
Mining Extension Point Patterns in Scala

Yunior Pacheco1,2, Jonas De Bleser1, Tim Molderez1, Dario Di Nucci1, Wolfgang De Meuter1, Coen De Roover1

1Vrije Universiteit Brussel
Brussels, Belgium

{ypacheco, jdeblese, tmoldere, ddinucci, wdmeuter, cderoove}@vub.be

2Pinar del Rio University
Pinar del Rio, Cuba

Abstract—To use a framework, developers often need to hook
into and customize some of its functionality. These customizations
are often made by instantiating a type provided by the frame-
work, or by extending or implementing a framework type and
instantiating this subtype, and providing the resulting object to
other framework objects. Recommending extension patterns that
frequently occur at such extension points can help developers to
adopt a new framework correctly and to exploit it fully.

In this paper we transpose an existing technique for mining
extension patterns in Java projects to the Scala context. Our goal
is to evaluate whether the unique features of the Scala language
have an impact on the mined extension patterns. To this aim,
we propose SCALA-XP-MINER, a tool for mining extension point
patterns in Scala projects. We preliminary evaluate SCALA-XP-
MINER on a corpus of 9 projects using the SWING framework.
Our first results reveal that extension points are not very diffused
in Scala projects using SWING and that only one type of extension
points is adopted by developers.

Index Terms—Framework; Extension Points, Usage Patterns,
Graph Mining, Scala Language, Mining Software Repository

I. INTRODUCTION

A significant part of software development consists of
becoming familiar with APIs from different libraries and
frameworks. Libraries and frameworks enable code reuse,
provide high-level abstractions for common tasks, and help
unify the programming experience [1]. In many cases the flex-
ibility offered by large libraries and frameworks is achieved
at the expense of sophisticated APIs that must be accessed
by combining API elements into usage patterns, while taking
into account constraints and specialised knowledge about the
behaviour of the API [2]. Thus, making efficient use and
exploiting all the possibilities offered by libraries and frame-
works can be quite difficult. The larger and more sophisticated
the library or framework, the harder this challenge, due to
specific requirements and relations between its components
that are difficult to understand. Furthermore, the library or
framework may not be documented completely or clearly [1].

When using a framework, it is either necessary or com-
mon to extend its functionality. Several studies analysed how
developers use libraries in software systems; providing tools
to explore and navigate usage examples [3]–[5], documenting
techniques [6], and recommending usage patterns obtained
from mining code examples ([7], [8]). However, there are
relatively few studies that focus on common ways to extend a

framework and to provide recommendations to developers in
this respect.

In this paper, we describe the transposition from Java to
Scala of a technique by Asaduzzaman et al. [9] for mining
framework extension point patterns. Such patterns frequently
occur at the points where a framework supports being extended
by its users, such as a public method that takes an instance of
a framework subtype defined by the users. Once mined for in
a sufficient number of projects, extension point patterns can
form the basis for recommendations to other projects that use
the framework. To this end, we present SCALA-XP-MINER,
a tool for mining extension point patterns in Scala projects.
SCALA-XP-MINER implements a transposition to Scala of the
technique introduced by Asaduzzaman et al. [9].

We motivate the transposition not only by the traction that
Scala is gaining in industry, but also by the unique features of
this programming language that may impact the patterns that
occur at framework extension points. We therefore use SCALA-
XP-MINER in a preliminary study with the aim of analysing
the diffusion and the characteristics of the extension points
in Scala projects. In particular, we analysed 9 projects that
use the SCALA-SWING framework, a Scala wrapper for the
famous SWING GUI framework. Our first results reveal that
extension points are not very diffused in our context and that
only one type of extension point is adopted by developers.

Structure of the paper. The remainder of this paper is
organised as follows: Section II describes the work of Asaduz-
zaman et al. [9], including the definition of extension points
and extension point patterns. Section III presents an overview
of the approach, while section IV discusses the results on
an initial dataset of Scala projects. Finally, limitations and
challenges are discussed in section V.

II. MINING EXTENSION POINT PATTERNS

EXTENSION POINTS have been defined by Asaduzzaman
et al. as means provided by a framework, that allow devel-
opers to customise its behaviour, to meet application specific
requirements. A common way to extend a framework is to
pass one of its objects as an argument to a framework call [9].
Such an argument may be created by subclassing a framework
class, implementing a framework interface, or customising the
properties of an existing framework object. Nevertheless, there

are other ways of extending a framework, but we only consider
the one Asaduzzaman et al. proposed.

