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ABSTRACT

Endoscopic artefact detection challenge (EAD2019[?]) in-
cludes three tasks: (1) Multi-class artefact detection: lo-
calization of bounding boxes and class labels for 7 artefact
classes for given frames (specularity, saturation, artefact,
blur, contrast, bubbles and instrument); (2) Region segmen-
tation: precise boundary delineation of detected artefacts
(instrument, specularity, artefact, bubbles and saturation); (3)
Detection generalization: detection performance independent
of specific data type and source. We participated all three
tasks of EAD2019, and this manuscript summarizes our solu-
tion based on deep learning for each task. In short, for task 1,
we apply the improved Cascade R-CNN [1] model combined
with feature pyramid networks (FPN) [2] to deal with multi-
class artefact detection; for task 2, we apply the network
architecture like Deeplab v3+ [3] with different backbones
(ResNet101 [4] and MobileNet [5]) to segment multi-class
artefact regions; for task 3, we used Cycle-GAN [6] and then
perform image translation between training dataset and test-
ing dataset to improve the model generalization of multi-class
artefact detection. Besides, we apply unsupervised t-SNE [7]
to visualize the date distribution to achieve targeted data
reduction and augmentation before training detection and
segmentation model; and finally, some effective strategies of
model fusion and post-processing are also used to obtain the
final results.

Index Terms— Endoscopic artefact detection challenge,
t-SNE, cascade R-CNN, generalization

1. INTRODUCTION

Endoscopy is a widely used clinical procedure for the early
detection of numerous cancers (e.g., nasopharyngeal, oe-
sophageal adenocarcinoma, gastric, colorectal cancers, blad-
der cancer etc.), therapeutic procedures and minimally in-
vasive surgery (e.g., laparoscopy). EAD2019 challenge[?]
proposal aims to address the following key problems inher-
ent in all video endoscopy: 1) Multi-class artefact detection:
Existing endoscopy workflows detect only one artefact class
which is insufficient to obtain high-quality frame restora-
tion. In general, the same video frame can be corrupted
with multiple artefacts, e.g. motion blur, specular reflec-

tions, and low contrast can be present in the same frame.
Further, not all artefact types contaminate the frame equally.
So, unless multiple artefacts present in the frame are known
with their precise spatial location, clinically relevant frame
restoration quality cannot be guaranteed. Another advantage
of such detection is that frame quality assessments can be
guided to minimise the number of frames that gets discarded
during automated video analysis. 2) Multi-class artefact re-
gion segmentation: Frame artefacts typically have irregular
shapes that are non-rectangular and consequently are over-
estimated by the detected bounding boxes. Development
of accurate semantic segmentation methods to precisely de-
lineate the boundaries of each detected frame artefact will
enable optimized restoration of video frames without sacri-
ficing information. 3) Multi-class artefact generalisation: It is
important for algorithms to avoid biases induced by specific
training data sets. Also, it is well known that expert annota-
tion generation is time consuming and can be infeasible for
many data institutions. In this challenge, we encourage the
participants to develop machine learning algorithms that can
be used across different endoscopic datasets worldwide based
on our large combined dataset from 6 different institutions.

2. MATERIALS AND METHODS

2.1. Task 1: Multi-class artefact detection

EAD2019 [8, 9] provides two batches of training data for
multi-class artefact detection, the first batch contains 886 en-
doscopic images labeled with 9352 bounding boxes and the
second batch contains labeled 1306 endoscopic images la-
beled with 8466 bounding boxes. After checking the train-
ing data, we notice that there may be two difficulties in this
task. One is unbalance sample distribution, another is various
size/aspect ratio of image and detection object. As shown in
table 1, there are 4074 specularity and only 327 blur in train-
ing data1, and there are 3487 artefact and only 46 instrument
in training data2.

