activity mining from the versioning logs. As a result, we get a
set of activities.

– Second, we take the set of discovered activities and do reverse engineering
- derive the overall process model in a system internal formalism (Petri
nets). This model contains behavioural, informational and organizational
perspectives of the process.

– Third, we make the transformation from the system internal model to the ex-
ternal model (UML2.0 Activity Diagrams [16]). This external process model
is shown to managers and employees in the company.

Process
Model

Employee Manager

Document Management
System

Activities

1

2

3

A 01.01.05 14:30 W status: initial
B 01.01.05 15:00 X status: generated
C 05.01.05 10:00 Y status: initial
D 07.01.05 11:00 Z status: pending
A 01.02.05 11:00 W status: initial
B 15.02.05 17:00 X status: generated
D 20.02.05 09:00 Z status: initial
C 28.02.05 18:45 Y status: pending

A 01.01.05 14:30 W status: initial
B 01.01.05 15:00 X status: generated
C 05.01.05 10:00 Y status: initial
D 07.01.05 11:00 Z status: pending
A 01.02.05 11:00 W status: initial
B 15.02.05 17:00 X status: generated
D 20.02.05 09:00 Z status: initial
C 28.02.05 18:45 Y status: pending

A 01.01.05 14:30 W status: initial
B 01.01.05 15:00 X status: generated
C 05.01.05 10:00 Y status: initial
D 07.01.05 11:00 Z status: pending
A 01.02.05 11:00 W status: initial
B 15.02.05 17:00 X status: generated
D 20.02.05 09:00 Z status: initial
C 28.02.05 18:45 Y status: pending

Company

Fig. 1. Incremental Workflow Mining Schema

So, in the context of changing processes, the approach is aimed to fill the
gap between process type evolution and process instance evolution. Our activity
mining and reverse engineering algorithms provide an automatic support for
redesigning the process. They use the information about deviation in the process
instances for this redesign.

The approach works incrementally, i.e. as soon as new process instance is
executed and, consequently, new records are added to the versioning log, we
refine the set of activities and the process model derived on the previous step.
Thus, starting with revolutionary changes in the first step, when there is no
process model at all, in a consecutive manner we come to incremental changes
in the further steps.

Following our approach, after the process models are discovered, they can be
inserted to the Workflow Management System (WfMS), where they are main-
tained and executed. But the role of the WfMS and its user support evolves
with the time. Thus, on the first steps, it is utilized only for storing the newly
discovered models; after further refinements, when process models become more

BPMDS'06 181

faithful, the WfMS starts advising and guiding the users in the company. This
increasingly changing control of the WfMS in the company is called gradual work-
flow support. So, introducing incremental workflow mining and gradual workflow
support in the company enables dealing with the flexibility in a formal and doc-
umented manner.

4 Document Management Systems and their Logs

In this section, we deal with the sources, from which the audit information on
the process instances can be obtained. It can be obtained from different types
of Document Management Systems: Software Configuration Management sys-
tems (SCM), Product Data Management systems (PDM), Version Management
systems integrated in Enterprise Resource Planning systems (ERP). All these
systems are widely used in companies working in the areas of software engi-
neering, mechanical engineering, electrical engineering, telecommunications and
others. For example, SCM systems are an essential part of modern software en-
gineering environments and their use is stipulated in widely accepted software
process improvement frameworks, such as Capability Maturity Model (CMM).

However, the problem is that these systems do not provide logs of activities,
but data about the informational and the organizational perspectives of the
process. In the rest of the paper, we focus on the area of software processes;
but our approach is general and applicable to the other areas, where document
management systems are used for collaborative work of employees in the product
development process.

In spite of the fact that there is such a variety of different document man-
agement systems, their typical auditing capabilities, such as history, logging and
traceability [17] produce similar results. The results differ only syntactically and
since they are obtained from different systems, people are using different com-
mands and utilities. We call these results versioning logs and present a general
format of these logs in this section.

In order to extract this format we have looked at the versioning logs contain-
ing information about commits of documents in several SCM and PDM systems,
such as: CVS [18] and Subversion (open-source file-based version management
systems), Visual SourceSafe [19] (commercial filed-based version management
system for small developer teams), ClearCase [20] (SCM system for large devel-
oper teams), Metaphase and Teamcenter (PDM systems).

An example of a versioning log with the information which is generally avail-
able in these systems is presented in Table 1. The log consists of records (rows).
Each record contains information about the name of the committed document,
e.g. “A”, the timestamp of the commit – “01.01.05 14:30”, the name of the user
who did it – “W” and the comment of the user – “status: initial”. The versioning
log contains many records related to different executions of different processes.
For example, the versioning log in Table 1 contains two executions of one pro-
cess, they are separated with a double line. The set of records, that belong to
one execution of one process is called the execution log.

