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ABSTRACT

Detecting artefacts in video filmed in endoscopy is an im-
portant problem for downstream computer-assisted diagnosis.
When tackling this problem, one challenge is that the size of
an artefact varies in a wide range. The other challenge is that
labeling endoscopic images is labor- extensive and is hard to
outsource the labeling task to untrained people without the
aid of doctors. In this report, we demonstrate how the perfor-
mance of a Faster R-CNN model can be improved by scaling
an image to the right scale before training and testing. The
training method overcomes the issue that a convolution neu-
ral network trained on one scale barely works when detecting
the same category of objects on a different scale. The method
is totally independent of the model and can be easily adapted
with other models. Besides, it saves time and memory by fo-
cusing on the patches that include objects when training the
model. The source code* for this report will be made public
upon the publishing of my solution.

1. INTRODUCTION

Endoscopy is a widely used clinical procedure for the early
detection of numerous cancers (e.g., nasopharyngeal, gastric,
colorectal cancers, bladder cancer etc.), therapeutic proce-
dures and minimally invasive surgery. Video taken by the
camera of an endoscope is usually heavily corrupted with
multiple artefacts (e.g., pixel saturations, motion blur, defo-
cus, specular reflections, bubbles, fluid, debris etc.). Accu-
rate detection of artefacts is a core challenge in a wide range
of endoscopic applications addressing multiple different dis-
ease areas. The importance of precise detection of these arte-
facts is essential for high-quality endoscopic frame restora-
tion and crucial for realizing reliable computer assisted en-
doscopy tools for improved patient care.

In the last few years, convolution neural network (CNN)
has outperformed previous non-CNN based methods in solv-
ing the object detection problem. The dominant CNN-based
methods fall into two categories, one-stage approach and two-
stage approach, with the former method shining in speed and
the latter in accuracy. These two methods meet the demand
in different fields. For example, in the field of self-driving

car, speed is a prerequisite given an acceptable detection per-
formance as a self-driving car has to react instantly. In the
case of diagnosis in biomedical engineering, we can bear with
slightly more computation time for higher accuracy. Since
the advent of R-CNN [1], which is a two stage approach, this
region-based detection method has become increasingly ma-
ture. Along the line, Fast R-CNN [2] introduced a Rol pool-
ing operation that does forward pass on all the object pro-
posals in an image simultaneously. Faster R-CNN [3] fur-
ther speeds up R-CNN by training a region proposal network
(PRN) using the feature maps generated by the convolution
operations at the low level, without introducing much cost.
Thus, I chose Faster R-CNN as the base framework in this
challenge.

However, two challenges have to be solved when devel-
oping the model. One special challenge is that the size of the
artefacts varies in a wide range and the other one is a limited
number of labeled images (2,192 in total). The scale-related
challenge is associated with the architecture of a CNN. The
low level feature maps of a CNN capture features like edges
and have a small receptive field, whereas the high-level fea-
tures capture more semantic features, and have a larger re-
ceptive field [4, 5, 6]. Thus, the high-level features of small
objects (e.g. less than 32 pixels) get mixed with features for
background or objects nearby if the features do not disap-
pear due to dimension reduction caused in feature extraction.
e.g. For a feature stride of 32, the highest level features were
shrunk 32 times compared to the raw image. For very large
objects, the deeper layers suffer from extracting high-level se-
mantic features due to failing to integrate low-level features
given a limited feature stride.

To alleviate the problem caused by the wide range of ob-
ject size, various solutions have been proposed. One category
of solution focused on designing new CNN architectures to
exploit the features at different levels. Under this paradigm,
SSD [7] and MSCNN [8], use feature maps from different
layers to detect objects at different scales. Although the fea-
tures for small objects survive in the low-layer features, they
lack semantic information which is supposed to be encoded
in high level features. FPN [9], DSSD [10], STDN [11] inte-
grate features at different layers. Another solution is to train
a neural network on a multi-scale image pyramid, resulting



in a scale-invariant predictor [12]. Nevertheless, the previous
solutions do not change the fact that high-level feature maps
for small objects are mixed and the receptive fields for large
objects are limited given an image and a CNN. Recently, a
new training method that detects all objects at a proper scale
by scaling up small objects and scaling down large objects has
been reported in the state-of-the-art models, SNIPER [13] and
TridentNet [14].

