
Characterizing Rapid Releases in a Large Banking
Company: A Case Study

Elvan Kula∗, Ayushi Rastogi
Delft University of Technology

Delft, The Netherlands
e.kula@student.tudelft.nl,

a.rastogi@tudelft.nl

Hennie Huijgens
ING

Amsterdam, The Netherlands
hennie.huijgens@ing.com

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
arie.vandeursen

I. INTRODUCTION

The increased competition in today’s business environment
has pushed a large number of organizations to shift towards a
rapid development model, i.e. a software development model
with a short release cycle of a few days or weeks [1]. As the
trend of rapid releases (RRs) is increasingly being adopted
in open-source and commercial software [2], it is vital to
understand how RRs work and how they affect the quality
of the released software. Recent research on RRs addresses
the impact of short release cycles on several aspects of
software quality. However, a characterization of rapid releases
is missing. By exploring the characteristics of RRs in industry,
we can obtain valuable insights in what the urgent problems
in the field are, and what data and techniques are needed to
address them. Such knowledge can provide researchers with
promising research directions that, in our opinion, can help
industry today.

This paper presents a case study of rapid releases at ING,
a large Netherlands-based internationally operating bank that
develops software solutions in-house. Since 2011 the bank has
gradually shifted to a rapid development model, which resulted
in a mixed environment of rapid and traditional teams. We
conducted a mixed-methods study, consisting of a survey with
461 engineers, and a statistical analysis of 2 years of code
quality data for 611 teams.

II. RELATED WORK

Recent research on RRs addresses the impact of short
release cycles on several aspects of software quality. RRs
are claimed to offer a reduced time-to-market and faster user
feedback; releases become easier to plan because of their
smaller scope; end users benefit because they have faster
access to functionality improvements and security updates
[1][2][3]. Despite these benefits, previous research in the
context of open source software (OSS) projects shows that
RRs often come at the expense of reduced software quality.
The known challenges are related to software reliability [1][4],
accumulated technical debt [5] and increased time pressure
caused by strict release dates [6].

* Work completed during an internship at ING

Fig. 1. Continuous Delivery Pipeline at ING NL

Existing studies on rapid release cycles are explanatory and
a majority of these studies consider RRs in the context of
OSS projects. In this paper, we present new knowledge by
performing a case study of RRs in a large software-driven
organization.

III. CONTEXT

ING is a large multinational financial organization with
about 54,000 employees and over 37 million customers in
more than 40 countries [7]. In 2011, ING decided to shorten
their development cycles when they planned to introduce My
ING, a personalized mobile application for online banking.
Before 2011, teams worked with release cycles of two to three
months, but ING wanted to cut the cycles down to less than
a month to stay ahead of the competition. To make shorter
release cycles practical, the bank introduced the Continuous
Delivery as a Service project in 2015 to automate the complete
software delivery process. Fig 1 depicts the pipeline. Currently,
all teams at ING work with a time-based release strategy, in
which releases are delivered at regular intervals. Teams can
deviate from their regular cycle length in case of a release
delay.

Defining rapid release cycles. There is no general definition
of the length of a rapid release cycle in literature. In ING,
we defined the duration of a rapid release cycle based on
the distribution of release frequencies shown in Figure 2. The
mean of the distribution is 3.56 weeks, meaning that all teams
that follow a cycle time shorter than 3.56 weeks release faster
than the average team at ING and therefore rapidly. Since
teams work with release cycles of full weeks, we consider
teams that follow a cycle shorter than 4 weeks to be rapid and
traditional otherwise. This way we identified 433 rapid teams
(71%) and 178 traditional teams (29%) at ING.

1



Fig. 2. Distribution of release frequencies at ING: the black line represents
the cumulative percentage of the teams.

IV. RESEARCH METHOD

As RRs are driven by the idea of reducing release cycle
time, timing aspects are intrinsic to rapid release cycles. It is
therefore vital to examine the timing characteristics of rapid
release cycles to understand how RRs work and when they are
feasible in organizations. To explore the prevalence of delays
in RRs, we define our first two research questions as follows:

RQ1: How often do rapid and traditional teams release
software on time?

RQ2: What causes delay in rapid release cycles?

In RRs, developers have less time to manage software
quality, which might affect the quality of the released software.
By examining the quality characteristics of RRs, we may
better understand the long-term consequences of short release
cycles and inform the design of tools to help developers
manage them. This leads to our third research question:

RQ3: How do rapid release cycles affect code quality?