182 Business Process Modeling, Development, and Support

Table 1. Versioning Log

Document Date Author Comment

A 01.01.05 14:30 W status: initial

B 01.01.05 15:00 X status: generated

C 05.01.05 10:00 Y status: initial, type: manual

D 07.01.05 11:00 Z status: pending

A 01.02.05 11:00 W status: initial

B 15.02.05 17:00 X status: generated

D 20.02.05 09:00 Z status: initial, type: manual

C 28.02.05 18:45 Y status: pending

When dealing with the versioning logs the following problems occur: which
records belong to which execution logs and which execution logs belong to which
process; do all the execution logs use the same naming conventions; how big are
differences between timestamps of two records when they belong to the same
commit, etc. In this paper, we assume that we know the structure of execution
logs, naming conventions are the same in the whole log and records with different
timestamps belong to different commits.

Here, we deal with the following problem: versioning logs do not contain
information about document types, but only information about concrete names
of concrete documents and sequence of their commits. The incremental workflow
mining algorithms discover the behaviour of the process from such versioning logs
and combine it with informational and organizational perspectives. But deriving
the input and the output of activities is not fully covered by these algorithms
because of the missing type information. Thus, the process model, which can be
mined from the logs, can be neither reused in the other projects, nor changed
by the people that were not involved in the concrete process.

5 Discovering the Types

In this section, we propose a solution to the problem described above and raise
the following questions: 1. how do the informational models (document type
models) look like? 2. is there an algorithm for assigning the types to concrete
documents using these models?

Informational Model

One of the most important requirements for modern SCM and PDM systems
is the capability of informational modelling. In the area of PDM, for example,
there is a STEP (Standard for the Exchange of Product Model Data) ISO stan-
dard (ISO DIS 10303), which includes the EXPRESS language for defining the
product models.

BPMDS'06 183

Like for versioning logs, different systems have different informational mod-
els. But there are typical relationships used in most of these models [21], for
example dependency relationship. This relationship implies that the contents of
the dependent document must be consistent with the contents of the master
document.

An example of the informational model is shown in Fig. 2 as a UML class
diagram. In the example, Code depends on the Design. In our case, this is also
a lifecycle dependency – the document Code can appear in the system only after
the Design document.

Design
<<dt>>

Code
<<dt>>

TestResults
<<dt>>

Review
<<dt>>

dep

dep

dep

Fig. 2. Informational Model

Discovering the Types

Now, besides the versioning log with document names, we also have a set of
document types and a dependency relationship on this set. Here, we propose a
principal algorithm for assigning the types to the documents in the log.

Let D be a set of documents in the log with cardinality k = |D|, DT be
a set of document types with cardinality n = |DT | and dep ⊆ DT × DT be
a dependency relationship on the set of document types. The type discovering
algorithm is the following:

– If k <= n, find all possible assignments of types to the documents, i.e. find
all the k-subsets on DT .

– If k > n, find all possible assignments of types to the documents so, that
every type is assigned at least once. In this case, we will get several documents
of the same type.

– For each assignment, for each execution log, check whether dependency re-
lationship is fulfilled (so that dependent document does not appear earlier
than the document it depends on). If at least one execution log exists, where
dependency relationship is not fulfilled, the assignment is wrong and should
be deleted.

Thus, as a result, we assign the types, which do not contradict with the depen-
dencies, to the documents.

184 Business Process Modeling, Development, and Support

For the log in Table 1 and document types in Fig. 2, if we take the 4-
subset {Design, Review, TestResults, Code} and add this type information to
the document names (we use “:” notation to separate the name and the type),
we get the following orders of documents in the logs: (A:Design, B:Review,
C:TestResults, D:Code) for the first execution log and (A:Design, B:Review,
D:Code, C:TestResults) for the second.

In the first execution log, the document of type TestResults appears earlier
than the Code document, but it contradicts the dependency (TestResults,Code),
which shows that TestResults is dependent on Code and not vice versa. So,
the selected subset is not correct. The same way, we can check all the other
subsets and detect, that the only correct subsets are {Design, Code, TestResults,
Review} and {Design, Code, Review, TestResults}. If we had another execution
log containing additional order, for example {A, D, B, C}, we could see, that
the only correct assignment of types is {Design, Code, TestResults, Review}.

The success of the type detection algorithm is dependent on the number
of execution logs and the number of dependencies. If the numbers of logs and
dependencies are not sufficient, we do not come to an unambiguous set of types
in spite of the fact that we are checking all the possible type permutations. In
this case, we need interaction with a user, who has to give us the types of some
documents.

6 Conclusion and Future Work

In this paper, we have presented the advantages of the incremental workflow min-
ing approach and gradual workflow support in the context of flexible processes.
This semi-automatic approach uses information about the changing process in-
stances and derives the process model compliant to them. The information about
instances is obtained from the logs of document management systems. We have
also looked at different document management systems and proposed a uniform
format for these logs.

In the second part of the paper, we have presented the problem of discover-
ing the types of documents in the logs of document management systems and
proposed a solution for it. This solution is used to augment the incremental work-
flow mining approach with information about tasks and, therefore, to enable task
mining.

