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ABSTRACT

Endoscopic Artefact Detection (EAD) is a fundamental
task for enabling the use of endoscopy images for diagno-
sis and treatment of diseases in multiple organs. Precise de-
tection of specific artefacts such as pixel saturations, motion
blur, specular reflections, bubbles and instruments is essential
for high-quality frame restoration. This work describes our
submission to the EAD 2019 challenge to detect bounding
boxes for seven classes of artefacts in endoscopy videos. Our
method is based on focal loss and Retina-net architecture with
Resnet-152 backbone. We have generated a large derivative
dataset by augmenting the original images with free-form de-
formations to prevent over-fitting. Our method reaches a mAP
of 0.2719 and a IoU of 0.3456 for the detection task over all
classes of artefact for 195 images. We report comparable per-
formance for the generalization dataset reaching a mAP of
0.2974 and deviation from the detection dataset of 0.0859.

Index Terms— Endoscopic artefact detection, focal loss,
retina-net, class imbalance

1. INTRODUCTION

Endoscopy is a procedure in which the inside of the body
is examined using a long, thin, flexible tube that has a light
source and camera at one end, which allows visualization of
the inside of organs on a screen. It is a widely used clinical
procedure for the early detection of numerous cancers as well
as for therapeutic procedures and minimally invasive surgery.
A major handicap of endoscopy video frames is that they are
subject to heavy corruption with multiple artefacts. The En-
doscope Artefact Detection (EAD) challenge in the ISBI 2019
conference provides a multi-institutional dataset consisting
of 7 different types of artefact (i.e. saturation, motion blur,
specular reflections, bubbles, instrument, contrast and arti-
fact). These artefacts not only cause difficulties in visualiz-
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ing the underlying tissue during diagnosis but also affect any
post-analysis methods required for follow-up (e.g. video mo-
saicking done for archival purposes and video-frame retrieval
needed for reporting). Accurate detection of artefacts is a core
challenge in a wide-range of endoscopic applications address-
ing multiple different disease areas. The importance of pre-
cise detection of these artefacts is essential for high-quality
endoscopic frame restoration and is crucial for realising reli-
able computer assisted endoscopy tools for improved patient
care. An example ground truth bounding box annotations is
visualized in Figure 1a.

Existing endoscopy workflows detect only one arte-
fact class which is insufficient to obtain high-quality frame
restoration as detailed in a comprehensive review about im-
age quality estimation [1]. In general, the same video frame
can be corrupted with multiple artefacts, e.g. motion blur,
specular reflections, and low contrast can be present in the
same frame. Furthermore, not all artefact types contaminate
the frame equally. So, unless multiple artefacts present in
the frame are known with their precise spatial location, clini-
cally relevant frame restoration quality cannot be guaranteed.
Another advantage of such detection is that frame quality
assessments can be guided to minimise the number of frames
that get discarded during automated video analysis.

2. RELATED WORKS

The existing works on endoscopic artefact detection are
mainly focused on thresholding-based methods using the
HSV [2] and RGB colour channels. Queiroz et al. [3] pro-
posed to use a principal component analysis based detection
algorithm of specular artefacts. Akbari et al. [4] proposed to
use a non-linear SVM specular artefact detection using both
HSV and RGB colour space information for segmentation of
specular reflections. The SVM was trained with 12 statistical
features including the mean and standard deviation of each
channel of the RGB and HSV colour spaces.

The nature of this multi-class artefact detection challenge
is in close relation to object detection challenges in computer
vision (e.g. the COCO challenge [5]). The top performing
algorithms on COCO and similar computer vision object de-
tection challenges are based on convolutional neural network
deep learning architectures. Current state-of-the-art object



detectors are based on a two-stage, proposal-driven mecha-
nism. As popularized in the R-CNN framework [6], the first
stage generates a sparse set of candidate object locations and
the second stage classifies each candidate location as one of
the foreground classes or as background using a convolutional
neural network. Through a sequence of advances [7, 8], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [5]. Despite the success
of two-stage detectors, also one stage detectors are applied
over a regular, dense sampling of object locations, scales, and
aspect ratios. Recent work on one-stage detectors, such as
YOLO [9], demonstrates promising results, yielding faster
detectors with high accuracy. In this direction Lin et al. pro-
posed RetinaNet [10], which is a one-stage object detector
that matches the state-of-the-art COCO Avearage Precision
(AP) of more complex two-stage detectors, such as the Fea-
ture Pyramid Network (FPN) [11] or variants of Faster R-
CNN [7]. To achieve this result, class imbalance during train-
ing was identified as the main obstacle impeding one-stage
detectors from achieving state-of-the-art accuracy and a new
loss function that eliminates this barrier was proposed.

