
On the impact of pull request decisions
on future contributions

Damien Legay
Software Engineering Lab

University of Mons
Mons, Belgium

damien.legay@umons.ac.be

Alexandre Decan
Software Engineering Lab

University of Mons
Mons, Belgium

alexandre.decan@umons.ac.be

Tom Mens
Software Engineering Lab

University of Mons
Mons, Belgium

tom.mens@umons.ac.be

Abstract—The pull-based development process has become
prevalent on platforms such as GitHub as a form of distributed
software development. Potential contributors can create and
submit a set of changes to a software project through pull
requests. These changes can be accepted, discussed or rejected by
the maintainers of the software project, and can influence further
contribution proposals. As such, it is important to examine the
practices that encourage contributors to a project to submit pull
requests. Specifically, we consider the impact of prior pull re-
quests on the acceptance or rejection of subsequent pull requests.
We also consider the potential effect of rejecting or ignoring pull
requests on further contributions. In this preliminary research,
we study three large projects on GitHub, using pull request data
obtained through the GitHub API, and we perform empirical
analyses to investigate the above questions. Our results show that
continued contribution to a project is correlated with higher pull
request acceptance rates and that pull request rejections lead to
fewer future contributions.

I. INTRODUCTION

The turn of the century saw the rise of version control
systems (VCS) to support large-scale software engineering
projects. Centralised VCS (e.g. CVS and Subversion) allow
developers to share a common repository. Decentralised ones
(e.g., Mercurial and git) allow each developer to own a local
copy of the repository containing the full change history.
This enables collaborative (often geographically distributed)
software development on an hitherto unmatched scale. It has
given birth to extremely popular online hosting platforms such
as GitHub, BitBucket and Mozdev, allowing thousands of
people to remotely work together on the same projects. These
platforms provide additional features on top of their underlying
VCS to further support distributed collaborative development.
Examples of such features are issue tracking, code review,
integrated discussions, team management, documentation &
wiki and integration with external tools.

Today, git has become the most popular distributed VCS by
a large margin1. It will thereby be the focus of our current
research. git supports two types of development processes:the
shared repository approach, where all contributors are given
write access to the central repository and can therefore con-

1For anecdotal evidence, based on a 2016 survey with 881 votes, 87%
of responders identified git as their VCS of choice https://rhodecode.com/
insights/version-control-systems-2016

tribute to the project directly; and the pull request (PR)
approach where only project integrators are allowed to do so.

With the PR approach, external contributions are managed
indirectly: would-be contributors create a fork of the repository
and, once they have addressed an issue or lack in the project,
they request for their modifications to be “pulled” to the
repository by submitting a pull request. The project integrators
can decide to approve these PRs, which are then merged
into the main project’s codebase. PRs are extremely valuable,
as they represent a major part of the project’s continued
evolution and expansion. It is therefore important to incentivise
people to create pull requests, thereby contributing to the
project. Previous studies have attempted to identify the factors
influencing whether and when a PR will be merged [1]–[3].

We expand upon this work, by focusing on determining
those patterns of PR-acceptance behaviour that are indicative
of continued contribution. Our working hypothesis is that peo-
ple contributing to a project repository through PRs may get
demotivated (and hence stop contributing) if their submitted
PRs get rejected too often, or if too many of them are left open
without any decision to merge them. Evolutionary insights in
such phenomena may help us to understand which of such
factors tend to dissuade people to keep contributing to a given
project. To this extent, we quantitatively study the following
research questions using techniques based on survival analysis:

RQ1: How are PR acceptance and rejection rates influenced
by previous PRs? As a contributor accrues familiarity with a
project, he becomes more able to contribute effectively, which
we expect to result in a lower PR rejection rate. Similarly,
as integrators become more acquainted with a contributor,
they may develop a favourable bias towards his PRs, further
decreasing rejection rates.

RQ2: To which extent does PR acceptance or rejection
influence further contributions? When his PRs are rejected,
a developer could become discouraged and stop, temporarily
or permanently, contributing to the project as a result.

RQ3: To which extent do PRs left open influence further
contributions? A PR is sometimes left open for a long period,
neither rejected nor merged into the core project. We posit
this may constitute a form of ”soft” rejection, wherein the
integrators want to avoid alienating the contributor but do not
want to merge the PR. Seeing a large number of untreated

https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016

PRs may send an implicit message to potential contributors
that the project integrators are unwilling or unable to process
the volume of contributions they receive, and, therefore, that
their participation to the project would not be valued or useful.