Thus, an extension point comprises a framework method
of which the parameters are related to the framework itself.
An EXTENSION POINT USAGE is a call to an extension point
method, of which at least one of its arguments is either an
instance of a type provided by the framework, or an instance
of a user-defined type that extends a framework type.

Figure 1(a) depicts an example of extension point usage in
Java. The developer is adding a listener to a framework object.
The addActionListener method declared in the Button
class, defines a parameter of type ActionListener; in
this case, the framework is extended by i) implementing the
ActionListener interface in the MyActionListener
class and ii) calling the addActionListener method
with an instance of the class as argument. The behaviour of
the ActionListener was customised, by overriding the
method actionPerformed.

Developers can analyse existing projects to find examples
of extension points usage, which can be a time-consuming
task. Thus, Asaduzzamann et al. [9] propose an approach to
automatically locate extension points and mine extension point
usage. The approach represents each extension point usage as
a separate graph.

An EXTENSION POINT USAGE GRAPH consists of several
types of nodes: receiver type, method call, parameter type, ar-
gument type, other method calls, extended class, implemented
interface, overriding method. To build the extension point
usage graphs, it is necessary to parse and analyse the source
code of the project that uses the framework. Asaduzzamann et
al. use ECLIPSE JDT to this end. The extension point usage
graph shown in Figure 2 illustrates the graph representation
of the Java code in Figure 1(a).

The subgraphs that occur most frequently in the extension
point usage graphs are called EXTENSION POINT PATTERNS.
These patterns are useful to describe how an extension point is
commonly used. In summary, the approach defined by Asaduz-
zamann et al. [9] generates an extension point usage graph
for each extension point usage. The graphs are processed,
using a frequent subgraph mining algorithm, to extract the
extension patterns. The patterns are then grouped in categories
according to a taxonomy defined by the authors that describe
the complexity of the pattern:

(i) SIMPLE: an instance of a framework class is passed as
an argument to the extension point without modifying it;

(ii) CUSTOMISE: before passing the argument of a framework
type to the extension point, a number of state changing
methods are called on it;

(iii) EXTEND: the argument to the extension point is an
instance of a new class that extends a framework class.

(iv) IMPLEMENT: the argument to the extension point is an
instance of a new class that implements a framework
class.

Finally, for each category, the patterns that most frequently
occur in the codebase are shown.

Figure 3 shows an extension point pattern common to,
among others, the extension point usage graph in Figure 2
and thus the code in Figure 1(a). In particular, it shows how
the method addActionListener is used to extend the
behaviour of the Button class by i) creating an instance of a
client class that overrides the method actionPerformed,
and ii) passing it as the argument to the method call. It is worth
noting that the extension point pattern needs to occur more
frequently in the mined extension point usage graphs than a
threshold to which the mining algorithm has been configured.

III. OVERVIEW OF THE FRAMEWORK

Our framework for mining EXTENSION POINT PATTERNS
in Scala projects consists of three components: a source code
importer, a pattern miner, and a visualisation tool. Figure 4
depicts the interactions between these components.

We follow a 3-step approach similar to the one proposed in
the reference work [9]. First, we build a graph for each of the
extension point usages in the Scala projects that depend on
the framework under analysis. Next, we mine extension point
patterns using the information previously extracted. Finally,
we visualise the input and output of the mining algorithm in
a way that allows the developer to browse and understand the
results.

Source Code Importer. The importer takes the source code
of framework clients as input and collects information on
framework usages through a static analysis.

For each framework method call, the importer checks
whether it corresponds to an extension point. To be considered,
the method call must have at least one parameter that is related
to a framework type. For each extension point, we collect the
method name, the return type, and the types of the parameters.

To construct the extension point usage graphs, the importer
resolves the types of the receiver and the arguments to the
extension point and determines their type hierarchy and the
overridden methods in this type hierarchy. It also identifies
method calls of which the receiver is either the same receiver
of the extension point or refers to one of its arguments.
The importer extracts the required syntactic and semantic
information through the SCALA-META1 library.

Figure 1(b) shows how to add a listener to a framework
object in Scala using the SCALA-SWING framework. In this
example, the extension point is the listenTo method, de-
fined in the framework trait Reactor, implemented by the
MainFrame framework class. This method takes a variable
number of objects of type Publisher as its arguments. In
this case the argument is an instance of class Button, a
class of the framework. The object was passed to the method
call without making changes to its state, that is, without
calling methods on the Button object before the call to
the extension point. Figure 5 shows the extension point usage
graph generated for the Scala code example in Figure 1(b).