In order to deal with this problem, we need other information in addition
to the versioning logs. This information contains the types of documents and
dependencies between them. After executing the type discovering algorithm and
possibly interacting with the user, we get the assignment of types to the docu-
ments in the log. The type discovering algorithm was implemented in our research
prototype and tried out on several examples from the software process domain,
see Fig. 3.

Neither the advantages of incremental process mining techniques in the con-
text of changing processes, nor the problem of discovering the types were dis-
cussed in details in the areas of process flexibility and process mining. But using

BPMDS'06 185

Fig. 3. Research Prototype

new process management and new support systems and obtaining more and more
complex multi perspective log information there makes the stated problems more
and more prominent.

So, the future research in this area must deal with the user role in incremental
workflow mining and in guiding process flexibility in the company. Since the
input information for the algorithms is defined manually and the logs can contain
noise or be incomplete, the role of interactive type detection and mining, which
lead to unambiguous solutions, will become more and more important.

References

1. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-
Based Data. ACM Trans. Softw. Eng. Methodol. 7 (1998) 215–249

2. van der Aalst, W., van Dongena, B.F., Herbst, J., Marustera, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data &
Knowledge Engineering 47 (2003) 237–267

3. Bandinelli, S.C., Fugetta, A., Ghezzi, C.: Software Process Model Evolution in
the SPADE Environment. IEEE Transactions on Software Engineering 19 (1993)
1128–1144

4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. In: International
Conference on Conceptual Modeling / the Entity Relationship Approach. (1996)
438–455

5. Kindler, E., Rubin, V., Schäfer, W.: Incremental Workflow mining based on Doc-
ument Versioning Information. In Li, M., Boehm, B., Osterweil, L.J., eds.: Proc.
of the Software Process Workshop 2005, Beijing, China. Volume 3840 of LNCS.,
Springer (2005) 287–301

186 Business Process Modeling, Development, and Support

6. Kindler, E., Rubin, V., Schäfer, W.: Activity mining for discovering software pro-
cess models. In Biel, B., Book, M., Gruhn, V., eds.: Proc. of the Software Engi-
neering 2006 Conference, Leipzig, Germany. Volume P-79 of LNI., Gesellschaft für
Informatik (2006) 175–180

7. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: COCS ’95: Proceedings of conference on Organizational computing systems,
New York, NY, USA, ACM Press (1995) 10–21

8. Reichert, M., Dadam, P.: A framework for dynamic changes in workflow manage-
ment systems. In: DEXA ’97: Proceedings of the 8th International Workshop on
Database and Expert Systems Applications, Washington, DC, USA, IEEE Com-
puter Society (1997) 42–48

9. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A compre-
hensive approach to flexibility in workflow management systems. In: WACC ’99:
Proceedings of the international joint conference on Work activities coordination
and collaboration, New York, NY, USA, ACM Press (1999) 79–88

10. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Proceedings of the 6th International Conference on Extending Database
Technology, Springer-Verlag (1998) 469–483

11. Herbst, J., Karagiannis, D.: An Inductive approach to the Acquisition and Adap-
tation of Workflow Models. citeseer.ist.psu.edu/herbst99inductive.html (1999)

12. Weijters, A., van der Aalst, W.: Process mining: discovering workflow models from
event-based data. In: Proceedings of the 13th Belgium-Netherlands Conference on
Artificial Intelligence (BNAIC 2001). (2001) 283–290

13. Weber, B., Reichert, M., Rinderle, S., Wild, W.: Towards a framework for the
agile mining of business processes. In Bussler, C., Haller, A., eds.: Business Process
Management Workshops: BPM 2005 International Workshops, BPI, BPD, ENEI,
BPRM, WSCOBPM, BPS, Nancy, France, September 5, 2005. Revised Selected
Papers. Volume 3812 of LNCS., Springer (2006) 192–202

14. Guéhéneuc, Y.G., Douence, R., Jussien, N.: No Java without Caffeine: A Tool
for Dynamic Analysis of Java Programs. In: ASE ’02: Proceedings of the 17th
IEEE international conference on Automated software engineering, Washington,
DC, USA, IEEE Computer Society (2002) 117

15. Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue
Software, San Jose, CA (2002)

16. OMG: UML 2.0 Superstructure Specification. Version 2.0 ptc/03-08-02, Object
Management Group (2003) Final Adopted Specification.

17. Frauf, K., Zeller, A.: Software configuration management: State of the art, state
of the practice. In: 9th International Symposium on System Configuration Man-
agement (SCM-9). (1999)

18. Fogel, K.F.: Open Source Development with CVS. Coriolis Group Books (1999)
19. Microsoft: Visual SourceSafe. Web: http://msdn.microsoft.com/vstudio/previous/

ssafe/ (2003)
20. Rational Software Corporation: Rational ClearCase Rational ClearCase LT.

Technical Report 800-026160-000, Rational Software Corporation (2003) Version:
2003.06.00 and later.

21. Conradi, R., Westfechtel, B.: Version models for software configuration manage-
ment. ACM Comput. Surv. 30 (1998) 232–282

BPMDS'06 187

