
Actionable Measurements – Improving The
Actionability of Architecture Level Software

Quality Violations
Wojciech Czabański

Institute for Informatics
University of Amsterdam

Amsterdam, the Netherlands
Email: wojciech.czabanski@gmail.com

Magiel Bruntink
Software Improvement Group
Amsterdam, the Netherlands
Email: m.bruntink@sig.eu

Paul Martin
Institute for Informatics

University of Amsterdam
Amsterdam, the Netherlands

Email: p.w.martin@uva.nl

Abstract—When system components become more coupled
over time, more effort must be dedicated to software architecture
refactoring. Tightly coupled components present higher risk—
they make the system more difficult to understand, test and
modify. In order to allocate the refactoring effort effectively, it
is crucial to identify how severely components are coupled and
which areas of the system involve the most risk to modify.

In this paper we apply the concept of architecture hotspots
together with the Software Improvement Group Maintainability
Model to identify violations in architecture design. We propose a
prototype tool that can identify and present architecture smells to
developers as refactoring recommendations. We then apply the
tool to open-source projects, validating our approach through
interviews with developers. Developers found the hotspots com-
prehensible and relevant, but there is room for improvement with
regards to actionability.

I. INTRODUCTION

Software maintainability is an internal quality of a soft-
ware product that describes the effort required to maintain a
software system. Low maintainability is connected with low
comprehensibility. Glass argues that the most challenging part
of maintaining software is understanding the existing prod-
uct [1]. What follows is that code which is hard to understand
is also difficult to modify in a controlled manner and test for
defects. If changes are difficult to introduce and code hard
to understand, the probability of bugs being introduced is
very high, which raises the cost of further developing and
maintaining the system.

We focus on the Maintainability Model developed by the
Software Improvement Group (SIG) [2]. From this model,
10 guidelines have been derived to help developers quickly
evaluate the maintainability of their code and provide ac-
tionable suggestions to increase its quality, such as keeping
complexity of units low and interfaces small. The guidelines
are implemented in the Better Code Hub tool [3], which
applies them to provide feedback to developers. In particular
we look at component independence, because it is considered
the most challenging to improve, based on user feedback. Our
goal is to provide developers with more actionable feedback
in addition to the diagnosis provided by Better Code Hub, so
that they can improve the maintainability of the code.

Currently, Better Code Hub provides an overview of com-
ponents and the interactions between them, such as incoming
and outgoing calls to and from modules in other compo-
nents. It does not however provide specific guidance as to
how the developer can reduce the component coupling and
improve their independence. Attempts have been made to
generate suggestions for improving modularity by suggesting
move module refactoring operations, framing the problem
as a multi-objective search [4]. Such refactoring operations
however may either not improve modularity or make the
codebase less semantically consistent. Identifying patterns in
poorly modularized code can be a starting point for devising
better recommendations as to how the components can be
decoupled better. Thus we apply the architecture hotspot
patterns described by Mo et al. [5] to conduct a study on open
source projects in order to evaluate whether hotspots can be
found in open source projects and used to provide refactoring
recommendations. Furthermore we investigate whether pre-
senting quality violations based on hotspots helps developers
decrease coupling between components. In order to validate
our approach, we construct a hotspot detector, integrate it with
the Better Code Hub analysis tool and visualise the hotspots.
Based on initial feedback from developers, indicating that
the suggestions are comprehensible and relevant we finally
consider how to build upon our work in future. We look to
improve the tool by adding more detailed information which
triggers the hotspot detection.

II. BACKGROUND

Program analysis is the process of analysing the behaviour
of a software program with regards to a certain properties such
as correctness, robustness or maintainability [6]. There exist
a number of means of program analysis already defined in
research literature, including both static and dynamic analysis,
maintainability guidelines and detection of ‘code smells’. We
survey a few of these approaches below.

1



A. Static and dynamic program analysis

Source code is commonly used as input for static analysis
tools. In certain cases other inputs are used as well such
as revision history. Syntactic analysis and software metrics
computation involves analysing the source code of a system,
often represented as a graph. Examples of tools for obtaining
the source code graph and metrics include Understand1, the
Software Analysis Toolkit from SIG2 and SonarQube [7]. Our
intention was to improve the actionability of measurements.
In this respect, SonarQube was aimed at integration within a
CI/CD pipeline, making it difficult to use in a research setting,
because of the existing pipeline and the time limitations
of the project make it unfeasible to modify it. Understand
exported the dependency graph to a commonly used format
and supported a variety of programming languages, but was
challenging to integrate with the SIG infrastructure, which
left us choosing the Software Analysis Toolkit to pre-process
source code for further analysis.