Extension Point Patterns Miner. The miner is responsible
for mining the extension point patterns. The frequent subgraph

1https://github.com/scalameta/scalameta

1 class MyActionListener implements ActionListener {
2
3 @Override
4 public void actionPerformed(ActionEvent e) {
5 System.out.println("Tickles!");
6 }
7
8 }
9

10 class MyFrame extends JFrame {
11
12 private MyFrame() {
13 Button convertButton = new Button("Convert");
14 convertButton.addActionListener(new MyActionListener());
15 }
16
17 }

(a)

1 class MyFrame extends MainFrame {
2
3 val convertButton = new Button {
4 text = "Convert"
5 }
6
7 this.listenTo(convertButton)
8
9 reactions += {

10 case ButtonClicked(_) => println "Tickles!"
11 }
12
13 }

(b)

Fig. 1: Example extension point usage of the SWING framework in Java (a) and the SCALA-SWING framework in Scala (b).

Button

addActionListener()

ActionListener

MyActionListener

actionPerformed

method_call

parameter

argument

override

ActionListener

Implements

Fig. 2: Example of an EXTENSION POINT USAGE GRAPH
representing the code in Figure 1(a)

Button addActionListener() ActionListener Client actionPerformed

method_call parameter argument override

Fig. 3: EXTENSION POINT PATTERN extracted from Figure 2

mining algorithm, used in the miner, takes as input the set of
extension point usage graphs generated by the importer in the
previous step. The frequent subgraph mining algorithm is a
variant of the Apriori algorithm [10]. We mined projects con-
taining code similar to the one shown in Figure 1(b). We first
obtained their representation as extension point usage graph
as in Figure 5. Afterwards, we used the mining algorithm to
obtain the pattern shown in Figure 6. Note that the code in
Figure 1(b) correctly matches this pattern.

Visualization Component. The visualization component
is used to configure the tool, and to browse through and
inspect its results. The developer can select the Scala projects
to import through the SOURCE CODE IMPORTER. Then, the
EXTENSION POINT PATTERNS MINER analyses the projects to
discover extension point usages of a specific framework (given
as input). After the computation, the tool displays a list-view
and a graph-view of the extension point usage graphs built
by the importer and that constitute the input to the mining
algorithm. Finally, the tool supports inspecting the frequent
extension point patterns uncovered by the mining algorithm,
and comparing them to their matches among the input data,
to corroborate the validity of the mining process.

IV. PRELIMINARY EVALUATION

This section presents the design and the results of the
preliminary study that we conducted to analyse extension point
patterns in Scala projects.

A. Design

We follow the process defined by Wohlin et al. [11] to
conduct this study. The goal of our study is to analyse (i) to
what extent extension points occur and (ii) to which category
of those defined by Asaduzzaman et al. [9] they belong. The
purpose of this study is to collect extension points of the
SCALA-SWING library in order to recommend frequently used
patterns to developers. Based on this study, we aim to answer
the following research questions:

RQ1: To what extent do extension points occur in
SCALA-SWING projects?
RQ2: What kind of extension patterns occur and
which are the most frequently used for the SCALA-
SWING library?

TABLE I: Dataset Characteristics

Project # Classes # LOC
https://github.com/MarcinCz/MilkaRecognizer 23 751
https://github.com/enshahar/ScalarTurtle 13 549
https://github.com/Sciss/ScalaInterpreterPane 24 1473
https://github.com/myrjola/scaltris 10 455
https://github.com/gabysbrain/scala-swing-jogl-demo 3 266
https://github.com/amsterdam-scala/AS-Tiles-puzzle-solver 6 614
https://github.com/Sciss/ScalaColliderSwing 30 3980
https://github.com/junxiaosong/AlphaZeroGomoku 19 1143
https://github.com/scala/scala-swing/tree/2.0.x/examples/src/main 17 279

To this end, we collected a dataset of 9 open-source SCALA-
SWING projects hosted on Github. The characteristics of each
project are reported in Table I. Even if the corpus is relatively
small, a manual inspection of the extension points is too
time-consuming and error-prone. For that reason, we used the
framework described in Section III. We manually determined
the precision of SCALA-XP-MINER. We did this by manually
inspecting every extension point graph. We found that 16 out
of 440 nodes where generated incorrectly. We believe there
are multiple reasons for this, but the most common one is due
the fact that we cannot resolve the type of expressions that
use type parameters (e.g., we are not able to resolve Int as