To provide preliminary evidence for these RQs, we carry
out an empirical analysis on a large number of PRs in three
large, popular and long-lived projects on GitHub. We focus
on GitHub because it is undoubtedly one of the largest and
most active online hosting services for git projects.

II. RELATED WORK

Several researchers have studied aspects related to the PR-
based software development process, either qualitatively or
quantitatively. Gousios and Zaidman proposed a PR dataset [4]
including 900 projects and 350,000 PRs extracted using
GHTorrent. Through a mixed-method analysis of 291 GitHub
projects, Gousios et al. [1] established that the PR-based
development approach is used as frequently as the shared
repository approach on GitHub. They observed that most PRs
are short, receive few comments and are processed quickly.
They also found that most PR rejections are due to the
distributed nature of the pull-based process (e.g., PRs that are
already obsolete upon creation).

In a follow-up work [3], they interviewed 645 contributors
to examine their work practices and identify the challenges
they face. They found that while contributors tend to check
if their intended contribution is already covered, they do
not communicate their intended contributions. Interviewed
contributors outlined that poor responsiveness on the part of
integrators could be a barrier to attracting or retaining contrib-
utors. Contributors also stated that it is hard to accept rejection
of their PRs, as rejected PRs could harm their reputation as
developers. Conversely, it is hard for integrators to explain the
reasons for rejecting PRs. Rejecting a PR without alienating
its contributor was already identified as a challenge of the
PR-based model [2]. In that paper, they evaluated PRs from
an integrator’s point of view by interviewing 749 project
integrators in order to understand which criteria are used to
determine the quality of a PR and how they prioritise the
evaluation of contributions. They found that most integrators
decide to merge PRs based on project’s objectives, their quality
as measured by compliance to the project guidelines, test
coverage and passing continuous integration checks.

Yu et al. [5] studied the factors that contribute to latency in
PR reviews, defining this latency as the “time interval between
pull request creation and closing date”. They found that PR
latency is mainly affected by process-related factors such as
whether a PR was assigned to a specific reviewer or not. They
also found that continuous integration is a dominant factor in
PR latency.

Rahman and Roy [6] categorised the technical issues dis-
cussed in PR comments and analysed information about
projects and developers to obtain insights into PR acceptance
or rejection. They discovered that the rate of PR rejection
is highly correlated to the programming language used (e.g.,
Java PRs are more frequently rejected than PRs for the C

programming language), the application domain of the project
(e.g., the database application domain sees fewer merged PRs
than the IDE domain), the maturity of a project (older projects
accept fewer PRs) and the number of developers on the project.

Tsay et al. [7] explored both technical and social factors
that contribute to acceptance of PRs. They found that, although
technical factors like the presence of tests in the PR and a small
number of lines changed contribute to a higher probability
of acceptance, social factors, such as whether the contributor
follows the user that closes the PR, had stronger associations
to PR acceptance than technical ones.

Terrel et al. [8] established that PR acceptance is subject
to a bias against women, when their gender is identifiable.
Rastogi et al. [9] built upon the factors identified in [1] and
[7], adding information about the geographical location of
contributors and integrators. They conclude that PR acceptance
rate is higher when both contributor and integrator are from the
same country, with the exception of India, and that contributors
from some countries (e.g., Switzerland and Japan) see their
contributions more frequently accepted than contributors from
other countries (e.g., China and Germany).

III. METHODOLOGY

The main goal of our research is to study the longevity of
PR-based contributions to large open source software projects.
We focus on software development through GitHub, the
largest and most active online hosting service for git projects.
As of 2018-09-30, GitHub has hosted 96M+ repositories,
31M+ developers, and 200M+ PRs and about one third of
these repositories and PRs were created in the last 12 months.2

For this exploratory research, we selected three case studies
of large open source git projects on GitHub. These projects
have been obtained by convenience sampling. This method is
acceptable for getting preliminary research insights, and will
be replaced in a later phase to obtain a bigger corpus that
covers a larger set of relevant projects.

The main criteria for our selected sample were that the
projects should be representative of a typical PR-based soft-
ware development process. To do so, the projects needed to be
mature (i.e., have a time span of several years), have an active
development history with a huge number of commits and
contributors, and of course contain a very large number of PRs,
in order to be able to derive statistically significant results from
their analysis. In addition to this, we selected projects written
in three different languages to ensure sufficient diversity. The
three selected projects are ansible, rails and kubernetes.
Some of their characteristics are shown in Table I.