We also investigated dynamic analysis methods review-
ing tools such as Valgrind [8], Google Sanitizers [9] and
Daikon [10]. We chose to focus however on analysing source
code only—to use dynamic analysis, the executable for every
project would need to be built locally. In addition to that, the
reviewed tools detect possible faults in the code as opposed
to analysing maintainability.

B. SIG Maintainability Model

SIG developed a maintainability model for software based
on empirical software engineering research [11]. They use a
in-house tool, the Software Analysis Toolkit, to conduct static
analyses of software systems. The Maintainability Model is
also accessible for GitHub developers through the Better Code
Hub tool, which conducts an analysis of a repository and
evaluates it against the ten SIG guidelines [3]. In our paper
we focus on the ‘Couple Architecture Components Loosely’
guideline, which advises minimising the number of throughput
components. These have a high fan-in/fan-out values [12].
Similarly to modules, components that act as intermediaries
are more tightly coupled and more difficult to maintain in
isolation.

C. Software design defect classifications

Low maintainability can manifest itself by the presence
of certain antipatterns, called ‘code smells’. The concept of
‘code smells’ as software design defects was popularised by
Fowler [13]. We looked into both architecture and design
smells. Suranarayana and Sharma proposed that architecture
smells represent design violations impacting both component
and system levels [14]. Sharma provided the definition of a
design smell [15]; Fontana et al. investigated Java projects
for recurring patterns of architecturally relevant code anoma-
lies [16]. Architecture hotspot smells are code anomalies
introduced in the paper from Mo et al. which are related

1https://scitools.com/
2https://www.sig.eu/

Table I
HOTSPOT INSTANCES OVERVIEW IN SELECTED SYSTEMS

Sy
st

em

L
an

gu
ag

e

L
O

C
(k

)

U
nh

ea
lth

y
In

he
ri

ta
nc

es
(fi

le
s)

C
ro

ss
-

m
od

ul
e

cy
cl

es
(fi

le
s)

Pa
ck

ag
e

cy
cl

es
(fi

le
s)

Bitcoin C++ 120 16 (75) 31 (108) 49 (117)
Jenkins Java 100 80 (170) 10 (403) 513 (372)
jME Java 240 69 (436) 59 (402) 335 (410)
JustDecompileEngine C# 115 79 (290) 8 (205) 92 (89)
nunit C# 59 24 (94) 6 (62) 62 (74)
openHistorian C# 72 12 (37) 31 (89) 63 (114)
OpenRA C# 110 19 (150) 35 (273) 202 (206)
pdfbox Java 150 64 (252) 23 (379) 261 (301)
Pinta C# 54 17 (57) 12 (112) 109 (91)
ShareX C# 95 11 (76) 38 (205) 189 (248)

to an increased software defect density [5]. Macia et al.
designed a DSL for describing architectural concerns and code
anomalies [17]. In addition to the source code and metrics,
they use the metadata defined using a DSL to detect code
anomalies in a tool (SCOOP). Martin focused on framing
component design guidelines using 3 principles; violating
those principles constitutes an architectural smell. [18] Garcia
et al. define four architecture smells [19].

We believe that connecting maintainability measurements
with architecture smells will allow us to provide more action-
able and relevant refactoring recommendations for developers
using Better Code Hub compared with relying on metrics
alone. It will also make it possible to offer advice on how
to deal with the detected type of smell. Only the classification
from Mo et al. draws a clear connection between the archi-
tectural smells and maintainability, which is why we chose to
use it to enhance the refactoring recommendations generated
by Better Code Hub [5].

III. EXPERIMENTS

A. Data sources

We selected a number of GitHub repositories that are both
available as open source projects and contain the majority of
code in languages that are supported by Better Code Hub as
data sources to validate our approach. The projects we targeted
needed to have between 50k and 200k lines of code, be at least
three years old and be written in a strongly and statically typed
language supporting inheritance (e.g. Java, C# or C++).

B. Hotspot distribution

We used the Understand code analyser to generate source
graphs which we then fed into an existing tool called Titan
tool [20], which identifies architecture hotspots. We aggre-
gated the hotspot quantities and types per analysed system
in Table I. The file count indicates how many distinct files
contain hotspots. A file can be a part of multiple hotspots, but
we count the files only once.