Based on this observation, we therefore propose an im-
proved Cascade R-CNN [1] as our detection model (Figure
1). Compared to original Cascade R-CNN, we add the FPN
[2] module during feature extraction. As shown in Figure 1,
there are two main sub-modules, including multi-scale feature



Classes
num First batch of

training data(886)
Second batch of

training data(1306)
specularity 4074(44%) 1761(21%)
saturation 511(44%) 611(7%)
artefact 1609(17%) 3487(41%)

blur 327(%) 348(4%)
contrast 686(7%) 872(%)
bubbles 1738(19%) 1341(16%)

instrument 407(4%) 46(%)
total 9352 8466

Table 1. Statistics of two batches of training data

Fig. 1. The flowchart of our detection network, a improved
Cascade R-CNN by adding FPN module.

representation and multi-stage object detection with cascade
structures. The module of multi-scale feature representation
consists of a bottom-up pathway and a top-down pathway [2].
Using ResNet101 [4] as backbone, the input image is pro-
cessed through bottom-up pathway with a series of residual
blocks. We denote the feature activation outputs of last resid-
ual blocks as {C2, C3, C4, C5}, and we do not include the
output of first residual block due to memory space. Then in
top-down pathway, each feature map is constructed by merg-
ing the corresponding bottom-up map and the unsampled map
from a coarser-resolution feature map with a factor of 2. The
final feature maps are denoted as {P2, P3, P4, P5} with dif-
ferent spatial sizes corresponding to {C2, C3, C4, C5}. With
the FPN, we could produce the multi-scale feature represen-
tations, which can improve the detection rate of small objects
(e.g. specularity) by combining low-level features and high-
level semantic information. In general, IoU and mAP is a
pair of mutually contradictory index, e.g. an object detector
with higher IoU value may usually produce noisy detections
leading to low mAP. We apply three cascade stages of object
detection networks (R-CNN) to improve the performance [2].
This structure can prevent mAP from dropping sharply when
IOU is high between the prediction box and the real box.
Besides the network architecture, we pay more attention in
data distribution. We apply an unsupervised nonlinear dimen-

Fig. 2. Data visualization with t-SNE for training data1, train-
ing data2, validation data for detection (task 1) and general-
ization (task 3).

Fig. 3. According to the distribution of testing data for detec-
tion task and generalization task, the training data within the
shaded area were selected to feed the model, which ignored
the noisy outliers have less contribution for model training.

sionality reduction method called t-SNE [7] to visualizing all
the dataset including training data1, training data2, validation
data for detection and generalization (shown in Figure 2). We
find there are different data distributions among two training
datasets and validation data. Therefore, we delete some out-
liers and continuous frames in training data2, and then per-
form data augmentation for categories with fewer sample (e.g.
saturation and blur). Similar operation is also carried out for
task 2 and task 3.



Methods mAPd IoUd scored
Faster RCNN[10] 0.2618 0.3448 0.2950
Cascade RCNN[1] 0.2996 0.3221 0.3086

Table 2. Results of different models

2.2. Task 2: Region segmentation

We select Deeplab v3+ [3] network for multi-class artefact
segmentation, with different backbones (ResNet101 [4] and
MobileNet [5]). After backbone network, we add 5 paral-
lel convolution layers as the feature extraction layers, which
include one 1*1 convolutional layer, three 3*3 dilated con-
volutional layers with different ratios of 6, 12, 18, and one
global pooling layer. Then these feature maps are merged and
unsampled to achieve the region segmentation.

2.3. Task 3: Detection generalization

For detection generalization, we translate the training data to
the style of validation data with Cycle-GAN [6]. we replace
the deconvolution with the linear interpolation with 1*1 con-
volution to improve the performance of style transfer. Then
we retrain the detection model with translated training data
and test its performance..

3. EXPERIMENTS AND RESULTS

In our experiments we evaluated the method of each task in
detail. We also compare the experimental results of our meth-
ods and Faster-rcnn [10] model for task 1.

