
A Generic Framework for the Analysis of
Heterogeneous Legacy Software Systems

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, Slinger Jansen
Department of Information and Computing Sciences, Utrecht University, The Netherlands

{a.m.saeidi, j.hage, r.khadka, slinger.jansen}@uu.nl

Abstract—The reverse engineering of legacy systems is a
process that involves analysis and understanding of the given
systems. Some people believe in-depth knowledge of the system
is a prerequisite for its analysis, whereas others, ourselves
included, argue that only specific knowledge is required on a
per-project basis. To give support for the latter approach, we
propose a generic framework that employs the techniques of
non-determinism and abstraction to enable us to build tooling for
analyzing large systems. As part of the framework, we introduce
an extensible imperative procedural language called KERNEL
which can be used for constructing an abstract representation
of the control flow and data flow of the system. To illustrate its
use, we show how such framework can be instantiated to build
a use-def graph for a large industrial legacy COBOL and JCL
system. We have implemented our framework in a model-driven
fashion to facilitate development of relevant tools. The resulting
GELATO tool set can be used within the Eclipse environment.

I. INTRODUCTION

Many companies operate systems which are developed over
a period of many decades. These legacy systems are subject
to continuous adaptation and evolution to deal with changing
internal and external factors. Many of these systems do not
meet the requirements of a maintainable system, mainly due
to lack of documentation and programming structure. Reverse
engineering can be employed to create a high level abstraction
of the system and to identify its logical components [1].

There are many challenges that one needs to deal with
when reverse engineering a large legacy system. First of all,
finding a program understanding tool which can deal with the
system of interest is almost impossible. On the other hand,
implementing a high-quality tool from scratch that can handle
the system is a tedious and time-consuming task. Furthermore,
the old programming languages used to develop the legacy
systems tend to suffer from a lack of “singularity”[2] and
“elegance”[3], as viewed from the perspective of modern
programming languages. We have investigated the use of
automatic analysis techniques to provide tool support and help
with understanding programs written in these languages.

Program analysis is an automatic analysis technique that can
be used as part of reverse engineering [4]. Any deep program
analysis starts with a syntactic analyzer parsing syntactic
units into what is known as an abstract syntax tree. The
tree produced must be annotated with the necessary seman-
tic knowledge by means of a semantic analysis. Although
syntactic analysis depends on the grammar of the language
for which analysis needs to be performed, we argue that
semantic analysis should be performed independent of the

language to be processed (see Section II). This raises two
questions that need to be addressed: 1) Is it possible to capture
the semantics upfront for all dialects and implementations
of the same programming language? 2) How much semantic
information is ‘necessary’ to establish a sound foundation for
conducting a particular program analysis?

For a language like COBOL which comes in various di-
alects, each of which may have different compiler products,
establishing such semantic knowledge is impractical. In short,
no single semantics exist! On the other hand, the semantic
knowledge required strongly depends on the analysis one
wants to perform. For example, a type-based program analysis
needs to decorate the data definitions with the appropriate
types, whereas a control-based analysis needs to know about
control dependencies. Moreover, when dealing with large
systems, abstraction is not a choice but a necessity. The
analysis techniques need to be precise and scale at the same
time.

Lämmel and Verhoef [2] propose a technique in which
syntactic tools are constructed and later augmented with
semantic knowledge on a per-project basis (demand-driven
semantics). We build on this approach by introducing a generic
framework that employs 1) nondeterminism to compute a
sound abstraction of the control-flow of the program, and 2)
abstraction by computing a particular program analysis with
respect to enough amount of semantic information required.
To realize the above features, the framework consists of an
extensible intermediate language that helps achieve separation
between abstraction of the problem and data flow analysis.
This separation provides the context for an incremental ap-
proach to analyzing large software systems.

The paper makes the following contributions:

1) It presents a generic framework for performing program
analysis on legacy systems that can be instantiated in a
system-specific fashion.

2) It employs techniques from MDE to facilitate analysis
of legacy systems and construct the required reverse
engineering tools.

This paper is structured as follows. In Section II we outline
the challenges we have faced in dealing with our industrial
legacy system, and describe the generic framework to over-
come the stated problems. We proceed by giving an empirical
evaluation of our framework in Section III. Finally, in Section
IV we conclude and outline future work.



II. A GENERIC FRAMEWORK

We were involved in a legacy to SOA migration project
in a large banking institution in the Netherlands, comprising
of five distinct legacy systems. Like many business-critical
systems, their systems are implemented in COBOL which runs
on platforms such as IBM z/OS and HP Tandem nonstop. We
have proposed a method [5] for migrating legacy systems to
SOA which involves identifying candidate services followed
by concept slicing to extract relevant pieces of code. To
evaluate our methodology, we have been given access to one
of their legacy systems, which from now on we will refer
to as InterestCalculation. As it is the case with most legacy
systems, the documentation of the InterestCalculation system
is outdated and many of the people who were involved in
its development are not around anymore. We want to apply
techniques from the field of program analysis to help with
both identification of services and slicing.

