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ABSTRACT

Endoscopic video frames tend to be corrupted by various arte-
facts impairing their visibility. Automated detection of these
artefacts will foster advances in computer-assisted diagnosis,
post-examination procedures and frame restoration software.
In this work, we propose an ensemble of deep learning object
detectors to automate multi-class artefact detection in video
endoscopy. Our approach achieved a mean average preci-
sion (mAP) of 0.3087 and an average intersection-over-union
(IoU) of 0.3997 on the EAD2019 test set. This resulted in a
final score of 0.3451 and the 3rd rank in the EAD 2019 object
detection sub-challenge leaderboard.

Index Terms— Endoscopy, RetinaNet, artefact detection,
deep learning, object detection

1. INTRODUCTION

Tissue characteristics of hollow organs, as well as the differ-
ent instruments and illumination modes applied in medical
endoscopy lead to a high number of artefacts that obstruct vis-
ibility. The frames produced during endoscopic interventions
can be corrupted by bubbles, instruments and image deficien-
cies such as specular reflections, strong contrasts, saturated
pixels, motion blurs, or other artefacts. These corruptions
have a negative effect on both the live diagnosis and post-
intervention procedures. Successfully detecting the artefacts
will thus assist endoscopic experts and will be the cornerstone
of successful endoscopic video frame restoration.

Over recent years deep learning techniques have become
the state-of-the-art in medical image analysis and they have
in particular proved successful in related medical endoscopy
computer vision tasks, such as polyp detection [1]. Deep
learning object detection methods can be separated into one-
and two-stage methods. One-stage methods are generally
faster as they dont rely an additional region proposal step.
RetinaNet is a one-stage detector proposed by Lin et al. [2].
The novelty of this architecture is the proposed focal loss,
which addresses the imbalance between foreground and back-
ground anchors that occurs in one-stage methods. RetinaNet
outperforms two-stage methods such as Faster R-CNN on
COCO test-dev. We use this network as the base architecture
for our challenge submission. The EAD dataset [3, 4] is very

unbalanced and contains objects at vastly different scales.
RetinaNets built in Feature Pyramid Network (FPN) [5] and
focal loss can effectively address these issues.

2. METHODS

Our method consists of an ensemble of seven RetinaNet ar-
chitectures that vary in hyperparameters, backbone networks,
transfer learning, data augmentation, and training subset
used. The models are combined based on an efficient voting
scheme.

2.1. RetinaNet architecture

The RetinaNet detector consists of a backbone network for
extracting a convolutional feature map and two subnetworks
that perform object classification and bounding box regres-
sion via convolution. The classification loss is given by the fo-
cal loss and the regression loss is given by the smooth L1 loss.
The sum of both these losses constitutes the overall loss that
is minimized during training. It is a one-stage method, mean-
ing that it does not require a region proposal module. Instead,
anchors at different scales and aspect ratios are densely dis-
tributed across the image and they will all be classified by the
network. In order to construct a multi-scale feature pyramid
from a single resolution input image, the backbone network is
augmented by a feature pyramid network, FPN [5]. FPNs are
a top-down architecture with lateral connections that allows
semantically rich layers to be built at all scales with marginal
computational cost. FPNs have proven especially effective in
the detection of small objects and are therefore well-suited
for our use case. Pyramid levels and anchors were generated
according to the specifications in [2]. We experimented with
different IoU thresholds for assigning an anchor to a ground-
truth object and validated the thresholds used in [2]. No other
changes were made to the RetinaNet classification and regres-
sion subnetworks.

In our experiments, we used both VGGNet [6] and
ResNet [7] convolutional neural networks (CNN) as the
backbone network in our framework. VGGNet is a CNN
from 2014 with a simple architecture that consists of convo-
lution layers, pooling layers, and fully connected layers. We
tested both a 16 and 19-layer VGGNet (Table. 2). ResNets



are much deeper CNNs that maintain their generalization
capability through inception modules. Given that ResNet
are much deeper and can extract more elaborate features, it
generally outperforms VGGNet on most public validation
test sets. We experimented with 50, 101, and 152-layered
versions of ResNet.

2.2. Focal Loss

Focal Loss is an extension of the cross-entropy loss that uses
a weighting factor to prevent one-stage detection methods be-
ing overwhelmed by the large amount of ‘easy’ background
examples. Typically, one-stage methods have around 100k
anchors per image. Most of these are background anchors that
are easy to classify and swamp the classifier, undermining its
ability to focus and learn on the harder, foreground examples.
This imbalance is countered by the addition of a weighting
factor (1 − pt), which reduces the weight of easily classified
anchors and thereby shifts the focus onto harder examples. pt
is given in [2] as:

pt =

{
p, if y = 1

p− 1, otherwise
(1)

where γ is a tunable hyperparameter that modifies the extent
to which the loss function prioritizes hard examples. If γ = 0,
then our loss function is equal to the cross-entropy loss and no
priority is given to hard examples. If for instance γ = 2 and
pt = 0.9 for a given anchor, then its contribution to the loss
will be 100 times lower than for the standard cross-entropy
loss. Our experiments (Table. 3) show that setting γ = 1.5
yields the best performance.

Besides the focal loss weighting factor, a further weight-
ing factor α was applied. Correctly classified anchors are
weighted by α and misclassified ones are weighted by 1 − α
with α ∈ [0, 1]. αt is defined analogously to pt. According
to [2], α needs to be selected together with γ. Accordingly,
we set α to 0.25 for γ = 1.5.