A. Study Design

We conducted a mixed-methods study to address the re-
search questions [8]. We collected qualitative data using an
online survey in two phases [9]. In the first phase, we ran
a pilot study with the members of four teams at ING. This
allowed us to refine the survey questions. In the second
phase, we sent the final survey to the members of all teams
at ING Netherlands (ING NL). In total, we contacted 1803
participants belonging to more than 350 teams, each working
on their own application that is internal or external to ING. In
addition, we analyzed quantitative data stored in SonarQube1

to examine the quality characteristics of rapid releases.
Survey Design. The pilot and final survey were organized

into five sections, plus a preliminary section aimed at gathering
demographic information of the respondents (i.e., role within
the team, total years of work experience and total years in

1https://www.sonarqube.org/

ING NL). The five sections were composed of open-ended
questions mixed with multiple choice or Likert scale questions.
To address RQ1 we asked respondents to fill in a compulsory
multiple choice question on how often their team releases on
time. For RQ2 and RQ3 we provided respondents with two
compulsory open-ended questions. In addition, we provided
the respondents with a mandatory multiple choice question
about their team’s release frequency and a few optional
questions about the way they monitor code quality.

Respondents. For the final survey we obtained 461 re-
sponses (26% response rate). 296 out of 461 respondents
(64%) work in rapid teams, and 165 respondents (36%) work
in traditional teams. Teams are similar in terms of size (95%
CI: 5 to 9 members), experience (95%: 10 to 20 years) and
number of respondents (95%: 1 to 2 respondents).

B. Survey Analysis

We performed manual coding [10] to summarize the results
of the open-ended questions during two integration rounds.
In the first round, the first and last author coded a different
10% sample of 40 responses for each question. Next, they
met in person to integrate the obtained codes. Then the first
author applied the integrated codes to 90% of the answers
and the second author did this for the remaining 10% of
the responses. In the second round, the first two authors had
another integration meeting which resulted into the final set
of codes.

C. Collecting Software Metrics

To analyze the quality of software written by traditional
teams in comparison with rapid teams, we extracted the
SonarQube measurements of releases that were shipped by
the 611 DevOps teams in the period from July 01, 2016 to
July 01, 2018. In total, we studied the major releases of 3048
software projects. We classified the releases as traditional or
rapid based on the time interval between their release date
and start date of the development phase (using 4 weeks as
threshold). 67% of these releases were developed following a
rapid release cycle (< 4 weeks) and the remaining 33% of the
releases were developed following a traditional release cycle
(≥ 4 weeks). For each release, we extracted the metrics that
teams at ING measure to assess their coding performance.

V. RESULTS
This section presents results on timing and quality charac-

teristics of rapid releases. The codes resulting from our manual
coding process are underlined.

RQ1: How often do rapid and traditional teams release
software on time?

A majority of teams, both traditional and rapid, release
software timely less often than 50% of the time. Only 8% of
the rapid teams and 16% of traditional teams release software
75% to 100% on time. The remaining teams release software
less often on time. A distribution of the rapid and traditional
teams based on the percentage of times they release software
on time is shown in Table I.

2



TABLE I
PERCENTAGE DISTRIBUTION OF RAPID AND TRADITIONAL TEAMS BASED

ON THE PERCENTAGE OF TIMES THEY RELEASE SOFTWARE ON TIME

% of software releases on-time RRs TRs

Almost Always (75 - 100%) 8% 16%
Mostly (50 - 75%) 16% 24%
Rarely (25 - 50 %) 35% 26%

Almost Never (0 - 25 %) 41% 34%

Table I shows that the percentage of teams which release
less often increases for traditional and rapid teams. It also
shows that rapid teams are always more delayed than their tra-
ditional counterparts. Further analysis of the survey responses
indicates that a majority of the rapid teams that are on track
75% to 100% of the time develop web applications (54%) and
desktop applications (18%). The rapid teams that are less than
25% of the time on track develop mobile applications (68%)
and APIs (19%).

RQ2: What causes delay in rapid release cycles?

Respondents mentioned several factors that they think intro-
duce delays in releases. A list of these factors arranged in the
decreasing order of their relevance in rapid teams is shown in
Figure 3.