Because we have observed problems of missing or inconsis-
tent data when using GHTorrent, we decided to extract the PR
data of the selected projects from GitHub repositories through
the GitHub API directly. For each PR, the data contains
information about the PR creation date, its status (accepted,
rejected or open), its closing date (for accepted and rejected
PRs), the GitHub ID of its author and its PR number. This

2https://octoverse.github.com

2

https://octoverse.github.com

PR number corresponds to a chronological ordering of issues
opened in the repository, of which PRs are a subset.

TABLE I: Project repository characteristics on 24/10/2018

repository language start year #contributors #commits #PR
ansible Python 2012 3930 40k 27k

rails Ruby 2010 3683 70k 22k
kubernetes Go 2014 1861 71k 42k

IV. PRELIMINARY RESULTS

RQ1: How are PR acceptance and rejection rates influenced
by previous PRs?

To answer RQ1, we examined whether repeat contributions
impact a contributor’s PR acceptance rate. To that effect, for
each repository we analysed the PR acceptance rate in function
of the number of submitted PRs by each contributor.

Figure 1 displays, for each positive integer threshold x
between 1 and 250, the PR acceptance rate (blue curve) and
rejection rate (orange curve) considering the first x PRs of each
contributor only, thereby discarding contributors having less
than x PRs. The green curve shows the number of contributors
having submitted at least x PRs. Thresholds above 250 are
excluded due to the low fraction of contributors having that
many submissions: 0.33% for ansible, 0.15% for rails and
1.23% for kubernetes.

One can observe in all three examined project repositories
that, as contributors submit more PRs, their acceptance rates
increase significantly. Over the first 50 PRs, we observe a rise
from 54.2% to 80.0% for ansible, from 61.3% to 81.4% for
rails, and from 49.1% to 74.3% for kubernetes. Beyond the
50 first PRs, all three projects saw continuous increase in PR
acceptance rates as contributors submitted more PRs to them.

These results agree with prior findings by Tsay et al [7]
and Gousios et al [1], but are to be nuanced, given the
rapid decrease in number of contributors as the threshold x
increases. As a consequence, in Figure 2 we looked at the PR
acceptance rate of all contributors, excluding the few that made
over 250 contributions. We observe that, while contributors
with a high number of PRs tend to have a consistently high
PR acceptance rate, the behaviour for contributors with few
PRs is quite unpredictable: they can have either low or high
acceptance rates. Therefore, although the number of previous
PRs influences acceptance rate, this can only be verified
starting from a certain threshold of PRs, below which no
conclusion can be reached as to whether such an influence
exists.

RQ2: To which extent does PR acceptance or rejection influ-
ence further contributions?

While related work (e.g., [1]) has studied the impact of
PR acceptance rate on future PR decision time, RQ2 focuses
on the impact of PR acceptance rate on the likelihood of
making further PRs. To do so, we compared the probability
to contribute again after either a rejected or an accepted PR.
The results are presented in Table II. In all three considered

TABLE II: Likelihood to contribute again

repository after acceptance after rejection
ansible 85.6% 73.0%
rails 83.9% 69.2%
kubernetes 95.5% 88.2%

projects, contributors are more likely to make subsequent PRs
if their prior PRs were accepted.

We then used the statistical technique of survival analysis
(a.k.a. event history analysis) [10]. Given a specific “event
of interest” (in our case: acceptance or rejection of a PR),
survival analysis models the “time to event” data during a
given observation period. Survival functions model the survival
rate, i.e., the expected time duration until the event of interest
occurs. The models take into account the “censoring” of some
observed subjects, either because they enter or leave the study
during the observation period, or because the event of interest
was not observed for them during the observation period.
A common non-parametric statistic used to estimate survival
functions is the Kaplan-Meier estimator [11].

We performed an analysis of the survival probability to
submit a new PR in function of the time elapsed since the latest
submission (at that time) of a PR by the same contributor. In
order to assess if the PR acceptance rate influences the delay
for a contributor to submit new PRs, we considered three ac-
ceptance rate classes: [0, 33%[, [33%, 67%[and [67%, 100%].
The survival curves are shown in Figure 3. We observe
that the survival probability is higher for classes of higher
acceptance rate, regardless of the considered projects. For
instance, after ten days, the probability to submit a new PR is
72.2% in Ansible if the acceptance rate is over 67%, while this
probability drops to 52.9% if the acceptance rate is between
33% and 67%, and even to 31.5% if the acceptance rate is
below 33%. Similar patterns can be observed for the two other
projects. We carried out pairwise log-rank tests to compare
whether statistically significant differences could be found
between the survival curves. The differences were statistically
confirmed at α = 0.01 (after a Bonferroni correction [12]),
i.e., the null hypotheses, assuming that the survival curves for
different acceptance rate classes are the same, were rejected.

