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Abstract. A comparative analysis of the clustering of sample time series was 

performed. The clustering sample contained time series of various types, among 

which atypical objects were present. In the numerical experiment, white noise 

with different variance was added to the time series. Clustering was performed 

by k-means and DBSCAN methods using various similarity functions of time 

series. The values of the quality functionals were quantitative measures of the 

quality of clustering. The best results were shown by the DBSCAN method us-

ing the Euclidean metric with a Complexity Invariant Distance. The method al-

lows to separate a cluster with atypical series at different levels of additive 

noise. The results of the clustering of real time series confirmed the applicabil-

ity of the DBSCAN method for detecting anomaly. 
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1 Introduction 

Nowadays, a lot of datasets of time series are created and constantly replenished, for 

example, purchase and sale series, stock prices, exchange rates, weather data, biomed-

ical measurements and others. Processing of such datasets require new approaches, in 

particular, machine learning approaches [1-4]. One of the impotent tasks of machine 

learning is objects clustering, information about which is presented in the form of 

time series. The time series clustering is used as an independent research technique, 

and as a part of more complex data mining methods, such as rule detection, classifica-

tion, anomaly detection, and so on [5-7]. 

In the task of cluster analysis of time series, it is required to split the set of objects 

(time series) into a relatively small number of clusters so that the group quality crite-

rion takes on the best value. The quality criterion is usually understood as a certain 

functional depending on the scatter of objects within clusters and the distances be-

tween them. A ways to specify distances or similarity measure between objects are 

also various [5]. 

There are several approaches to time series clustering. In [1,6] three basic ap-

proaches of time series clustering are proposed: raw-data-based, feature-based, mod-

el-based. In case of raw-data-based clustering the objects are raw data in the frequen-

cy or time domain. 



Time series clustering algorithms are mainly classified into the same categories as 

for other data (k-means algorithms, hierarchical methods, density based methods, 

mesh based methods, etc.) [1,5,6,8]. The choice of the measure of difference plays an 

important role in clustering, since an unsuccessfully selected measure would entail 

incorrect results. When choosing a specific similarity measure, the researcher often 

relies on his knowledge and experience in solving similar problems. Many works are 

devoted specifically to the application and development of measures for the various of 

time series [9-11]. 

One of the tasks of time series clustering is the separation anomalous objects into a 

separate cluster [12,13]. This is not simple, especially in a noisy time series. In the 

present paper, the problem of clustering noisy time series containing anomalous ob-

jects is considered. 

2 Statement of the problem and methods of solution 

2.1 The problem formulation 

Consider the object space 𝑋, whose elements are time series. Let 𝑋𝑙 = {𝑥𝑖}𝑖=1
𝑙  is 

training set,  𝜌: 𝑋 × 𝑋 → [0, +∞) is similarity function between two time series. 

It is necessary to determine: 𝑌 is set of clusters and 𝑎: 𝑋 → 𝑌 is an algorithm that 

allows to construct non-intersecting subsets (clusters), such that within each cluster 

objects are close according to similarity function 𝜌 and the objects of different clus-

ters differ significantly among themselves. 

The aim of the work is to conduct a comparative analysis of the noisy time series 

clustering with anomalous objects using several clustering methods and various simi-

larity functions. 

2.2 Clustering methods 

The following clustering methods were chosen for the numerical experiment: the 

k-means method which is actually most often used for clustering time series and Den-

sity-based spatial clustering of applications with noise (DBSCAN) method because it 

works well with noisy data. 

K-means method is a one of iterative clustering algorithms. At first, we need to ini-

tialize number of clusters and centroids for each cluster. Centroids are main objects 

on which we distribute initial data in clusters. They can be obtained randomly or we 

can choose some objects from initial data. Then we distribute all the objects in clus-

ters according to proximity to the centroids. We should distribute objects again after 

centroids recalculation and repeat process until centroids stop changing. 

