
Towards Studying the Evolution of Technical Debt
in the Python Projects from the Apache Software

Ecosystem
Jie Tan

University of Groningen
Groningen, The Netherland

j.tan@rug.nl

Mircea Lungu
IT University of Copenhagen

Copenhagen, Denmark
mircea.lungu@gmail.com

Paris Avgeriou
University of Groningen

Groningen, The Netherland
paris@cs.rug.nl

Abstract—The topic of technical debt has gained significant
attention from researchers in recent years since its management
has significant impact of software development. Several studies
that analyze technical debt evolution from different perspectives;
however since most of these studies are done for Java very
little is known about the evolution of technical debt in software
ecosystems consisting of projects written in other languages.

In this paper we run a study across nine Python open-source
software projects belonging to the Apache Software Foundation
to investigate the amount of technical debt that is paid back.
To measure technical debt we use one of the standard tools in
industry: SonarQube. We investigate the impact of using the 28
default rules of SonarQube for Python versus using an extended
set of 208 rules to detect instances of technical debt.

Index Terms—Software Evolution, Technical Debt, Software
Ecosystems

I. INTRODUCTION

Technical debt is a metaphor introduced by Ward Cunning-
ham to explain the unavoidable interests developer pay while
getting the short-term benefits [1] [2].

There have been several studies that analyzed technical debt
for developing techniques and tools to detect specific types of
technical debt, such as code smells [3] [4] or self-admitted
technical debt [5] [6] [7] [8].

Olbrich et al. [9] investigated two code smells and analyze
historical data over several years of development of two large
scale open source systems.

Software ecosystems are groups of projects that co-evolve
together in the same environment [10]. Although there has
been a flurry of research activity in studying software ecosys-
tems, there has been little work focusing on analyzing the
evolution of technical debt at the ecosystem level. In one of
the few such works, Digkas et al. [11] studied the evolution
of technical debt in 66 Java projects over a period of 5
years. They used SonarQube to investigate how technical
debt evolved and what types of issues included. In a follow
up work, they selected 57 Java projects from the Apache
ecosystem, focusing on the amount of technical debt that is
paid back and the issues that are fixed [12].

However, to the best of our knowledge, there is no study
focuses on technical debt evolution in a Python ecosystem.

Given the pre-eminence of the Python programming language
at the current moment and the lack of technical debt studies
for systems written in the language, we decide to extend the
previous work of Digkas which analyzed the Java projects
from the Apache ecosystem [12] by analyzing the Python
projects from the same ecosystem.

II. STUDY DESIGN

Various techniques have been proposed for detecting tech-
nical debt. However, since our work does not focus on the
detection aspect, we use SonarQube, a third party tool for this
purpose. The tool is one of the most popular industrial tools for
source code technical debt measurement and reporting and has
been used also in the study of the Java systems in the Apache
ecosystem.

The goal of our study is to investigate the types of issues
that have been fixed during the evolution of Python projects in
the Apache ecosystem and the differences between Java and
Python, also comparing the types of technical debt between
default rules and extended rules (rules for Python debt that
must be manually enabled in SonarQube). To this end, we ask
two research questions:

1) What is the difference of technical debt types between
default rules and extend rules? This RQ aims to find
the change results after using SonarQube plugins, and
to explain why we should use the extended rules.

2) What is the fixing prevalence of different issue types?
This RQ investigates how prevalent the technical debt is
in open source systems.

A. Project Selection

The GitHub repository of the Apache Software Foundation
contains projects in more than 30 languages. 38 out of 1574
Apache projects are written in Python. We use two elements
to select Python projects from the Apache ecosystem:

1) Size: at least 100 classes
2) Evolution: at least two years and 1000 git commits
Table 1 shows the nine projects that are left after applying

these inclusion criteria:

1



TABLE I
SELECTED PROJECTS

Project Name Classes Commits Last Commit First Commit
allura 1,195 9,026 Feb 2018 Oct 2009

qpid-python 385 1,000 Mar 2018 Sep 2006
cassandra-dtest 460 5,074 Mar 2018 Sep 2011

infrastructure-puppet 122 8,863 Mar 2018 Jul 2015
libcloud 1,319 5,981 Mar 2018 Jul 2009

incubator-superset 296 2,846 Mar 2018 Jul 2014
incubator-mxnet 638 6,755 Mar 2018 Apr 2015

bloodhound 1,068 1,238 Feb 2018 Jan 2012
incubator-airflow 638 6,755 Mar 2018 Oct 2014

Fig. 1. Data extraction process

B. Data Extraction

To study the evolution of a large number of systems over
an extended period, one must make a trade-off between the
granularity of the analysis and the feasibility of the analysis
(e.g. analyzing all the versions of all the nine selected systems
with SonarQube could easily take many months since the tool
has no possibility of performing an incremental analysis, but
instead, with every commit the system is fully analyzed as
a whole). In this study, we analyze weekly versions of each
project.

Figure 1 shows the main steps of the data extraction process
that we follow in this work:

1) We clone the GitHub repositories of the Python projects
in the Apache Ecosystem and analyze the version repos-
itory of all the cloned systems

2) We use the two criteria of size and evolution to select
Python projects from the Apache ecosystem. We are left
with 9 projects.