There are three important issues that need to be addressed
when performing program analysis on legacy systems. First
of all, many legacy systems are heterogeneous and constitute
multi-language applications. For instance, the systems imple-
mented for IBM mainframe usually employ JCL job units
to describe different task routines that need to be performed
within the legacy environment. Furthermore, COBOL has
several extensions to provide support for embedded languages
such as SQL and CICS. These are used to perform queries
on tables and process customer transactions, respectively. This
also holds for our InterestCalculation system, which comprises
of COBOL and copybooks as well as JCL jobs, the former of
which contains embedded SQL statements.

Second, programming languages used for legacy systems
do not follow an explicitly defined language standard. In
languages like COBOL and C, the semantics of many op-
erations are left open and the implementation must choose
how to implement these operations. Furthermore, instances
of a given programming language may be home-brewed. It
is estimated that there are about 300 COBOL dialects, each
of which has its own compiler products with many patch
levels [2]. Consequently, the only possible way to deal with
inconsistencies is to rely on the compiler used to compile the
system that is subject to analysis.

Finally, legacy systems contain code bases that run well
into millions of lines of code, hence scalability of any pro-
gram analysis technique is essential. The InterestCalculation
system consists of almost half a MLoC of COBOL source
files and copybooks. Developing analysis techniques that are
simultaneously precise and scalable is not a simple task.

To overcome the aforementioned problems, we introduce a
generic framework for analyzing large legacy systems which
has the following three features:

1) Language/Dialect-Independence: We strongly believe
standardization through conversion to a well-understood
syntactic structure with semantic variation points is the
key for analyzing different dialects and versions of

the COBOL language, and naturally paves the way for
heterogeneous systems comprising of COBOL and JCL.

2) Abstraction and Nondeterminism: Semantic analysis
needs to be performed in a context-specific manner.
We borrow concepts from programming language theory
including non-determinism and abstraction to create an
environment through which semantic knowledge can
be added to the system of interest. Non-determinism
guarantees the soundness of the analysis by exploring
all the possible variations at the cost of performance,
whereas, abstraction ensures that only a minimal amount
of information is stored to perform a sound analysis.

3) Incrementality: Incrementality is key in building analysis
tools that scale to large systems. Separation of problem
specification (abstraction) and data flow analysis is the
way forward for incremental analysis. In this approach,
the framework can be re-instantiated with the new infor-
mation obtained from the result of an analysis to perform
more fine-grained analyses.

To realize the above properties, the framework consists of
an extensible intermediate language called KERNEL. KER-
NEL employs non-determinism to capture semantics variation
points at the control flow level. Furthermore, it provides exten-
sion points to extend the language to incorporate abstractions
required to compute a particular data flow analysis.

Figure 1 depicts the step-by-step approach to instantiating
the framework for performing a particular data-flow analysis.
The first step involves syntactic abstraction (parsing) of the
source program into an AST. In the next step, an abstract
(static) semantics is created based on the concrete or abstract
programming languages that the program has to conform to,
irrespective of whether those are different dialects/implementa-
tions of the same programming language or different languages
that the program is written in.

Depending on the data flow problem we are interested
in, the deployed abstraction techniques ensure that enough
information is stored to perform a sound analysis with respect
to that problem. For instance, reaching definition analysis
used to build the use-def graph is expressed as an abstract
interpretation of the program which for each expression in the
program infers whether a variable is definitely used or defined
after the possible execution of the statement. To help with the
formulation of this abstraction, extension points are provided
in the kernel language to instantiate the abstract domain for a
set of analysis problems.

Based on the extracted abstract semantics, a mapping is cre-
ated from the syntactic structure of the source program into an
instance of the KERNEL language. The use of non-determinism
makes it possible to encode inconsistencies amongst different
implementations, as well as points where the particular se-
mantics cannot be derived, e.g. when no knowledge of the
compiler is available.

In the next step, we specify the data flow analysis problem
as a monotone framework instance [4] and solve the instance
using an iterative work-list algorithm. The monotone frame-
work consists of a set of monotonic transfer functions which



Fig. 1. The Generic Framework for Analyzing Legacy Systems

express the effect of statements on desired properties of the
program with respect to a flow analysis problem. Many flow
analysis problems such as reaching definition analysis (RDA)
meet the monotonicity requirement and can be expressed
in terms of the monotone framework. Based on the data
flow analysis problem, here RDA, we give a set of transfer
functions and data flow equations to instantiate the monotone
framework.