In this case objects are time series with length 𝑛, i. e. they consist of 𝑛 compo-

nents. Let it be 𝑘 clusters and centroids for this clusters look like: 

 𝜇𝑙
(𝑖)

= (𝜇𝑙1
(𝑖)

, 𝜇𝑙2
(𝑖)

, … , 𝜇𝑙𝑛
(𝑖)

), (1) 



where 𝜇𝑙
(𝑖)

 is time series which is the centroid for the cluster number 𝑙 on the iteration 

number 𝑖. To recalculate centroids, we need to find the average by each component: 

 𝜇𝑙𝑗
(𝑖+1)

=
∑ 𝑥𝑗

(𝑙)𝑚𝑙
𝑗=1

𝑚𝑙
, 𝑗 = 1, 𝑛̅̅ ̅̅̅, (2) 

where 𝜇𝑙𝑗
(𝑖+1)

 is the component number 𝑗 for the cluster number 𝑙; 𝑥𝑗
(𝑘)

 is the compo-

nent number 𝑗 of object which belongs to the cluster number 𝑙; 𝑚𝑙 is objects amount 

of the cluster number 𝑙. 
Continue the process until the next condition is true: 

 𝜌(𝜇𝑙
(𝑖)

, 𝜇𝑙
(𝑖+1)

 ) ≤ 𝜀. (3) 

In terms of computational complexity this algorithm is simple. There is one disad-

vantage that amount of clusters does not change and the result depends on initial cen-

troids. It means that it is possible to get dissimilar objects in one cluster. 

The DBSCAN method is typically not used with time series. One of the main fea-

tures is possibility to define atypical objects from initial data.  

The key idea is to distribute similar objects in clusters regarding the density. At 

first, we define a closeness radius and objects number, which should be located within 

this closeness radius. Pretty similar or densely located are objects, which are located 

at the distance less or equal to defined closeness radius.   

Let it be data set which contains 𝑛 objects; 𝜌(𝑥, 𝑦 ) is defined similarity function; 𝑟 

is the closeness radius; 𝑚 is the minimum number of objects, which should be within 

the radius. There is a function 𝑀 which defines objects number that located within the 

closeness radius: 

 𝑀(𝑥𝑖  ) = ∑ 𝑐(𝑥𝑖 , 𝑥𝑗)𝑛
𝑗=1
𝑗≠𝑖

, (4) 

where 𝑐(𝑥𝑖 , 𝑥𝑗) is  membership function: 

 𝑐(𝑥𝑖 , 𝑥𝑗) = {
1, 𝜌(𝑥𝑖 , 𝑥𝑗  ) ≤ 𝑟,

0, 𝜌(𝑥𝑖 , 𝑥𝑗  ) > 𝑟.
 (5) 

Kernel objects are objects for which the conditional 𝑀(𝑥𝑖  ) ≥ 𝑚 is true.  

Boundary objects are objects for which the conditional 𝑀(𝑥𝑖  ) < 𝑚 is true and 

there is such kernel object 𝑦𝑖 , that the condition 𝜌(𝑥𝑖 , 𝑦𝑖  ) ≤ 𝑟 is true. 

Noise objects are objects for which the condition 𝑀(𝑥𝑖  ) < 𝑚 is true but such ker-

nel object 𝑦𝑖  doesn’t exist for which the condition  𝜌(𝑥𝑖 , 𝑦𝑖  ) ≤ 𝑟 is true. In terms of 

the DBSCAN method, the noise is a set of atypical objects. 

Kernel objects determine the main clusters. Then we distribute boundary objects by 

these clusters. Noise objects are distributed by clusters in the next way:  

 if there is no any other noise object within the radius 𝑟 , we distribute this object in 

a separate cluster; 



 if there is at least one noise object within the radius 𝑟 , we combine them in a 

common cluster;  

 if there is at least one kernel object or boundary object within the radius 𝑟, we add 

noise object in a cluster, which contains this kernel object or boundary object. 

One of the disadvantages of this distribution way is possibility to define atypical ob-

jects like boundary objects.  

2.3 Similarity functions 

The initial set consists of time series. Using special similarity functions is required for 

time series clustering.  

One of the most popular similarity functions is the Euclidian distance. In the case 

with time series the distance is calculated by the formula: 

 𝐸(𝑋, 𝑌) = √∑ (𝑋𝑖 − 𝑌𝑖)2𝑛
𝑖=1 , (6) 

where 𝑋, Y are time series of length 𝑛 .  
There is a situation when two time series are similar in common, but they are very 

different in some points. If it is necessary to classify these time series like similar, it is 

possible to use the main similarity function with a Complexity Invariant Distance:  

 𝐶𝐼𝐷(𝑋, 𝑌) = 𝐷(𝑋, 𝑌) × 𝐶𝐹(𝑋, 𝑌), 

 𝐶𝐹(𝑋, 𝑌) =
𝑚𝑎𝑥{𝐶𝐸(𝑋),𝐶𝐸(𝑌)}

𝑚𝑖𝑛{𝐶𝐸(𝑋),𝐶𝐸(𝑌)}
, (7) 

 𝐶𝐸(𝑋) = ∑ √(𝑋𝑖 − 𝑋𝑖−1)2𝑛
𝑡=2 , 

where 𝑋, 𝑌 are time series of length 𝑛 , 𝐷(𝑋, 𝑌) is the main similarity function. 