We performed a proportional hazards regression based on
Cox regression to determine to which extent the acceptance
rate impacts the probability of further contribution [13]. The
Cox regression is a method for investigating the effect of
several variables upon a specified event’s hazard rate. For this
analysis, we included the following factors: the acceptance rate
of all prior PRs by the same contributor; the number of prior
PRs made by this contributor, and the time elapsed since the
contributor’s first PR (the contributor’s age).

TABLE III: Influence of acceptance rate, number of PRs, and
contributor age on the time required to submit a new PR.

regression coefficients
repository acceptance rate #prior PRs contributor age concordance
ansible 0.5481 0.0038 -0.0009 0.689
rails 0.4630 0.0047 -0.0015 0.728
kubernetes 0.7455 0.0031 -0.0016 0.637

3

ansible rails kubernetes

Fig. 1: Acceptance rate of the first x PRs of each contributor.

ansible rails kubernetes

Fig. 2: Acceptance rate of all PRs by contributor.

Table III summarizes the results we obtained. The concor-
dance (fourth column) provides the goodness of fit of the
model. It is comprised between 0 (perfect anti-concordance)
and 1 (perfect concordance). The table also reports the re-
gression coefficients for the three considered factors. These
coefficients measure the magnitude of the impact of the afore-
mentioned factors on the probability to submit a new PR. All
these coefficients are statistically significant (p < 0.01 after
Bonferroni correction). Their values signify that an increase
of one increment (10% in acceptance rate, 1 prior PR or 1
day since the contributor’s first PR) multiplies the probability
to submit a PR by a factor ecoefficient. For instance, in the case of
Kubernetes: an increase of 10% in PR acceptance rate modifies
the probability to submit a new PR by a factor 1.0774, each
prior PR by 1.0032 and each day since the contributor’s first
PR by 0.9984.

RQ3: To which extent do PRs left open influence further
contributions?

To provide insight into RQ3, we looked at the proportion of
PRs that were ultimately accepted or rejected given the time
it took to decide (the PR’s age). We excluded PRs that were
left open, since no decision has been reached for those. This
is plotted in Figure 4. We notice that, the longer a PR remains
open, the higher the probability that it will be rejected. After a
threshold x, PRs have a higher probability to be rejected than
accepted. The threshold is 28 days for ansible, 5 days for
rails and 25 days for kubernetes. Presuming that contributors
are aware of this phenomenon, we expect that they implicitly
consider PRs left open for a too long duration as being tacitly
rejected, producing effects similar to those identified in the
previous RQ. This preliminary result needs to be confirmed
with further analyses.

V. THREATS TO VALIDITY

A threat to the validity of this paper is the fact that we
only selected three projects in this exploratory phase, so the
preliminary findings might not generalise to bigger sets of
projects. Choosing only large, popular and mature projects are
also a source of bias, as Rahman and Roy [6] found that such
factors affect PR acceptance rates.

Another threat is that the PR status returned by the GitHub
API does not necessarily correspond to the actual fate of the
PR in some repositories. One such case is homebrew-core,
where the policy of the repository is to close most PRs without
merging them, but to integrate those they deem appropriate
through another mechanism, such as the integrators commit-
ting the changes themselves.If analyses were to be applied
to this repository, the rate of acceptance would be artificially
low due to that specific PR handling policy. Another example
is that of angular, wherein PRs marked with specific tags
(“PR action: merge” and “PR target: *” where * represents
one or more branch branches to merge the PR into) will have
their relevant code automatically integrated into the repository
through commits. Those PRs will appear to be rejected on
GitHub, even though they aren’t. It would be possible to
recover the actual PR status based on those tags, which is
not the case for homebrew-core.