In order to reason about the impact of hotspots on the
overall maintainability of projects, we compare the number

2



Table II
HOTSPOT IMPACT ON SELECTED SYSTEMS

Sy
st

em

Fi
le

s
an

al
yz

ed

Fi
le

s
af

fe
ct

ed
by

ho
ts

po
ts

%
Fi

le
s

af
fe

ct
ed

by
ho

ts
po

ts

C
I

m
ea

su
re

d
by

B
C

H

Bitcoin 675 117 17.33% 0.9894
Jenkins 1112 403 36.24% 0.9868
jME 2077 436 20.99% 0.6812
JustDecompileEngine 814 290 35.62% 0.8311
nunit 781 94 12.03% 0.6329
openHistorian 726 114 15.70% 0.9572
OpenRA 1157 273 23.60% 0.8362
pdfbox 1279 379 29.63% 0.6283
Pinta 400 112 28.00% 0.7421
ShareX 677 248 36.63% 0.6842

of files affected by hotspots with the number of code files in
the project. Kazman et al. show that files containing hotspots
are more bug-prone and exhibit maintenance problems, from
which we infer that higher percentage of files affected by
hotspots makes a codebase less maintainable [5]. The percent-
age of file affected by hotspots is then juxtaposed with the
component independence metric (CI - percentage of source
lines of code which are interface code or code which is called
from outside of the component in which it resides in and also
calls code outside of the component) measured by Better Code
Hub (BCH) in Table II.

Discussion: We expected the percentage of files affected
by hotspots to be negatively correlated with component in-
dependence (CI) (see table II). The correlation coefficient
is -0.0162, indicating no correlation. Based on the above
analysis, this indicates that the overall impact of hotspots on
the codebase may not be measurable using the Better Code
Hub’s Component Independence metric.

C. Prototype

The research environment defined limitations on our inputs
and tools that we could use, therefore we decided to implement
a detector for Better Code Hub based on the state-of-the-
art hotspot approach described in [5]. However, we used the
source code graph created by the Software Analysis Toolkit
as opposed to the Understand source code analyser.

Overview: The prototype consists of detector and vi-
sualisation parts. The visualisation is a part of the Edge
front-end component and only consumes the hotspot data
produced by the detector. The detector itself is a part of the
GuidelineChecker component. In addition, the Scheduler is
an orchestrating component which starts a Jenkins task and
notifies the Edge component that the analysis is finished. The
Jenkins component clones the source code repository, invokes
the Software Analysis Toolkit which outputs a source code
graph generated from the repository and the GuidelineChecker
checks the source graph against the guidelines. Our detector
is invoked as a part of the guideline check. Finally, the
analysis result is stored in a MongoDB database, where it

can be reached by the Edge component and presented by the
visualisation part of the prototype.

Detector: The control flow of the detector is as follows:
first, the class hierarchies are extracted from the source code
graph as separate subgraphs; second, each hierarchy is checked
for presence of two types of the Unhealthy Inheritance hotspot:
internal and external. Internal Unhealthy Inheritance hotspot
is a class hierarchy in which at least one base class depends
on or refers to a derived class. External Unhealthy Inheritance
hotspot is a class hierarchy which has client classes that refer
to both based derived classes of the hierarchy at the same time.
While detecting internal hotspots we investigate the classes
and edges that belong to the hierarchy. For external hotspots
we also check the neighbourhood of the class—clients of the
class hierarchy, being classes which have a dependency on any
of the classes in the analysed hierarchy.

IV. PROTOTYPE EVALUATION

The prototype evaluation involved integration with Better
Code Hub and the gathering of feedback via structured inter-
views with developers who used the prototype. We intended
evaluating the comprehensibility, relevance and actionability of
the refactoring recommendations by asking scaled questions
with a Likert scale [21]. Furthermore we asked developers
what would they need to make the feedback more actionable
and how would they address the problem. The integration of
the hotspot detection into the existing system involved two
steps: generating refactoring recommendations and visualisa-
tion.

Refactoring recommendations are generated in two stages.
First, the detector part identifies hotspots and generates a
recommendation for every source node that is a part of a
hotspot. Secondly, recommendations are filtered and ordered.