If it is necessary to compare time series of different lengths, it is possible to use 

similarity function Minimum Jump Cost (MJC). The key idea of MJC is to find sum 

of the minimum “jumps” between time series.  

Let it be two time series 𝑥 and 𝑦  of lengths 𝑁  and 𝑀 respectively, i. e. they con-

sist of 𝑁 and 𝑀 components. We start from the component 𝑥(𝑖), 𝑖 = 0. Then we find 

such component 𝑦(𝑗), 𝑗 > 𝑖 that the condition (𝑥(𝑖) − 𝑦(𝑗))2 → 𝑚𝑖𝑛 is true. On the 

next iteration 𝑖 = 𝑗 + 1: 

 𝑀𝐽𝐶(𝑋, 𝑌) = ∑ 𝑐𝑚𝑖𝑛
𝑖

𝑖 , (8) 

 𝑐𝑚𝑖𝑛
𝑖 = 𝑚𝑖𝑛 (𝑐𝑡𝑥

𝑡𝑦 , 𝑐𝑡𝑥

𝑡𝑦+1 , … , 𝑐𝑡𝑥

𝑡𝑦+N), (9) 

where 𝑐𝑡𝑥

𝑡𝑦
 is all kinds of “jumps” which is calculated by formula  

 𝑐𝑡𝑥

𝑡𝑦+Δ
= (𝑥𝑡𝑥

− 𝑦𝑡𝑦+Δ)
2

. (10) 

MJC function is asymmetrical, that’s why it is necessary to use the value  



 𝑚𝑖𝑛{𝑀𝐽𝐶(𝑋, 𝑌), 𝑀𝐽𝐶(𝑌, 𝑋)}. (11) 

In some cases, it is possible to improve the result accuracy by using similarity func-

tion Dynamic Time Warping (DTW). To calculate this distance, it is necessary to do 

the next steps.  

 Create the matrix 𝑑 of local distances between each time series components: 

 {𝑑𝑖𝑗} = |𝑋𝑖 − 𝑌𝑗|, 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅ , (12) 

where X, Y are time series of length n and m respectively. 

 Create the transformation matrix 𝐷: 

 𝐷11 = 𝑑11,  {𝐷𝑖𝑗} = 𝑑𝑖𝑗 + 𝑚𝑖𝑛{𝐷𝑖−1 𝑗−1, 𝐷𝑖−1 𝑗 , 𝐷𝑖 𝑗−1}, 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅ . (13) 

 Create the path from 𝐷𝑀𝑁 to 𝐷11: 

 𝐷𝑛𝑒𝑥𝑡 = 𝑚𝑖𝑛{𝐷𝑖−1 𝑗, 𝐷𝑖−1 𝑗−1, 𝐷𝑖 𝑗−1}, 𝑖 = 1, 𝑛̅̅ ̅̅̅, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅ . (14) 

The result is 𝐷𝑇𝑊(𝑋, 𝑌) =
∑ 𝑑𝑖𝑗

𝐾
𝑖

𝐾
, where K is the number of values which are con-

tained in the minimum path.  

3 Clustering Quality Check 

To check the clustering result it is necessary to verify as far as objects are close in the 

same cluster and as far as objects are differ in different clusters. Quality functional is 

the function which defines how the clustering result is close to a perfect solution. 

There are rules for calculation of quality functional.  

Let’s find the sum of intra-cluster distances. It is the sum of distances between ob-

jects which are located in the same cluster:  

 𝐹0 =
∑ ∑ 𝜌(𝑥𝑖,𝑥𝑗)𝑢(𝑥𝑖,𝑥𝑗,𝑦𝑖,𝑦𝑗)𝑛

𝑗=𝑖+1
𝑛
𝑖=1

∑ ∑ 𝑢(𝑥𝑖,𝑥𝑗,𝑦𝑖,𝑦𝑗)𝑛
𝑗=𝑖+1

𝑛
𝑖=1

, (15) 

 𝑢(𝑥𝑖 , 𝑥𝑗 , 𝑦𝑖 , 𝑦𝑗) = {
1, 𝑦𝑖 = 𝑦𝑗|𝑥𝑖 ∈ 𝑦𝑖 , 𝑥𝑗 ∈ 𝑦𝑗

0, 𝑦𝑖 ≠ 𝑦𝑗|𝑥𝑖 ∈ 𝑦𝑖 , 𝑥𝑗 ∈ 𝑦𝑗
, (16) 

where 𝑛 is the number of objects; 𝜌(𝑥𝑖 , 𝑥𝑗) is defined similarity function; 

𝑢(𝑥𝑖 , 𝑥𝑗 , 𝑦𝑖 , 𝑦𝑗) is the membership function of object 𝑥𝑖 to the cluster 𝑦𝑖 . 