The results of data flow analysis can be reused to incremen-
tally analyze a legacy system. The result of one analysis serves
as a foundation to conduct more fine-grained analyses. To
demonstrate this, consider the inter-procedural dependencies
derived from RDA analysis. Once we have constructed the in-
formation chain, we can interactively scope down our analysis
to a smaller set of modules to perform much more detailed
analyses, that because of their resource demands cannot be
applied to the system as a whole. For more information about
KERNEL language as well as details of the analysis, please
refer to Saeidi et al. [6].

We have implemented the framework as part of the
GELATO (Generic Language Tools) toolset [7]. GELATO
is an integrated set of language-independent (generic) tools
for legacy software system modernization, including parsers,
analyzers, transformers, visualizers and pretty printers for
different programming languages including COBOL and JCL.

III. EVALUATION

A. Example Case Study

Here we give an example COBOL program that is represen-
tative of our InterestCalculation system, depicted in Listing
1. The mapping from the set of referenceable elements in
COBOL including datanames, recordnames and filenames to
their corresponding set of variables in KERNEL is stored that
can be used to interpret the KERNEL program. Furthermore, a
mapping exists from the set of elements including procedures
and statements to their corresponding labels in KERNEL that
can be used to trace back its origin. Listing 2 depicts an
example JCL batch job which is used to submit the INTER-
ESTCALCULATION program to the operating system. The
programs called through the EXEC statements are used as

the entry point to the COBOL program. Listing 3 depicts
the resulting KERNEL program from translation of COBOL
program and JCL unit. Data flow analysis is then performed
to build the use-def graph for a particular job unit.

1 IDENTIFICATION DIVISION.
PROGRAM-ID INTERESTCALCULATION

3 ...
DATA DIVISION.

5 FILE SECTION.
FD IN-FILE.

7 01 IN-REC.
02 IN-NAME PIC A(20).

9 02 IN-ACCOUNT PIC 9(6)V99.
02 IN-INTEREST PIC 99V99.

11 FD OUT-FILE.
01 OUT-REC PIC X(80).

13 ...
WORKING-STORAGE SECTION.

15 77 EOF PIC X VALUE "N".
01 INTEREST1 PIC 99V99.

17 01 INTEREST2 PIC 99V99.
...

19 PROCEDURE DIVISION.
MAIN.

21 OPEN INPUT IN-FILE OUTPUT OUT-FILE.
READ IN-FILE END MOVE "Y" TO EOF.

23 PERFORM INTEREST-CALC THRU PRINT.
PERFORM END-PROGRAM.

25

INTEREST-CALC.
27 IF IN-ACCOUNT IS NOT < 150000

SUBTRACT 50000 FROM IN-ACCOUNT
29 MULTIPLY IN-INTEREST BY IN-ACCOUNT

GIVING INTEREST1, INTEREST2.
31 ...

PRINT.
33 MOVE "INCOME INTEREST SLIP " TO OUT-REC.

WRITE OUT-REC.
35 ...

END-PROGRAM.
37 STOP RUN.

Listing 1. A representative COBOL program

B. Empirical Findings of InterestCalculation System

In this section, we give our findings and observations with
respect to the InterestCalculation system.



1 //EXJCL JOB ‘CALC’,CLASS=6,MSGCLASS=X,NOTIFY=&SYSUID
//*

3 //STEP001 EXEC PGM=INTERESTCALCULATION

Listing 2. An example JCL batch job for submitting COBOL program to OS

1 0:Procedure main(){
35: call INTERESTCALCULATION();

3 }
1:Procedure INTERESTCALCULATION(){

5 2:Procedure PROC1(){
6:try {7:[uses(var1);uses(var2)];}

7 with 8: exception {9: abort;}
10:try {11:[uses(var1)];}

9 with 12: exception {13: [defines(var3)]; }
14: { 15: call PROC2(); 16: call PROC3();}

11 17: { 18: call PROC4();}
}

13 3:Procedure PROC2(){
19:if(20:[uses(var1)])then{

15 21:try {22:[uses(var1);defines(var1)];}
with 23: exception {24: abort;}

17 25:try {26:[uses(var1);uses(var1);defines(var4
);defines(var5)];}

with 27: exception {28: abort;}
19 };

}
21 4:Procedure PROC3(){

29:[defines(var2)];
23 30:try {31:[uses(var2)];}

with 32: exception {33: abort;}
25 }

5:Procedure PROC4(){
27 34:{abort;}

}
29 }

Listing 3. The representation of COBOL program in KERNEL

As is the case in many legacy systems, during our copybook
inlining operation, we found out that there are 45 copybooks
missing. Consequently, some of the identifiers used in the
program could not be resolved to any data item. To overcome
this hurdle, we create a set of proxy referenceable elements to
resolve the unresolved identifiers. Moreover, to our surprise,
we found out that just over a quarter of the 21085 copybooks
handed to us were actually used. The entire set of copybooks
comprised of almost 600 KLoC. Table I gives some metrics
for the InterestCalculation system.