3) We analyze the entire change history of each project
with a weekly resolution by using SonarQube with the
default rules (28 rules)

4) We also analyze the history of every project a second
time with an extended set of all the possible rules for
Python (208 rules).

In this context we want to study the evolution of technical
debt fixes.

III. PRELIMINARY RESULTS

Analyzing multiple versions of a project with SonarQube is
a very time consuming activity, since SonarQube can not reuse
results from the analysis of a previous version, so the time
required for analysis is proportional to the number of versions
that are being analyzed. This slows down the speed with which
the analysis can be done. This is why in this remainder of this
paper we only look at one project: qpid-python but we plan
to update the report as the results from the other systems are
flowing in.

A. What is the difference of technical debt types between
default rules and extend rules?(RQ1)

Figure 2 depicts the relationship between three parts of the
SonarQube rules:

• The grey part shows 434 (extended) Java rules
• The blue part shows 208 (extended) Python rules
• The red part shows 28 default Python rules

When we used the extra plugins of SonarQube and added all
the corresponding rules, the number of rules that appear both
in Python and Java increased to 27. Thus, using the SonarQube
plugin will increase the comparability and we encourage other
researchers to do it.

Fig. 2. Data extraction process (grey part shows 434 extra rules for Java; blue
part shows 208 extended rules for Python; red part shows 28 default rules for
Python

TABLE II
DEFAULT AND EXTRA RULES

Project Name Unresolved Fixed
Default Extra Default Extra

allura 1k 8.2k 4.3k 106k
qpid-python 622 6.9k 2.5k 26k

cassandra-dtest 775 17k 2.8k 68k
infrastructure-puppet 418 4k 853 10k

libcloud 916 11k 2k 24k
incubator-superset 135 1.8k 629 8k

incubator-mxnet 1.7k 17k 2.6k 107k
bloodhound 1.1k 9.6k 1.9k 11k

incubator-airflow 895 6.2k 1.9k 23k

2



Fig. 3. Distribution of issues by issue type for the 208 types of issues

Table II presents the unresolved and fixed issues for nine
Python projects, and compares the number of issues between
default rules and extended rules for each project.

B. What is the fixing prevalence of different issue types?(RQ2)

To quantify how much TD exists and investigate how
prevalent the TD is in both all projects and each project, we
use the 208 extended rules of SonarQube. A subset of 126 out
of 208 rules are found in the nine selected Python projects.

To answer this RQ, we sum up all the issues, without
differentiating among projects. The histogram of Figure 3
presents the distribution of the number of issues for each type:
each vertical bar is an issue type, and its height is proportional
to the number of issues of that type. The figure shows a
strongly skewed distribution where some of issue types are
introduced frequently but more than half of the issue types
are introduced rarely.

The strongly skewed distribution of fixed issues types for
is the same for both Python and Java.

C. Conclusions and Future Work

We have seen that SonarQube has different issue types for
Java projects and Python projects. Out of these 27 rules appear
both in Python and Java. Even if the majority of the issues are
different, the distribution of issue types that are being fixed is
similar: a strongly skewed distribution with several issue types
being introduced frequently and more than half of the issue
types being introduced very rarely.

In the future work, we plan to explore in more detail the
differences and similarities between Python and Java from the
point of view of technical debt evolution. Especially we plan
to investigate the types of issues that have been fixed during
the evolution of Python projects and the amount of TD that is
paid back.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” in
Addendum to the Proceedings on Object-oriented Programming
Systems, Languages, and Applications (Addendum), ser. OOPSLA ’92.
New York, NY, USA: ACM, 1992, pp. 29–30. [Online]. Available:
http://doi.acm.org/10.1145/157709.157715

[2] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, Nov
2012.

[3] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. D. Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, May
2015.

[4] N. Moha, Y. Gueheneuc, L. Duchien, and A. L. Meur, “Decor: A method
for the specification and detection of code and design smells,” IEEE
Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36, Jan
2010.

[5] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, Sept 2014, pp. 91–100.

[6] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), May 2016, pp. 315–326.

[7] E. d. S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural language
processing to automatically detect self-admitted technical debt,” IEEE
Transactions on Software Engineering, vol. 43, no. 11, pp. 1044–1062,
Nov 2017.

[8] M.Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang, “Automating
change-level self-admitted technical debt determination,” IEEE Trans-
actions on Software Engineering, pp. 1–1, 2018.

[9] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,” in
2009 3rd International Symposium on Empirical Software Engineering
and Measurement, Oct 2009, pp. 390–400.

[10] M. Lungu, “Reverse engineering software ecosystems,” Ph.D.
dissertation, University of Lugano, Nov. 2009. [Online]. Available:
http://scg.unibe.ch/archive/papers/Lung09b.pdf

[11] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolu-
tion of technical debt in the apache ecosystem,” in Software Architecture.
Springer International Publishing, 2017, pp. 51–66.

[12] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in
the apache ecosystem?” in 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), March 2018,
pp. 153–163.

3

http://doi.acm.org/10.1145/157709.157715
http://scg.unibe.ch/archive/papers/Lung09b.pdf

	Introduction
	Study Design
	Project Selection
	Data Extraction

	Preliminary Results
	What is the difference of technical debt types between default rules and extend rules?(RQ1)
	What is the fixing prevalence of different issue types?(RQ2)
	Conclusions and Future Work

	References