The visualisation for the user contains three additions to
Better Code Hub: information about the number of hotspots
in the refactoring candidate, a visualisation of the hotspot in
the refactoring candidate and contextual information about a
specific hotspot: what causes it, what its consequences are
and suggested resolution strategies. We chose to visualize the
hotspot as edges and vertices. It allows the user to manipulate
the graph, by rearranging the nodes. Edges and vertices make
it easier to convey more information visually such as type of
dependency (inheritance, dependency, violating dependency)
or type of source node (parent, child, client). Thus the user
process is as follows:

1) As the user logs into the Better Code Hub, a list of
repositories is revealed.

2) Once the user enters the repository analysis screen, a list
of guidelines is shown with a tick or cross beside each
indicating if the code in the repository is compliant.

3) As the user reviews the details of a specific guideline, a
list of refactoring guidelines is provided for review.

4) In the hotspot visualisation screen the user can see the
graph representing the hotspot visualised as a dynamic
force simulation3 which can then be manipulated.

3https://github.com/d3/d3-force

3



Figure 1. An example for the visualisation of an external Unhealthy Hierarchy
hotspot.

5) Finally, we present the hotspot description which our
prototype provides upon the user pressing the question
mark button in the upper left corner of the visualisation.

In Figure 1 we present an example of an external Unhealthy
Inheritance hotspot, a violation where a client class of the
hierarchy refers to the base class and all of its children. In this
case the client class is UriConsoleAnnotator, the base class is
AbstractMarkupText and the child classes are MarkupText and
SubText. The violations in this case are references from the
UriConsoleAnnotator to all the classes in the hierarchy.

V. DISCUSSION

For the evaluation we interviewed experienced developers.
They had no prior experience with Better Code Hub and the
codebase that they were assigned to evaluate the prototype on.
Our aim was to devise recommendations which can be useful
to a user who does not yet have intimate knowledge of the
system architecture and implementation.

We only had time to evaluate the approach on a few systems.
We made an attempt to choose systems representing different
domains, architectures and languages; a broader test would be
necessary to make sure that the conclusions do not stem from
the selection bias. We hypothesise that the findings should
be applicable to any strongly typed language that supports
packages, modules and inheritance.

Even though before applying the method we found a
strong correlation between hotspot density and the number
of interface lines of code in a component, we did not find
a causal link between removing hotspots and a decreased
value of the component interface code as measured by the
Software Analysis Toolkit. However, Mo et al. did show that
the presence of hotspots indicates areas of code which are
especially prone to introducing bugs, therefore, even if the
removal of hotspots will not be reflected in the measurement,
it would still improve the maintainability of the system [5].

VI. CONCLUSION

To improve the actionability of architecture level code
quality violations we created a prototype tool that identifies
structural problems in the codebase which impact modularity.
We then provided refactoring recommendations based on the
identified problems and interviewed developers to gather their
feedback on comprehensibility, actionability and relevance of
the presented recommendations. The prototype refactoring tool
provides the following contributions:

• Detection of architecture smells in source code graphs.
• Refactoring recommendations to the user based on the

presence of hotspots.
• Visualisation of hotspots, emphasising those dependen-

cies negatively impacting modularity.
• Guidance for the users regarding the impact and structure

of hotspots occurring in the analysed codebase.
As part of our analysis of repositories, we performed:

• A study of the reliability of hotspot detection on statically
typed languages (Java, C# and C++).

• An analysis of the overall impact of code containing
hotspots on the system’s modularity.

A number of areas of future work have been identified:
a) More structural problems: We limited our detector to

one kind of hotspot. We also chose to use our own detector as
opposed to Titan, with a different source code analyzer, which
means that there may be a mismatch between the results [20].

b) More detailed information about the violation: We
only outline violating classes and dependencies. Using the
same data the feedback can be improved by providing the exact
calls along with the code snippets that trigger the violation.

c) Co-evolutionary coupling reasons: Co-evolutionary
coupling is a term used to refer to classes which change
together in time. It is much more difficult to address co-
evolutionary hotspots. Firstly, co-evolutionary relationship
data contains more noise. For example, a copyright header
update will create a coupling between all the files in the
project. Also, co-evolutionary relationships stay in history of
the project. Secondly, it is more challenging to reason about
the intention of the developer for changing files without a
structural coupling together. Nevertheless, it would be inter-
esting identify whether there are common reasons for co-
evolutionary hotspot pattern occurrences.

d) Hotspot prioritization: We did not explicitly prioritise
hotspots. However, it could be useful as the budget to address
technical debt (e.g. architecture smells) is usually limited and
decisions need to be made as to which issues should be
addressed. A prioritisation could be used to suggest fixing
those hotspots first, which exhibit a balance between effort
needed to fix them and the impact on the maintainability.