Yet another threat is tied to the way we have identified
contributors. It has been reported that a single individual may
use multiple identities in different capacities or at different
times on software repositories [14]–[16]. More specifically, it
may be the case that the same author owns multiple GitHub
accounts, or that multiple authors contribute under the same
GitHub account. In that case, we may have erroneously
attributed the PRs to an incorrect identity. This could have
affected our findings. Therefore, as future work, we aim to

4

ansible rails kubernetes

Fig. 3: Survival curves for the probability to submit a next PR, grouped by acceptance rate classes.

ansible rails kubernetes

Fig. 4: Proportion of PRs that were ultimately accepted in function of their age

empirically study the impact of such incorrect identifications.

VI. CONCLUSION

The collaborative development of open-source software
through a pull-based contribution process involves subtle so-
cial interactions that can influence the frequency and likelihood
of contribution to a repository, or even its ability to retain
contributors. Recent qualitative results have highlighted that
contributors do not appreciate the rejection of their PRs, and
that they find poor responsiveness from integrators frustrating.
Integrators, on the other hand, are wary of alienating contrib-
utors in their handling of PRs.

In this paper, we provide preliminary quantitative results
showing that a contributor’s PRs are more more likely to be
accepted when he has submitted more PRs previously. We
also reveal the impact of PR decisions on the willingness
of contributors to contribute anew. Indeed, fewer contributors
submit a new PR after the previous one was rejected than when
the previous one was accepted. This highlights the importance
for project integrators to avoid aleniating contributors, lest they
lose their contributions.

ACKNOWLEDGEMENTS

This research was supported by the FRQ-FNRS collabo-
rative research project R.60.04.18.F SECOHealth, the Excel-
lence of Science project 30446992 SECO-ASSIST financed by
FWO-Vlaanderen and F.R.S.-FNRS, and F.R.S.-FNRS Grant
T.0017.18.

REFERENCES

[1] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An ex-
ploratory study of the pull-based software development model. In
International Conference on Software Engineering, pages 345–355.
ACM, 2014.

[2] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van
Deursen. Work practices and challenges in pull-based development:
The integrator’s perspective. In International Conference on Software
Engineering, pages 358–368. IEEE Press, 2015.

[3] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work
practices and challenges in pull-based development: The contributor’s
perspective. In International Conference on Software Engineering, pages
285–296. ACM, 2016.

[4] Georgios Gousios and Andy Zaidman. A dataset for pull-based develop-
ment research. In Working Conference on Mining Software Repositories,
pages 368–371. ACM, 2014.

[5] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu. Wait for it:
Determinants of pull request evaluation latency on GitHub. In Working
Conference on Mining Software Repositories, pages 367–371, May 2015.

[6] Mohammad Masudur Rahman and Chanchal K. Roy. An insight into
the pull requests of GitHub. In Working Conference on Mining Software
Repositories, pages 364–367. ACM, 2014.

[7] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and
technical factors for evaluating contribution in GitHub. In International
Conference on Software Engineering, pages 356–366. ACM, 2014.

[8] Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emer-
son Murphy-Hill, Chris Parnin, and Jon Stallings. Gender differences
and bias in open source: pull request acceptance of women versus men.
PeerJ Computer Science, 3:e111, May 2017.

[9] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and André
van der Hoek. Relationship between geographical location and evalua-
tion of developer contributions in Github. In International Symposium
on Empirical Software Engineering and Measurement. ACM, 2018.

[10] O. Aalen, O. Borgan, and H. Gjessing. Survival and Event History
Analysis: A Process Point of View. Springer, 2008.

[11] E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete
observations. J. American Statistical Association, 53(282):457–481,
2012.

[12] Winston Haynes. Bonferroni Correction, pages 154–154. Springer, New
York, 2013.

[13] D. R. Cox. Regression models and life-tables. Journal of the Royal
Statistical Society. Series B (Methodological), 34(2):187–220, 1972.

[14] Mathieu Goeminne and Tom Mens. A comparison of identity merge
algorithms for software repositories. Science of Computer Programming,
78(8):971–986, August 2013.

[15] Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J.
van den Brand. Who’s who in Gnome: using LSA to merge software
repository identities. In International Conference on Software Mainte-
nance, pages 592–595. IEEE, 2012.

[16] I. S. Wiese, J. T. d. Silva, I. Steinmacher, C. Treude, and M. A.
Gerosa. Who is who in the mailing list? Comparing six disambiguation
heuristics to identify multiple addresses of a participant. In International
Conference on Software Maintenance and Evolution, pages 345–355,
Oct 2016.

5

	Introduction
	Related Work
	Methodology
	Preliminary results
	Threats to validity
	Conclusion
	References