Source Code
Importer

Source Code Extension Point Graphs

Extension Point
Patterns Miner

1

3

2

Visualisation Tool

Extension Point
Patterns

Fig. 4: Overview of the approach

Reactor

listenTo()

Publisher

Button

method_call

parameter

argument

Fig. 5: Example of an EXTENSION POINT USAGE GRAPH for
the code in Figure 1(b)

Reactor listenTo Publisher Button

Reactor listenTo Publisher TextField

method_call parameter argument

method_call parameter argument

A

B
Fig. 6: EXTENSION POINT PATTERN extracted from Figure 5

the result type of the method List[+A]#head: A where
List[+A] was instantiated to List[Int]). The precision
of our tool is therefore 96%, which we deem sufficiently
precise to use this tool as a foundation for our study.

B. Results

We were able to collect 92 extension point usages across
9 projects using SCALA-XP-MINER. These extension point
usages are represented by extension point usage graphs as
defined by [9]. On average, there are 10 extension point usages
per project. We found that the method Reactor#listenTo
and the method BorderPanel#add are the most frequently
used extension points, in 40% and 17% of the cases respec-
tively.

To answer RQ2, we applied the mining algorithm on the set
of 92 extension point usages and obtained 34 patterns which
range in size from 2 to 6. Next, we categorized each extension
pattern according to the taxonomy as defined by [9]. We found
that all of the mined extension patterns are instances of the
category SIMPLE.

The top-5 most-occurring extension patterns are shown in
Table II. For example, the third pattern (Figure 6) indicates that

TABLE II: Top 5 most frequent Extension Patterns

FrameworkClass.Method Parameters Arguments Frequency

1 BorderPanel.add() Constraints Enumeration 16/92 (17.30%)Component -
2 Reactor.listenTo() Publisher Publisher 8/92 (8.60%)
3 Reactor.listenTo() Publisher Button 7/92 (7.60%)

4 GridBagPanel.add() Constraints Constraints 6/92 (6.50%)Component -

5 GridBagPanel.add() Constraints Constraints 5/92 (5.40%)Component Label

it is common to extend the framework at the Reactor class
using its listenTo method, passing an instance of Button
as argument. We use - to indicate that there is no explicit
information about the argument type (i.e., patterns #1 and #4).

V. CURRENT LIMITATIONS AND CHALLENGES

In this paper, we have shown how data mining can be
used to discover extension point patterns in projects that use
the SCALA-SWING framework. These patterns provide useful
information to developers that want to extend the behaviour
of a framework. We used the approach and the concepts
of extension points defined by Asaduzzaman et al. [9] as
foundation for this work. We applied this approach to the
Scala programming language to find extension patterns of the
SCALA-SWING framework.

Our initial results show that, for the SCALA-SWING
framework, the use of extension points to modify
its behaviour is not very widespread. On average,
there are only 10 extension point usages per project
and both scala.swing.Reactor#listenTo and
scala.swing.BorderPanel#add methods are the
most frequently occurring ones. Moreover, we found that all
extension patterns are of the category SIMPLE.

Our future work includes (i) a better evaluation technique
to assess precision and recall of our approach, (ii) a large
empirical study on a corpus of Scala projects, (iii) improved
type resolution for complex expressions in the importer, (iv)
the definition of Scala-specific extension point categories, and
(v) the pruning of uninteresting and redundant patterns from
the results of the miner.

REFERENCES

[1] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[2] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2013.

[3] C. De Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of api usage,” in Proceedings of the 21st IEEE International Conference
on Program Comprehension (ICPC13), 2013.

[4] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
Helping to navigate the api jungle,” in Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI 2005), 2005.

[5] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering. ACM, 2007, pp. 204–213.

[6] R. Alur, P. Černỳ, P. Madhusudan, and W. Nam, “Synthesis of interface

specifications for java classes,” ACM SIGPLAN Notices, vol. 40, no. 1,
pp. 98–109, 2005.

[7] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in Proceedings of the 23rd European
Conference on Object-Oriented Programming (ECOOP09), 2009, pp.
318–343.

[8] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2009, pp. 383–392.

[9] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Recom-
mending framework extension examples,” in Software Maintenance and
Evolution (ICSME), 2017 IEEE International Conference on. IEEE,
2017, pp. 456–466.

[10] C. C. Aggarwal, Data mining: the textbook. Springer, 2015.
[11] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research methods

in software engineering,” in Empirical methods and studies in software
engineering. Springer, 2003, pp. 7–23.