Figure 3 shows that dependencies and infrastructure (which
can be considered a specific type of dependency) are the
most prominent factors that are perceived to cause delay
in rapid teams. Developers attributed technical cross-project
dependencies and organizational task dependencies to cause
delay in their releases. Many respondents indicate to struggle
with estimating the impact of both types of dependencies
in the release planning. Regarding infrastructure, respondents
mentioned that issues are related to the failure of automation
tools and sluggishness in the pipeline.

Other factors which were listed in at least 10% of responses
are testing (in general and for security), following mandatory
procedures (such as quality assurance and security testing)
prior to every release, fixing bugs, and scheduling the release,
including planning effort and resources.

Traditional teams experience similar issues. Similar to rapid
teams, traditional teams report to be largely influenced by
dependencies. The other factors which were considered im-
portant by at least 10% of the respondents are scheduling,
procedure, and security testing.

RQ3: How do rapid release cycles affect code quality?

Here we examine the quality characteristics of rapid releases
and compare the perceptions of developers with code quality
data for rapid and traditional teams.

A. Developers’ Perceptions

Developers had mixed opinions on how rapid release cycles
affect code quality. A distribution of the effect of factors
(improve, degrade, no effect) related to RRs as perceived by
developers is shown in Figure 4. It shows responses suggesting

improvements in quality in green, degradation in quality in red,
and no effect in grey.

A majority of developers perceive that the small changes
in code and rapid feedback improve software quality. The
small changes make the code easier to review, positively
impacting the refactoring effort. Many developers also mention
the benefits of the rapid feedback in RRs. Feedback from issue
trackers and the end user allows teams to continuously refactor
and improve their code quality based on unforeseen errors and
incidents in production. Rapid user feedback is reported to
lead to a greater focus of developers on customer value and
software reliability.

Most developers report to experience an increased
deadline pressure in RRs, which negatively affects the code
quality. They believe that this leads to an increase in
workarounds and poor implementation choices. Many devel-
opers also report that given the shorter timeframe of RRs they
often cut the overall time spent on refactoring and regression
testing. A majority of the developers acknowledge that system
design can suffer from the short-term focus in RRs. As one
of the respondent puts it “smaller decisions are made and it
gets easier to lose sight of the big picture”.

A minority of the developers mention not to experience
any decrease in quality due to certain coding standards. Their
releases have to pass a threshold regarding code quality and
security, which is enforced through code reviews and enabled
through sufficient time for code refactoring (on average 25%
of the time per sprint).

B. Software Quality Measurements

The results of our software quality analysis are summarized
in Table II. To account for differences in project size, we
normalized all metrics by dividing them by SLOC.

Fig. 3. Factors perceived to cause delays in rapid and traditional teams

3



TABLE II
EFFECTS OF RRS ON SOFTWARE METRICS

Metric
Mean Median Min Max

TR RR TR RR TR RR TR RR

Coding Standard Violations Density∗ 0.06 0.03 0.03 0.02 0.00 0.00 0.13 0.09
Cyclomatic Complexity∗ 0.17 0.14 0.16 0.15 0.09 0.03 0.41 0.22
Branch Coverage∗ 43.02 57.51 33.90 68.40 0.00 0.00 91.00 97.00
Comment Density 11.07 10.13 8.30 7.20 0.70 0.40 31.50 28.40
Code Churn∗ 0.03 0.05 0.01 0.03 0.04 0.05 0.15 0.20
SLOC 83983 67066 9286 7447 315 1107 721346 305319

* indicates statistical significance (p-value < 0.05) based on Mann-Whitney U test [11]

Fig. 4. Developer perception of the impact of rapid releases on code quality

We found that the cyclomatic complexity and coding issues
are significantly lower in RRs. This result corresponds with
the perception of developers that it gets easier to review and
refactor code in RRs. We also found that the branch coverage
is significantly higher in RRs. This result corresponds with the
perception that the test process in RRs becomes more continu-
ous and allows for more complete testing of new features. The
code churn is significantly higher for RRs, indicating that there
is a higher coding activity in rapid teams than in traditional
teams. We did not find a significant difference between the
comment density and SLOC of RRs and TRs.

VI. IMPLICATIONS
Our study indicates that rapid releases can be beneficial in

terms of reviewing, testing, and user-perceived quality. Here
we identify six core challenges that require further attention,
both in practice and in research, in order to move rapid releases
forward:

1) Are rapid releases for everyone? Rapid releases in API
and mobile app development are more often delayed than
in other types of projects. This suggests that project type
plays a role in the success of RRs. An investigation
of factors that affect the release cycle time could help
the field to better understand when (and why) RRs are
feasible and to adapt their practices.