3.1. Task 1: Multi-class artefact detection

We use SGD method to optimize the improved Cascade R-
CNN. The learning rate is 0.005 with a staged decline mode,
and a total of 30 epoch is performed, and the batch size is
2, all images are resized to 1333*800. Table 1 shows the re-
sults with different methods. Table 2 shows the results with
different data methods. In validation data, we perform the
data augmentation with the operations of flip and contrast.
Note that the best results for each condition are achieved by
the technique of non-maximum suppression (NMS[11]). As
shown in Table 2, the cascade-rcnn method achieves a good
trade-off between mAP and IOU, which is 1.36% higher than
the faster-rcnn [10] model. We also compared the results of
the different methods in detail, As shown in the table 3, the fi-
nal result of model7 brought 4.83% improvement when com-
pared to the original cascade-rcnn results.

3.2. Task 2: Region segmentation

The Adam optimizer is used, the initial learning rate is 0.007,
a total of 30k iterations are trained, and the batch size is 10.,
all the images are resized to 513*513.We select multi-class

Methods mAPd IoUd scored
Model1(only training

data1) 0.2210 0.4504 0.3127

Model2(only training
data2) 0.2138 0.4323 0.3012

Model3(training data1+
training data2) 0.2996 0.3221 0.3086

Model4(selected by t-
SNE) 0.2379 0.4512 0.3235

Model5(selected by t-SNE
+ data augmentation for

training data)
0.2658 0.4476 0.3385

Model6(selected by t-SNE
+ data augmentation for

testing data)
0.2633 0.4663 0.3445

Model7(model5 and
model 6 fusion by NMS) 0.3235 0.4172 0.3610

Table 3. Results of different datasets by the improved Cas-
cade R-CNN

(a) (b) (c)

Fig. 4. (a) the original image; (b) the results of model without
post-processing; (c) the final result.

sigmoid as loss function since there may be overlap among
different artefact classes. Table 4 shows the results of multi-
class artefact segmentation by different methods. Due to lim-
ited training datasets, the contours of some instruments can’t
be extracted completely, to remedy the over-segmentation
problem of instruments, we combined a marker-based water-
shed segmentation, which took partially extracted regions as
markers, to perceptually group together the mulitiple parts
of instruments. In this way, the multiple parts of instruments
are perceptually merged according to their regional homo-
geneity. And the result of segmentation is shown in Figure
4 which we can see how the post-processing improves the
segmentation results clearly. Besides, from Table 4, the result
of merging the two backbones (Resnet101[4], Mobilenet[5])
Increased from 0.6414 to 0.6568, with an increase of nearly
1.5 percentage points, and further improved to 0.6700 by
post-processing such as regional growth.

3.3. Task 3: Detection generalization

We trained the Cycle-GAN with some hyper parameters: the
Adam optimizer is used, the initial learning rate is 0.002, a
total of 30 epochs are trained, and the batch size is 1, all



Methods Overlap F2-score scores
Resnet101 backbone 0.6288 0.6795 0.6414

Ensemble
two backbones 0.6592 0.6937 0.6568

Ensemble
+Post-processing 0.6612 0.6964 0.6700

Table 4. Segmentation results of by different methods

(a) (b)

Fig. 5. (a) the original image; (b) the translated image.

Methods mAPg devg
Train with original
training data 0.3187 0.1018

Train with translated training
data by Cycle-GAN[6] 0.3747 0.0693

Table 5. Results of detection generalization

the images are resized to 512*512. Then trained the detec-
tion model in task 1 with original and translated training
data respectively, and compare their performance of de-
tection generalization. As shown in Table 5, the model
trained with original training data obtains mAP g=0.3187,
and dev g=0.1018, while the model trained with translated
data obtains mAP g=0.3747, and dev g=0.0693. Therefore,
the performance of detection generalization improved with
style transfer.

4. CONCLUSION

In Task 1, the better results are obtained by combining the fpn
and cascade-rcnn models. The mAP and IOU evaluation in-
dicators are more balanced. At the same time, using t-SNE to
automatically select similar samples between the two batches
of training data and the test datasets, which is helpful to accel-
erate the model training; In the task 2, the deeplabv3+ model
is supplemented by the multi-class sigmoid loss function to
improve the segmentation effect of the model; In the task 3,
We presented using cycle-gan to translate the training set of
task 1 to the testing set in task 3, and the fine-tuning the de-

tection model of task 1, which could effectively improve the
generalization of the detection model of task 1.
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