Class imbalance is one-key issue in the EAD 2019 multi-
artefact detection challenge [12, 13], where the classes have
an imbalanced distribution in the training set (e.g. specularity
43%, blur 3.5%, artifact 12%). Class imbalance is addressed
in R-CNN-like detectors by two-stage cascade and sampling
heuristics. The proposal stage rapidly narrows down the num-
ber of candidate object locations to a small number, filtering
out most background samples. In this paper, we address this
class imbalance by reshaping the standard cross entropy loss
such that it down-weights the loss assigned to well-classified
examples similar to [10]. Focal Loss focuses training on a
sparse set of hard examples and prevents the vast number of
easy negatives from overwhelming the detector during train-
ing. To evaluate the effectiveness of our loss, we design and
train a simple dense detector based on RetinaNet. As high-
lighted in [10], when trained with the focal loss, RetinaNet is
able to match the speed of previous one-stage detectors while
surpassing the accuracy of all existing state-of-the-art two-
stage detectors. We use a loss function that acts as a more
effective alternative to previous approaches for dealing with
class imbalance. The loss function is a dynamically scaled
cross entropy loss, where the scaling factor decays to zero as
confidence in the correct class increases. Intuitively, this scal-
ing factor can automatically down-weight the contribution of
easy examples during training and rapidly focus the model on
hard examples.

3. METHODS

RetinaNet is a single, unified network composed of a back-
bone network and two task-specific subnetworks. The back-
bone is responsible for computing a convolutional feature
map over an entire input image and is an off-the-self con-

volutional network. The first subnet performs convolutional
object classification on the backbone’s output; the second
subnet performs convolutional bounding box regression. The
two subnetworks feature a simple design that we propose
specifically for one-stage, dense detection. While there are
many possible choices for the details of these components,
most design parameters are not particularly sensitive to exact
values as shown in the experiments. We detail the compo-
nents of RetinaNet in the following sections.

3.1. Feature Pyramid Network Backbone

We adopt the Feature Pyramid Network (FPN) from [11] as
the backbone network for RetinaNet. In brief, FPN augments
a standard convolutional network with a top-down pathway
and lateral connections so the network efficiently constructs
a rich, multi-scale feature pyramid from a single resolution
input image. Each level of the pyramid can be used for de-
tecting objects at a different scale. FPN improves multi-scale
predictions from fully convolutional networks (FCN), as well
at two-stage detectors such as Fast R-CNN or Mask R-CNN.
Following this, we build FPN on top of the ResNet architec-
ture [14]. We construct a pyramid with levels P3 through P7,
where l indicates pyramid level (Pl has resolution 2l lower
than the input). As in [11] all pyramid levels have C = 256
channels. Details of the pyramid generally can be found in
[11].

3.2. Anchors

We use translation-invariant anchor boxes similar to those in
the orginal Retina-net [10]. The anchors have areas of 322 to
5122 on pyramid levels P3 to P7, respectively. As in [11], at
each pyramid level we use anchors at three aspect ratios 1:2,
1:1, 2:1. For denser scale coverage than in, at each level we
add anchors of sizes 20, 21/3, 22/3 of the original set of 3 as-
pect ratio anchors. This improve AP in our setting. In total
there are A = 9 anchors per level and across levels they cover
the scale range 32 - 813 pixels with respect to the networks
input image. Each anchor is assigned a lengthK one-hot vec-
tor of classification targets, where K is the number of object
classes, and a 4-vector of box regression targets. We use the
assignment rule from RPN but modified for multi-class detec-
tion and with adjusted thresholds. Specifically, anchors are
assigned to ground-truth object boxes using an intersection-
over-union (IoU) threshold of 0.7; and to background if their
IoU is in [0, 0.6). As each anchor is assigned to at most one
object box, we set the corresponding entry in its length K
label vector to 1 and all other entries to 0. If an anchor is
unassigned, which may happen with overlap in [0.6, 0.7), it is
ignored during training. Box regression targets are computed
as the offset between each anchor and its assigned object box,
or omitted if there is no assignment.