2) The balance game: security versus agility. Security
testing can induce delay in rapid teams, suggesting that
organizations make a trade-off between rapid delivery
and security. A financial organization like ING with zero
tolerance for systemic failures chooses reduced effective-
ness over rapid release. Further research should focus on
agile security to work towards the automation of security
testing, and the design of security measures that are able
to adapt rapidly to changing requirements and a rapid
development environment.

3) Feedback-driven development. The rapid feedback in
RRs improves the focus of developers on the quality
of software. Feedback obtained from end users, code
reviews and static analysis can be used to (1) guide teams
to focus on the most valuable features, and to (2) enable
automated techniques to support various development
tasks in order to further reduce the cycle length. An ex-
ploration of these opportunities would help organizations
to improve their software quality.

4) Release planning. Regarding delays, our respondents
express the need for more insight on improving software
effort estimation and streamlining dependencies. Recent
approaches such as automated testing, Infrastructure as
Code and dependency management seem promising for
further research on release planning and predictable de-
livery in the context of RRs.

5) Dependency management. We found that the timing of
both RRs and TRs is largely influenced by dependencies
in the ecosystem of the organization. Our respondents
report the difficulty of assessing the impact of dependen-
cies. There is a need for more insight into the character-
istics and evolution of these dependencies. This problem
calls for further research into streamlining dependency
management, such as the work of [12][13][14].

6) Managing code quality. In our study we observed that
a minority of the teams claim not to experience the
negative consequences of RRs on code quality. The self-
reported ‘good’ teams perform regular code reviews and
dedicate (on average) 25% of the time per sprint on
refactoring. However, this result is context-specific and
further research is required to validate best practices for
debt management in RRs.

4



REFERENCES

[1] Khomh, F., Dhaliwal, T., Zou, Y., & Adams, B. (2012, June). Do faster
releases improve software quality?: an empirical case study of Mozilla
Firefox. In Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories (pp. 179-188). IEEE Press.

[2] Mäntylä, M. V., Adams, B., Khomh, F., Engstrm, E., & Petersen, K.
(2015). On rapid releases and software testing: a case study and a
semi-systematic literature review. Empirical Software Engineering, 20(5),
1384-1425.

[3] Beck, K., & Gamma, E. (2000). Extreme programming explained: em-
brace change. addison-wesley professional.

[4] da Costa, D. A., McIntosh, S., Kulesza, U., & Hassan, A. E. (2016, May).
The Impact of Switching to a Rapid Release Cycle on the Integration
Delay of Addressed Issues-An Empirical Study of the Mozilla Firefox
Project. In Mining Software Repositories (MSR), 2016 IEEE/ACM 13th
Working Conference on (pp. 374-385). IEEE.

[5] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia,
A., & Poshyvanyk, D. (2015, May). When and why your code starts to
smell bad. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on (Vol. 1, pp. 403-414). IEEE.

[6] Rubin, J., & Rinard, M. (2016, May). The challenges of staying together
while moving fast: An exploratory study. In Proceedings of the 38th
International Conference on Software Engineering (pp. 982-993). ACM.

[7] ING. (2018, March). 2017 Annual Report ING Group N.V.
[8] Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative,

quantitative, and mixed methods approaches. Sage publications.
[9] Flick, U. (2014). An introduction to qualitative research. Sage.
[10] Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Proce-

dures, canons, and evaluative criteria. Qualitative sociology, 13(1), 3-21.
[11] Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of

two random variables is stochastically larger than the other. The annals
of mathematical statistics, 50-60.

[12] Hejderup, J., van Deursen, A., & Gousios, G. (2018, May). Software
ecosystem call graph for dependency management. In Proceedings of the
40th International Conference on Software Engineering: New Ideas and
Emerging Results (pp. 101-104). ACM.

[13] Decan, A., Mens, T., & Claes, M. (2017, February). An empirical
comparison of dependency issues in OSS packaging ecosystems. In 2017
IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 2-12). IEEE.

[14] Decan, A., Mens, T., & Grosjean, P. (2018). An empirical comparison of
dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering, 1-36.

5


	INTRODUCTION
	RELATED WORK
	CONTEXT
	RESEARCH METHOD
	Study Design
	Survey Analysis
	Collecting Software Metrics

	RESULTS
	IMPLICATIONS
	References

