
Metamodel Clone Detection with SAMOS
(extended abstract)

Önder Babur, Loek Cleophas, Mark van den Brand
Eindhoven University of Technology

Eindhoven, The Netherlands
{O.Babur, L.G.W.A.Cleophas, M.G.J.v.d.Brand}@tue.nl

I. EXTENDED ABSTRACT

Model-driven engineering (MDE) promotes the use of
models (and metamodels to which they conform) as central
artifacts in the software development process. This eases
development and maintenance of software artifacts (including
source code generated from models), yet increasing MDE
adoption leads to an abundance of models in use. Some
examples of this include the academic efforts to gather models
in repositories, and large-scale MDE practices in the industry.
This leads to challenges in the management and maintenance
of those artifacts. One of those challenges is the identifi-
cation of model clones, which can be defined in the most
general sense as duplicate or highly similar models and model
fragments. Similar scenarios apply in the traditional software
development for source code clones. There is a significant
volume of research on code clones, elaborating the drawbacks
of having clones, which can be a major source of defects
or lead to higher maintenance cost and less reusability, and
providing detection techniques and tools. Note that in some
cases clones might be useful too; it is nevertheless worthwhile
to investigate them. Code clones have attracted the attention
of the source code analysis community, who had to deal with
the maintenance of large numbers of artifacts for a longer time
than the MDE community.

Model clone detection, on the other hand, is a relatively
new topic. Many researchers have drawn parallels to code
clones, and claimed that a lot of the issues there can be
directly translated into the world of models. While the problem
domains are similar, the solution proves to be a challenge.
Source code clone detection usually works on linear text or on
an abstract syntax tree of the code, while models in general are
graphs; other aspects are also inherently different for models,
such as tool-specific representations, internal identifiers, and
abstract vs. concrete syntaxes.

In our research we have the goal of detecting clones in large
repositories of models (notably Ecore metamodels) and large
evolving industrial domain-specific language (DSL) ecosys-
tems based on the Eclipse Modelling Framework (EMF).
Metamodels are artifacts of particular interest to us, for various
purposes including metamodel repository management and
DSL analysis. To achieve this goal, we have investigated
the feasibility of existing tools, with three major require-
ments: (1) conceptual and technological applicability to Ecore

metamodel clones; (2) sensitivity to all possible metamodel
changes, and accuracy in general (precision, recall); and (3)
scalability for large datasets. Among the existing model clone
detectors in the literature are ConQAT, NICAD-SIMONE and
MACH. A good portion of such tools are either limited to,
tailored for, or evaluated on specific types of models such
as MATLAB/Simulink. As a starting point we considered
MACH and NICAD-SIMONE as promising candidates. How-
ever, these tools underperformed with respect to some of our
requirements, notably sensitivity with respect to fine-grained
changes, thus accuracy. We have eventually taken an orthogo-
nal approach by extending the SAMOS framework (Statistical
Analysis of MOdelS) for model clone detection. SAMOS is
a state-of-the-art tool for large-scale analysis of models. We
wish to exploit the underlying capabilities of the framework—
incorporating information retrieval-based fragmentation, natu-
ral language processing, and statistical algorithms—for model
clone detection. This extended abstract summarizes our recent
studies ([1], [2]) in extending and tailoring SAMOS for (meta-
)model clone detection, and evaluating it in three extensive
case studies with mutation analysis for SAMOS, NICAD and
MACH; comparison of SAMOS with NICAD on ATL Zoo
metamodels; and finally a repository mining scenario on a
very large set of GitHub metamodels.

SAMOS applies a typical Information Retrieval plus Ma-
chine Learning workflow (see Figure 1) to models: (1) extract
a set of features such as model names, types, and chunks out
of the underlying model graph (e.g. n-grams or subtrees), (2)
define comparison and weighting schemes for those features
such as Natural Language Processing (NLP) for model names
and tree edit distance for subtrees, (3) compute a Vector Space
Model (VSM) based on the feature comparison for all the
models in the dataset, and finally (4) apply distance measures
and clustering suitable to the problem at hand. In our study we
have tailored this workflow for clone detection with additional
scoping capabilities (e.g. whole model or EClass scope), a new
distance measure (masked Bray-Curtis) and a density-based
clustering algorithm to find metamodel clones.

We performed three case studies to evaluate the clone
detection capabilities of SAMOS compared to NICAD and
MACH; in terms of accuracy, and with respect to scalability
in the presence of e.g. thousands of models:

• Case Study 1: We analyzed artificially generated atomic
mutation cases and large change scenarios where we

Set	 of	 models	

Metamodel	

Features	

NLP	

Tokeniza8on	

	 Matching	 scheme	
Weigh8ng	 scheme	

VSM	

Distance	
calcula8on	 Clustering	 Dendrogram	

Automated	 extrac8on	
Inferred	
clusters	

Extrac8on	 	
scheme	

Filtering	

Synonym	
detec8on	

…	

Data	 selec8on,	
filtering	
Clone	

detec8on	
…	

Classifica8on	

Analysis	

…	

Repository	
management	

Domain	
analysis	

…	

N-‐grams	
Metrics	

…	

Manual	
inspec8on	

Fig. 1. Overview of SAMOS workflow.

measured pairwise distances with the base metamodel and
the mutated ones to see how sensitive and accurate the
different settings of SAMOS (unigrams, bigrams, subtrees
with two comparison methods) are, compared to NICAD
and MACH.