3.3. Classification Subnet

The classification subnet predicts the probability of object
presence at each spatial position for each of the A anchors
and K object classes. This subnet is a small FCN attached to
each FPN level; parameters of this subnet are shared across all
pyramid levels. Its design is simple. Taking an input feature
map with C channels from a given pyramid level, the subnet
applies four 3×3 convolutional layers, each with C filters and
each followed by ReLU activations, followed by a 3× 3 con-
volutional layer with KA filters. Finally sigmoid activations
are attached to output the KA binary predictions per spatial
location. We use C = 256 and A = 9 in most experiments.
In contrast to RPN , our object classification subnet is deeper,
uses only 3 × 3 convolutions, and does not share parameters
with the box regression subnet. We found these higher-level
design decisions to be more important than specific values of
hyperparameters.

3.4. Box Regression Subnet

In parallel with the object classification subnet, we attach an-
other small FCN to each pyramid level for the purpose of re-
gressing the offset from each anchor box to a nearby ground-
truth object, if one exists. The design of the box regression
subnet is identical to the classification subnet except that it
terminates in 4A linear outputs per spatial location. For each
of the A anchors per spatial location, these 4 outputs predict
the relative offset between the anchor and the ground-truth
box. The object classification subnet and the box regression
subnet, though sharing a common structure, use separate pa-
rameters.

3.5. Focal loss

Our novel Focal Loss focuses training on a sparse set of hard
examples and prevents the vast number of easy negatives from
overwhelming the detector during training. Formally, focal
loss is a modified version the cross entropy loss, with tunable
focusing γ parameter:

Focal loss = −αt(1− pt)
γ log(pt)

where pt is class-specific probability of belonging to a class
and α is a weighting parameter.

There are two important properties of the focal loss, which
makes it appealing for EAD 2019 challenge: (1) When an ex-
ample is misclassified and pt is small, the modulating factor is
near 1 and the loss is unaffected. With increasing pt, the fac-
tor goes to 0 and the loss for well-classified examples is down-
weighted. (2) The focusing parameter γ smoothly adjusts the
rate at which easy examples are downweighted. When γ = 0,
Focal loss is equivalent to CE, and as γ is increased the effect
of the modulating factor is likewise increased. Intuitively, the
modulating factor reduces the loss contribution from easy ex-
amples and extends the range in which an example receives

low loss. The total loss is a combination between the focal
loss and a regression loss on bounding boxes.

4. IMPLEMENTATION DETAILS

RetinaNet forms a single FCN comprised of a ResNet-FPN
backbone, a classification subnet, and a box regression sub-
net. We use ResNet-152-FPN backbone to run our experi-
ments. As such, inference involves simply forwarding an im-
age through the network. To improve speed, we only decode
box predictions from at most 200 top-scoring predictions per
FPN level, after thresholding detector confidence at 0.36. The
top predictions from all levels are merged and non-maximum
suppression with a threshold of 0.5 is applied to yield the final
detections. We trained our network using the Keras frame-
work with Tensorflow library on nVidia P6000 GPU.

4.1. Focal Loss

We use the focal loss introduced in this work as the loss on
the output of the classification subnet. We find that γ = 2
and α = 0.25 works well in practice and the RetinaNet is rel-
atively robust. We emphasize that when training RetinaNet,
the focal loss is applied to all 100k anchors in each sampled
image. This stands in contrast to common practice of using
heuristic sampling (RPN) or hard example mining (OHEM,
SSD) to select a small set of anchors for each minibatch. The
total focal loss of an image is computed as the sum of the
focal loss over all 100k anchors, normalized by the number
of anchors assigned to a ground-truth box. We perform the
normalization by the number of assigned anchors, not total
anchors, since the vast majority of anchors are easy nega-
tives and receive negligible loss values under the focal loss.
In general α should be decreased slightly as γ is increased, as
highlighted in the original Retina-net paper.

4.2. Initialization

All new convolutional layers except the final one in the Reti-
naNet subnets are initialized with bias b = 0 and a Gaussian
weight fill with σ = 0.01. For the final convolutional layer of
the classification subnet, we set the bias initialization to b =
log((1 )/), where specifies that at the start of training every
anchor should be labeled as foreground with confidence of .
We use φ = .01 in all experiments, although results are robust
to the exact value. This initialization prevents the large num-
ber of background anchors from generating a large, destabi-
lizing loss value in the first iteration of training.