In this study, we demonstrated the successful application
of the idea of detecting objects of various size at the right
scale in detecting artefacts in endoscopy. The report is orga-
nized in such an order: datasets, methods, results, discussion
and conclusion.

2. DATASETS

The training dataset consists of 2,192 endoscopic images (Fig.
1 A), in which seven categories of artefacts were labeled [15,
16]. The seven categories are pixel saturation, motion blur,
specular reflections, bubbles, strong contrast, instrument and
other artefacts. The size of an artefact varies in a range from
a few pixels to one thousand pixels (Fig. 1 B). The number
of objects in each category is from 453 to 5835 (Fig. 1 C).
The performance of a model was tested on two datasets, one
collected by the same endoscope and the other collected by
a different endoscope to test the generalization ability of a
model. The former and latter testing datasets comprise 195
and 51 images, respectively.

3. METHODS

The model we built is a Faster R-CNN with a FPN as the
backbone. An FPN consists of mainly two parts, an encoder
and an decoder, which is very similar to a U-Net [17] architec-
ture developed for image segmentation tasks. Considering the
memory capacity of our GPU (GTX 1070 16GB), We chose
ResNet-50 as the workhorse of the encoder [18]. The im-
plementation was based on a modularized implementation of
mask R-CNN [19] in Pytorch [20]. The weights of the model
were initialized with the weights trained on the COCO dataset
except that the weights for the classification and regression
head were initialized with random weights.

When training the model, we adapted the method pro-
posed in [13] considering the class imbalance in our dataset
and introduced data augmentation by strategically cutting a
patch from an image for training. In specific, given all the
bounding boxes (bboxes) in an image, k+1 bboxes were sam-
pled from all the bboxes in this image (Fig. 2 A). k is the
number of categories of objects in this image and 1 represents
a random bbox. Such operation is to alleviate the class imbal-
ance problem (Fig. 1 C) in our dataset. Then one bbox was
sampled from the k+1 bboxes. Finally a patch of the image
was cut out and scaled up or down depending on the size of
the object in that patch.

When cutting a patch of the image (Fig. 2 B, step 1),
the size of the patch and location of the patch was jittered,
which allows us to generate not exactly the same patch every
time even though the patch with the same object is selected.
Note that the size of the patch is always larger than the object
and a larger patch was cut if a smaller object exists in that
patch. Otherwise, if the object were always in the center or
same location in the patch, the model would not learn to detect
objects but learn to localize objects assuming there is always
an object, which is not true. The setting for the size of a patch
(Spatch) 1s defined by this equation: Spatch = T X Sppos, Where
r=4.5,2, 1.5, and 1.2, respectively, for the cases, Sppo. < 80,
160, 350, and > 350. If no object exists in a random patch, a
fixed size of patch was cut from an image.

After cutting a patch from an image, the patch was scaled
up or down depending on the size of the object in that patch
(Fig. 2 B, step 2). The scaling provides a zoomed-in view for
small object objects and a zoomed-out view for large objects.
Thus, both high-level and low-level feature maps will exist
after an image passes a CNN. The scaling ratio (r) is inversely
proportional to the size (s) of the object in the patch: r = 160/s
and the size of all the objects are grouped into 6 bins. So
the settings used here are (r=4, s < 40), (r=2, s;80), (r=I,
s < 160), (r=0.5, s < 250), (r=0.25, s < 640), and (r=0.13,
s > 640). The reason for choosing such settings is that there
will be 5 pixels in the last layer of the encoder if a raw input
of 160 pixels is fed into the model, which has a feature stride
of 32. A patch, which has no objects in it, was scaled with a
random ratio on the fly.