We use the classification of dependencies for COBOL as
defined in [8]. They classify the dependencies in terms of
functional dependencies and data dependencies. A functional

TABLE I
METRICS FOR INTERESTCALCULATION SYSTEM

#Files KLoC Highest Lowest
(In/Out)degree (In/Out)degree

COBOL
321 413.17 151 2Source Files

Used
599 88.04 1055 1Copybooks

dependency is created from a calling program to the callee
through a CALL statement, whereas data dependency is
created from a program to a copybook through a COPY
statement. We extract the structural dependencies during the
inlining operation.

In order to extract the functional dependencies, we needed to
build the use-def graph for the InterestCalculation system. We
have followed the approach as given in the previous section
to instantiate the framework to construct the use-def graph.
We have opted to make an exhaustive analysis by including
a call to all the modules in the intial program entry. All
the program calls in the system are dynamic, however upon
completion of this analysis, we observe that all the values
reaching call statements are uninitialized. That is, the value
reached upon calling a program comes from the environment.
A practice used in this system, as is common in many well-
engineered systems, is to use a set of immutable variables and
initialize them with the name of the programs to be called
in the declaration section of the COBOL program. Following
up on this finding, we extract the string literals of the initial
values of the variables from the declaration section to create
a functional dependency graph.

The experiment is performed on a 2.80 GHz Intel Core i7
quad-core machine with 16 GB RAM. The parsing of COBOL
and JCL code takes about 20 minutes. The transformation and
writing to a new file takes the least amount of time, that is
812 seconds. Loading the generated KERNEL code followed
by instantiating the monotone framework and performing the
data flow analysis takes the longest with 1676 seconds. Thus,
the whole process from parsing COBOL and JCL units to
constructing the use-def graph takes just over an hour. Further
improvement on the performance is required to ensure the
completion of the analysis in a reasonable amount of time.

IV. CONCLUSION AND FUTURE WORK

We have proposed a generic framework for analyzing legacy
software systems. Based on our observations regarding the
problems one may encounter when dealing with large legacy
systems, our framework employs nondeterminism and abstrac-
tion to achieve language-independency and incrementality.
Language independency is achieved through the specification
of the source program in terms of an intermediate language
which uses nondeterminism to capture semantic variations
points at the control flow level. Moreover, the intermediate
language provides extension points to give support to abstrac-
tion of data flow problem. This gives rise to incrementality
which can be used to compute more precise as well as fine-
granular analyses.

As part of future research direction, we want to go beyond
COBOL, by both extending our tools to analyze programs
in heterogeneous environment, as well as handle embedded
languages. We want to further maturize the GELATO toolset
by both conducting more experiments on real case studies
and conduct more testing to validate it. Furthermore, we want
to perform more analyses to assist with service identification
using the framework.



REFERENCES

[1] L. Moonen, “A generic architecture for data flow analysis to support
reverse engineering,” Theory and Practice of Algebraic Specifications;
ASF+ SDF, vol. 97, 1997.

[2] R. Lammel and C. Verhoef, “Cracking the 500-language problem,”
Software, IEEE, vol. 18, no. 6, pp. 78–88, 2001.

[3] P. Baumann, J. Faessler, M. Kiser, Z. Oeztuerk, and L. Richter,
“Semantics-based reverse engineering,” 1994.

[4] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis.
Springer-Verlag New York Incorporated, 1999.

[5] R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage, “A method
engineering based legacy to SOA migration method,” in 27th ICSM’11.
IEEE, 2011, pp. 163–172.

[6] A. Saeidi, J. Hage, R. Khadka, and S. Jansen, “A generic framework for
model-driven analysis of heterogeneous legacy software systems,” 2017.
[Online]. Available: https://dspace.library.uu.nl/handle/1874/359542

[7] ——, “Gelato: GEneric LAnguage TOols for model-driven analysis of
legacy software systems,” in Reverse Engineering (WCRE), 2013 20th
Working Conference on, Oct 2013, pp. 481–482.

[8] J. Van Geet and S. Demeyer, “Lightweight visualisations of Cobol code
for supporting migration to SOA,” Electronic Communications of the
EASST, vol. 8, 2008.