4.3. Optimization

RetinaNet is trained with stochastic gradient descent (SGD).
We use a minibatch of 3 size of 3 images. The model is
trained for 10000 iterations with an initial learning rate of
0.001, which is then divided by 10 at 5000 and again at 750



(a) Example ground truth bounding boxes (b) Predicted bounding boxes

Fig. 1: Example artefact detection and confidence scores from training detection set (result using 5-fold cross validation). The
example was used in the validation set in this setup was not used during training of the network.

iterations. Weight decay of 0.0001 and momentum of 0.9 are
used. The training loss is the sum the focal loss and the stan-
dard smooth L1 loss used for box regression. Training of the
network took 26 hours.

4.4. Augmentation

Our scheme of image augmentations was designed to pre-
vent overfitting to the set of training images, and so make our
method more generalisable to the images in the test set. We
assessed the effect of these augmentations by training the net-
work with just the original training data and applying it to the
test set images to produce artefact detections. In accordance
to this is the observation that training without augmentations
produces a much smaller final loss value as compared to train-
ing with augmentations. Having trained on the whole dataset
for 10000 iterations with a batch size of 600 images, the final
loss value without augmentations is 0.0082 but with augmen-
tations is 0.0605. This clearly indicates significant over-fitting
to the training dataset when augmentations are not used.

5. EXPERIMENTAL RESULTS

We used a stratified 5-fold cross validation strategy to op-
timize the parameters of the network. Table 1 summarizes
the quantitative results achieved over 5-fold for each of the
seven artefact classes. The data imbalance in between dif-
ferent classes and the how easily distinguishable each spe-
cific classes influences the specific mAP score for each class.

Fig. 2: Example artefact detections and confidence scores
from test detection set.

We reach 0.2719 mean average precision (mAP) score on 195
cases over all 7 artefact classes. The intersection over union
(IoU) for our predictions is 0.3456 for detection task over all
classes. We report comparable performance for 51 images
generalization dataset reaching a mAP of 0.2974 and devia-
tion from detection dataset of 0.0859.

The visual result of 5-fold cross-validation for a case from
validation cohort is visualized in Figure 1. The trained net-
work is capable to generate bounding boxes with high confi-
dence for an unseen case during training A qualitative result



Fold specularity saturation artifact blur contrast bubbles instrument mAP IoU
0 0.5694 0.5908 0.6258 0.6053 0.6832 0.4962 0.6785 0.5245 0.4591
1 0.5619 0.5977 0.6518 0.6098 0.7037 0.5060 0.6858 0.5309 0.4562
2 0.5709 0.6193 0.6674 0.5969 0.7104 0.5112 0.6969 0.5401 0.4015
3 0.5613 0.6291 0.6689 0.6011 0.6974 0.5076 0.6897 0.5354 0.4209
4 0.5659 0.6072 0.6882 0.6185 0.7141 0.5213 0.6871 0.5442 0.4173

Mean 0.5659 0.6604 0.6063 0.70176 0.5085 0.9605 0.6876 0.53502 0.4310

D-Test N/A N/A N/A N/A N/A N/A N/A 0.2719 0.3456
G-Test N/A N/A N/A N/A N/A N/A N/A 0.2974 N/A

Table 1: 5-Fold validation average precision (AP) per class and intersection over union (IoU) results for seven classes. The AP
results for each class, mean AP (mAP) and IoU results are reported for the validation over 5-fold (eg. for fold 5,0 the first fifth
of images from the dataset were validation). The IoU column is the intersection-over-union difference between the bounding
boxes inferred from the fold network and the ground truth bounding boxes. D-Test and G-test correspond to the detection and
generalization test data for which per-class results are not reported in the challenge.

from detection test set is illustrated in Figure 2, with the pre-
diction probabilities. The bubble and artefact classes are cor-
rectly identified in the example image. The ground truth is
not available for this case.

6. DISCUSSION AND FUTURE WORK

In our experience it was clear when artefacts classes are
poorly detected a significant factor is the size and total num-
ber of bounding boxes produced. The main difference in
between different setups was dependent on the number of
bounding boxes generated for artefacts in a neighbourhood.
One critical factor in the final mAP score is the probability
threshold used to include the detected artefacts. In future
work, we aim to apply our algorithm on different artefact
localization task for medical images (e.g. cardiac MR) with
the availability of the training data.
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