After scaling up or down the patch cut from each image in
a batch, objects that are too large/small were excluded. The
thresholds for too small and too large objects are 32 and 2000,
respectively. Choosing 32 as the threshold is because of the
feature stride of the model is 32 and choosing 2000 is just
because it is large enough.

In each training iteration, multiple patches from multiple
images were cut and normalized as a batch by padding the
patch with with the channel mean and concatenated, resulting
in a batch of images, whose width and height are a multiple
of 32 (Fig. 2 B, step 3). For a patch that is already a multiple
of the stride size of the encoder, no padding was added. Since
the padding is always on the bottom and right side if neces-
sary, the coordinates of the bounding box does not change.
Collating multiple samples and unifying them in size can be
easily implemented in Pytorch'. For other details like how
the bounding boxes were adjusted accordingly when cutting
a patch from an image, see our code* on Github.

4. RESULTS

In inference, we tested one image on all the scales used in
training (scales: 4, 2, 1, 0.5, 0.25 and 0.13). The coordi-

Uhttps:/pytorch.org
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Fig. 1. A. Two sample endoscopic images. B. The distribution of the size of each category of artefacts in the training set. C.
The distribution of the counts of seven categories of artefact in the training set.

nates of all the detected objects were transformed back to the
original scale. To remove redundant bounding boxes, non-
maximum suppression were conducted on all the detected
bounding boxes for each category of object. It was observed
that many false positive, which were small objects, were de-
tected on the scale of 4, so I finally chose not to include the
prediction on that scale.

The performance of our model was evaluated by a hybrid
metric which was a weighted score of mean average preci-
sion (mAP) and Intersection over Union (IoU): 0.6 x mAP
+ 0.4 x IoU. We compared the performance of two ways for
training the same model. One way is training the model on
the whole image every time and the other is on patches gen-
erated following the method described above. The threshold
for the probability when determining an object is 0.65. In the
former case, the best overall score on the two testing sets was
0.221. For the latter case, we trained the network for 27,105
iterations (batch size is 8 in each iteration) and a significant
boost in performance was observed. The score we reached
was 0.293, which was among the top 10 teams on the leader-
board.

5. DISCUSSION & CONCLUSION

The training method boosted the performance of Faster
RCNN in two ways. First, as we discussed in the Intro-
duction section, it alleviates the scale variation problem by
scaling up/down an object to the right scale to detect. Second,
randomly cutting a patch which includes an object allows us
to generate far more different training images compared to
feeding the whole image to the model. Thus, cutting a patch
serves as a data augmentation technique. Besides, it offers
flexibility to deal with the class imbalance as we can choose
which patch to cut from a training image, considering the
distribution of the counts of all the classes.

Since the detected bboxes on all the scales were merged, a
bbox was called if it was detected on any of the scales. Such
an integration approach tends to report more false positive.
One failure case we observed is that a false positive object
does look like a true object because the model decides with-
out considering the context of that object. We run into the
case when an image is scaled up by 4 times. Thus the con-
text information does matter and a context refinement proba-
bly corrects such kind of errors [21]. An alternative solution
to solve this bias of this method can be feeding the detected
bboxes as the input for the Rol pooling layer and merging the
features generated by the model on an image pyramid. Since
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Fig. 2. The method for training the model to detect objects of various size on the right scale. A. a balanced set of bounding
boxes was generated by sampling a bbox from each class and adding a random bbox. B. then a single bbox was sampled and a
patch including the bbox was cut from the image. The patch was scaled down or up depending on the size of the object in the

patch. Finally a batch of patches with unified size were generated.

the scaled down images include more context information, we
expect the problem to be solved in this way.

To further boost the detection performance, the regular
convolution operation in the FPN backbone can be replaced
by deformable convolution operation will enhance the trans-
formation modeling capacity of CNNs [22] or a newly pro-
posed backbone designed for object detection task [?]. In
conclusion, there is still room for improvement and we have
demonstrated the performance of a Faster R-CNN model can
be improved significantly by training and detecting the ob-
jects on the right scale.
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