Let’s find the sum of inter-cluster distances. This is the sum of distances between 

objects which are located in different clusters: 

 𝐹1 =
∑ ∑ 𝜌(𝑥𝑖,𝑥𝑗)(1−𝑢(𝑥𝑖,𝑥𝑗,𝑦𝑖,𝑦𝑗))𝑛

𝑗=𝑖+1
𝑛
𝑖=1

∑ ∑ (1−𝑢(𝑥𝑖,𝑥𝑗,𝑦𝑖,𝑦𝑗))𝑛
𝑗=𝑖+1

𝑛
𝑖=1

.  (17) 



If it is needed to compare several clustering results, the best result has minimal value 

of the functional F0/F1. 

If it is possible to initialize centroids, the additional quality functional can be used: 

 Φ0 = ∑ ∑ 𝜌2(𝑥𝑖 , 𝜇𝑗)𝑛
𝑖=1

𝑥𝑖∈𝑦𝑗

𝑚
𝑗=1 , (18) 

where 𝑛 is the number of objects; 𝑚 is the number of clusters; 𝜌(𝑥𝑖 , 𝑥𝑗) is the defined 

similarity function; 𝜇𝑗 is the centroid of the cluster 𝑗. 

 Φ1 = ∑ 𝜌2(𝜇𝑗 , 𝜇)𝑚
𝑗=1 , (19) 

where 𝜇 is the center mass of the data. Similar to functional F0/F1, if it is necessary to 

compare several clustering results, the best one has the minimum value of functional 

Ф0/Ф1. 

4 Description of the experiment 

The experiment to research the use of k-means and DBSCAN for model time series 

with additive white noise was conducted. A set on which clustering had performed, 

consisted of 𝑚 time series of different types. The types were harmonic realizations, 

parabolas and «bursts». All realizations had random shift on the 𝑌 axis. The typical 

realizations of clustering are shown on Fig. 1a. 

The white noise realizations were used for adding noise to time series that shown 

on Fig. 1 b. White noise was an independent values of a random variable with normal 

distribution 𝑁(0, σ). The variance of noise had values σ2={0.5, 0.75, 1.0, 1.25}. Thus, 

each time clustering was carried out for the same time series, but with a different level 

of additive noise.  

 

Fig. 1. Typical realizations for clustering a) «clean» realizations; b) with noise, σ=1. 

We expected that we get at least 3 clusters as a good clustering result. The first one 

should consist of harmonic realizations, the second one should consist of parabolas 

and the third one should consist of atypical objects with «bursts». 



DBSCAN and K-means methods for clustering were chosen. K-means input pa-

rameters were 3 centroids. DBSCAN input parameters were selected experimentally. 

To compare time series similarity, the similarity functions MJC, DTW, CID and Eu-

clidean distance were used. 

Thus, the next combination of clustering methods and similarity functions for each 

sample set of time series with noise were used:  

 DBSCAN with Euclidean with CID function (Euclidean + CID); 

 DBSCAN with MJC with CID function (MJC + CID); 

 DBSCAN with DTW; 

 K-means with Euclidean with CID function (Euclidean + CID); 

 K-means with MJC with CID function (MJC + CID); 

 K-means with DTW. 

The results of the clustering were evaluated both visually by checking whether the 

objects hit the desired cluster, and using the functions of clustering quality F0/F1 and 

Ф0/Ф1. Thus, the similarity functions and the clustering method, which give the best 

results, were defined. The final part of our experiment is clustering of time series 

which contain a real data taken from [14]. 

5 Research results 

5.1 Clustering of “clean” time series. 

The feature of the sample data is having of atypical realizations («bursts»). According 

to the clustering results the separation of atypical realizations in the same cluster was 

successful only using DBSCAN method despite the fact that one of initial centroids 

for k-means method was atypical object.  

Clusters obtained k-means method had time series of different shape and atypical 

time series in same cluster. The typical distribution in clusters by k-means method 

shown on Fig. 2.  

The best time series clustering result was obtained by using Euclidean distance 

with CID function. This similarity function has the lowest iterations number and thus 

it has high performance. For MJC with ACID function it is necessary to calculate the 

value twice for each time series pair because of asymmetry property. This has impact 

on performance. The clusters obtained by the DBSCAN method and Euclidean dis-

tance with CID function are shown on Fig.3. 