• Case Study 2: Comparing model fragments at EClass
scope, we ran SAMOS with the most accurate setting
along with NICAD on the configuration management
metamodels from ATL Zoo1, and comparatively evaluated
the clone pairs and their correct classification, respective
precision and recall, as found by the two tools.

• Case Study 3: We performed a large-scale clone detec-
tion exercise in two steps, with the cheapest and most
expensive settings of SAMOS. We aimed to find the meta-
model clone clusters in GitHub, for data preprocessing
and filtering purposes, and with an eye towards future
empirical studies on metamodels and domain specific
languages (DSLs).

We obtained valuable findings in all three case studies. In
case study 1, we found out that SAMOS performed well thanks
to its NLP capabilities and fine-tuning, yet failed to detect
certain types of move and swap mutations. NICAD on the
other hand detected all cases except ones requiring NLP —
which might occur frequently in real world data (as confirmed
by our next case study), but over-approximated distances with
its line-based approach. MACH on the other hand performed
similar to the simpler configurations of SAMOS hence missed
quite a few of the mutations. In case study 2, we compared
SAMOS with its most accurate subtree setting to NICAD, on
conference management metamodels from ATL Zoo. Mostly
thanks to its NLP capabilities, SAMOS performed better in
terms of both precision and recall, for Type A (content-wise
duplicate), B (with very small changes) and C (highly similar)
clones for that dataset (see Table I). We nevertheless identified
certain problems with SAMOS’ clone detection (some of

1http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore

Type A Type Bex Type Cex

SAMOS precision 1.00 0.89 0.65
rel. recall 1.00 0.92 0.78

NICAD precision 1.00 0.46 0.26
rel. recall 0.75 0.09 0.34

TABLE I
PRECISION AND RELATIVE RECALL OF SAMOS AND NICAD.

which actually apply to NICAD and MACH as well), e.g. in
terms of orthogonality of the changes among models, and
connectivity clustering long strips of models. In the final
case study, we turned to cluster nearly all the metamodels
in GitHub, namely 68,511 items. After eliminating 2/3 of the
dataset as exact file duplicates, we applied an iterative clone
detection process. We first ran a cheap and inaccurate setting
of SAMOS to pre-cluster the data into potential buckets, and
did a more accurate pass on each bucket separately. As a result
we found (with high precision, as we qualitatively evaluated)
that still a high number of metamodel clone clusters can be
found: content-wise (near-)duplicates (involving ∼8k models
in total), or metamodels that are still highly similar (involving
∼11k models) for Type C). We regard this finding as a basis
for our future studies on the one hand, and an important piece
of information for anyone doing future empirical studies on
those metamodels.

We have developed a novel model clone detection ap-
proach based on the SAMOS model analytics framework
using information retrieval and machine learning techniques.
We have extended SAMOS with additional scoping, feature
extraction and comparison schemes, customized distance mea-
sures and clustering algorithms in the context of metamodel
clone detection. We have evaluated our approach using a
variety of case studies involving both synthetic and real
data; and identified the strengths and weaknesses of our
approach along with two other state-of-the-art clone detectors,
namely NICAD and MACH. We conclude that SAMOS stands
out with its higher accuracy yet considerable scalability for
further large-scale clone detection and empirical studies on
metamodels and domain specific languages. While SAMOS
has many strengths, including its genericness with respect to
the modelling languages, its plug-in architecture, and support
for distributed computing, sophisticated NLP, and advanced
statistical techniques using R, there are quite some directions
for future work. We plan to improve SAMOS in terms of
accuracy with additional features and comparison schemes,
based on its weaknesses observed in the mutation analyses,
customized and improved weighting schemes, NLP capabili-
ties, distance measures and statistical algorithms. Furthermore
we are working on a full-fledged distributed computing back-
end for SAMOS for further scalability. We also plan to tackle
the extra-functional aspects of model clone detection such as
clone ranking, reporting, inspection and visualization in future
work.

REFERENCES

[1] Ö. Babur, “Clone Detection for Ecore Metamodels using N-grams,”
Proceedings of the 6th International Conference on Model-Driven En-
gineering and Software Development, MODELSWARD 2018, pp. 411–
419.

[2] Ö. Babur, L. Cleophas, M. van den Brand, “Metamodel Clone Detection
with SAMOS,” Journal of Visual Languages and Computing (JVLC),
Accepted with minor revision.