Based on a preliminary evaluation we conducted through
interviews with a panel of experts and the analysis of open
source repositories we can say that users see the compli-
mentary information as a promising starting point for further
investigations, but will need additional work to make the
recommendations actionable.

4



REFERENCES

[1] Robert L Glass. Facts and fallacies of software engineering. Addison-
Wesley Professional, 2002.

[2] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for
measuring maintainability. In Quality of Information and Communica-
tions Technology, 2007. QUATIC 2007. 6th International Conference on
the, pages 30–39. IEEE, 2007.

[3] Joost Visser, Sylvan Rigal, Rob van der Leek, Pascal van Eck, and
Gijs Wijnholds. Building Maintainable Software, Java Edition: Ten
Guidelines for Future-Proof Code. " O’Reilly Media, Inc.", 2016.

[4] Teodor Kurtev. Extending actionability in better code hub, suggesting
move module refactorings. Master’s thesis, University of Amsterdam,
July 2017.

[5] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot patterns:
The formal definition and automatic detection of architecture smells. In
Software Architecture (WICSA), 2015 12th Working IEEE/IFIP Confer-
ence on, pages 51–60. IEEE, 2015.

[6] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of
program analysis. Springer, 2015.

[7] Daniel Guaman, PA Sarmiento, L Barba-Guamán, P Cabrera, and
L Enciso. Sonarqube as a tool to identify software metrics and technical
debt in the source code through static analysis. In 7th International
Workshop on Computer Science and Engineering, WCSE, pages 171–
175, 2017.

[8] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM Sigplan notices,
volume 42, pages 89–100. ACM, 2007.

[9] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. Addresssanitizer: A fast address sanity checker. In
USENIX Annual Technical Conference, pages 309–318, 2012.

[10] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon
system for dynamic detection of likely invariants. Science of Computer
Programming, 69(1-3):35–45, 2007.

[11] T. Kuipers, I. Heitlager, and J. Visser. A practical model for measuring
maintainability. In 6th International Conference on the Quality of In-

formation and Communications Technology (QUATIC 2007)(QUATIC),
volume 00, pages 30–39, 09 2007.

[12] Eric Bouwers, Arie van Deursen, and Joost Visser. Quantifying the
encapsulation of implemented software architectures. In Software Main-
tenance and Evolution (ICSME), 2014 IEEE International Conference
on, pages 211–220. IEEE, 2014.

[13] Martin Fowler and Kent Beck. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[14] Tushar Sharma. Does your architecture smell?, 2017. Last accessed:
2018-06-03.

[15] Tushar Sharma. Designite: A customizable tool for smell mining in c#
repositories. In 10th Seminar on Advanced Techniques and Tools for
Software Evolution, Madrid, Spain, 2017.

[16] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, and Marco
Zanoni. Automatic detection of instability architectural smells. In
Software Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on, pages 433–437. IEEE, 2016.

[17] Isela Macia, Roberta Arcoverde, Elder Cirilo, Alessandro Garcia, and
Arndt von Staa. Supporting the identification of architecturally-relevant
code anomalies. In Software Maintenance (ICSM), 2012 28th IEEE
International Conference on, pages 662–665. IEEE, 2012.

[18] Robert C Martin. Clean architecture: a craftsman’s guide to software
structure and design. Prentice Hall Press, 2017.

[19] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvi-
dovic. Toward a catalogue of architectural bad smells. In International
Conference on the Quality of Software Architectures, pages 146–162.
Springer, 2009.

[20] Lu Xiao, Yuanfang Cai, and Rick Kazman. Titan: A toolset that connects
software architecture with quality analysis. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 763–766. ACM, 2014.

[21] Rensis Likert. A technique for the measurement of attitudes. Archives
of psychology, 1932.

5


	Introduction
	Background
	Static and dynamic program analysis
	SIG Maintainability Model
	Software design defect classifications

	Experiments
	Data sources
	Hotspot distribution
	Prototype

	Prototype evaluation
	Discussion
	Conclusion
	References