The quantitative indicators of clustering quality are represented on Table 1. It 

should be noted the experiment has shown that low values of F0/F1 for k-means meth-

od can comply with incorrect distribution in clusters. Therefore, Ф0/Ф1 functional was 

chosen to compare clustering results obtained by k-means method.  



 

Fig. 2. Splitting into clusters by k-means method. 

The incorrect splitting refers to time series with different shape in same cluster. Thus, 

the best results were obtained by using Euclidean distance with CID function. 

Table 1. Values of quality functionals for clustering of “clean” time series. 

Measure Methods F0/F1 Ф0/Ф1 

Euclidean+ CID K-means 0.415 0.222 

 DBSCAN 0.326  

MJC + CID K-means 0.184 0.197 

 DBSCAN 0.480  

DTW K-means 0.748 1.095 

 DBSCAN 0.954  

 



 

Fig. 3. Splitting into clusters by DBSCAN method. 

5.2 Clustering of time series with noise  

The results of clustering time series with noise are similar to results of clustering of 

“clean” time series. The best results are obtained by using DBSCAN method with 

Euclidean + CID function. The distribution in cluster using k-means method with 

MJC + CID is incorrect despite low values of quality functional. The time series with 

significantly different shape were in same cluster. The clustering for noise level 

σ2=1.25 by DBSCAN method are shown on Fig.4. In this case time series, which have 

“bursts” are located in separate cluster. The noise also caused the harmonics with 

small amplitudes to be separated into separate clusters. 

The Table 2 represents quantitative values of clustering quality. If we compare 

DTW function with Euclidean + CID and MJC + CID, it should be noted that DTW 

has caused to time series with different shape were in same cluster despite low values 

of Ф0/Ф1 functional. Such splitting is incorrect for the set.  

  



Table 2. Values of quality functionals for clustering of time series with noise. 

Measure Methods F0/F1 Ф0/Ф1 

Euclidian + CID K-means  7.736 

 DBSCAN 0.684  

MJC + CID K-means  12.401 

 DBSCAN 1.065  

DTW K-means  2.448 

 DBSCAN 0.988  

 

 

Fig. 4. Clustering of time series with noise by using DBSCAN method with Euclidean distance 

and CID function. 



The Table 3 represents changes of quantitative rates of clustering quality with increas-

ing noise variance for the DBSCAN method. The value 2 0   corresponds to sam-

ple with “clean” realizations.  

Table 3. Changes of quantitative rates with increasing noise variance. 

2  F0/F1 

0  0.326 

0.5, 0.617 

0.75 0.657 

1.0 0.684 

1.25 0.764 

DBSCAN method showed good results defining atypical objects despite high level of 

noise. This method is also sustainable to different levels of noise. It allows to use this 

method for clustering real data, in which there are always various noises. 

5.3 Clustering of real data 

Consider the clustering of data that is the result of a medical research study of brain 

activity [14]. The data is a set of time series, which have some atypical objects. The 

initial sample of implementations for which clustering was performed are shown on 

Fig. 5. 

 

Fig. 5. Original sample of medical data. 

We have used clustering methods and similarity functions described above. Accord-

ing to the values of quality functionals (Table 4) DBSCAN method with Euclidean + 

CID function has the best results.  



Table 4. The result of clustering of real time series. 

Measure Methods F0/F1 Ф0/Ф1 

Euclidian + CID K-means 0.492 1.102 

 DBSCAN 0.478  

MJC + CID K-means 0.568 1.325 

 DBSCAN 0.534  

DTW K-means 0.891 0.843 

 DBSCAN 0.974  

 

As a result, 3 clusters were received. One of them is atypical object. The splitting into 

clusters are shown on Fig. 6. 

 

 

Fig. 6. The result of clustering by using the DBSCAN method with Euclidean + CID. 

6 Conclusion 

In this work the clustering of time series of different types with noise components was 

performed. The DBSCAN and k-means methods with different similarity functions 

for time series have been used. The DBSCAN method with Euclidean and CID func-

tion showed the best results. The results of clustering real time series confirmed the 

good application of the DBSCAN method for time series. 

The analysis of clustering results allows to define the key differences between the 

k-means and DBSCAN methods for clustering time series: if it is possible to 



determine number of clusters or their centroids and it is not required to separate of 

atypical objects, k-means method shows pretty good results; if there is no information 

about number of clusters and there is the task of separating atypical objects, it is 

possible to use the DBSCAN method. 
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