The final α-balanced version of the focal loss is given by:

FL(pt) = −αt(1− pt)γ log(pt) (2)

2.3. Ensemble Method

In order to counter the variance in the network output and
increase performance, we implemented an ensemble method.
LetM be the number of models used in the ensemble method.
Our final method used M = 7 models.

The single trained models were first ordered according
to their individual test scores (Table. 5). We then iterated
through the M − 1 first models and compared for each model
mi (i ≤ M − 1) its bounding box predictions to all subse-
quent models mj (j > i) in a pairwise manner. For example
with three models, m1 would be compared to m2 and m3. In
the next iteration step m2 would be compared to m3 (Fig. 1).

Fig. 1: Illustration of how bounding box predictions predicted
by different models mi are compared to each other. Mod-
els are first ordered in descending order of test performance.
Then each model mi is compared to all subsequent models,
mj for j > i.

Fig. 2: Illustration of the overlap score computation. Dis-
played are two bounding box predictions from a model m1

and a model m5 that both predict the class bubbles. Their
confidence scores are averaged. The resulting average score
together with the IoU gives an overlap score of 0.473. In our
case, where the threshold for determing a positive overlap is
set as 0.46, this means that both boxes ‘overlap’ and will be
assigned to each other.

Each prediction box from mi forms the root of a stack and
boxes from mj can then be assigned to that stack. Whenever
a bounding box from mj is assigned to the stack of a box in
mi, it will be removed entirely to avoid assigning one box to
multiple stacks. Having the most accurate bounding boxes as
roots of the stack proved beneficial. Therefore it is impor-
tant to first order the models according to their test score to
achieve optimal results. Boxes are assigned to a stack based
on the weighted sum of their combined average objectness
confidence score and IoU with the root of that stack. Our
overlap score combines the average confidence score and the
IoU. Our experiments have shown that the overlap score com-
puted from weighting the average score by 0.7 and IoU by
0.3 respectively yielded the best performance. Each time we
compare a modelmi to a modelmj , we evaluated the overlap
score between all of their bounding boxes and assigned boxes
to each other in descending order of overlap score. For in-
stance, if bounding box A from mi and bounding box B from
mj have an overlap score of 0.92 and that is the highest score
between all boxes from these two models, then B is assigned
to the stack of A and B is no longer considered in future com-
parisons. We used a threshold overlap score of 0.46 to assign



Fig. 3: Illustration of the final ensemble detection by
weighted averaging of bounding box points with detection
confidence. Detections are given by models m1, m4, and m5.
As m1 is the root it is given higher priority in the weighted
averaging and the green box is the final detection that will be
yielded from this stack.

boxes to each other.

Given all the final stacks we compute their respective
summed confidence scores. If this aggregated score exceeds
a voting threshold of 1.68 (corresponding to an average score
of 0.24 per model for M = 7), a final detection will be
yielded from that stack (Fig. 3). The value 1.68 was found
to optimize the trade-off between high mAP and high IoU.
For each model we only considered detections with a confi-
dence score greater than 0.2. Considering detections with a
lower confidence score did not increase the performance but
slowed down our ensemble method. The four corner points
of the detection was then calculated according to a weighted
(by the respective scores) average of all the bounding boxes
from that stack. In order to reward the fact that a detection
was confirmed by many models, we introduced a frequency
factor of 0.03 that is multiplied by the number of boxes in
that group and then added to the average score of the final
detection. This added a slight improvement to our scores.

By visual inspection of the detection output we noticed
that many bounding boxes were drawn around smaller bound-
ing boxes of the same class label. As we deemed the smaller
boxes to be superfluous, we added a post-processing step that
removed final detections if another detection of the same class
label with intersection-over-area (i.e. the ratio of intersection
with a given box and its own ratio)> 90% was present. Thus,
whenever a bounding was present and its area was more than
90% within another box of the same label, we removed the
outer box. This improved our scores.

Another thing we observed is that there are frequently two
or more detections of a different class that seem to overlap al-
most perfectly. In these scenarios we attempted to improve
our score by removing the detection that had a lower confi-
dence score, but this did not improve our score.

2.4. Single Models

We found that our test scores were optimal if we used seven
models in our ensemble method. These seven models were
selected and designed with the aim of achieving high dissim-
ilarity between the models and high individual performance.
Specifically we created the seven single models using differ-
ent data augmentation techniques, different CNN depths and
different configurations of the loss function.

Unless otherwise specified, all of these models used the
50-layer version of ResNet or ResNet-50 as the feature ex-
tractor. Our ResNet-50 was not trained from scratch but uses
weights pre-trained on the MS COCO dataset. Initially we
used a version with pre-trained weights from the ImageNet1k
dataset, but experiments showed that MS COCO weights
yield a better result (Table. 4). The deeper backbone net-
works, ResNet-101 or ResNet-152 used in two of the seven
models in the ensemble, were pre-trained on ImageNet1k.
Unless stated otherwise, training batch size of 1 was used.
The number of training iterations used differ between models
and is generally derived from the validation scores and with
the goal of increasing the diversity between the models.

In the following we provide the specifications of the seven
different models used in our ensemble method. The models
are denoted m1 to m7 in descending order according to their
single model performance, Table 5.

m1 was our best performing model, where all configura-
tions were optimized to the best of our knowledge. Besides
changing the focal loss parameter γ from 2 to 1.5, thereby
slightly reducing the extent to which the loss function pri-
oritized hard examples, other parameters were mostly set as
specified in [2]. Baseline data augmentation consisted of a
randomized combination of image rotation, translation, shear,
scaling and flipping. For each training epoch, each image
was rotated, translated, and sheared by a factor of -0.1 to 0.1,
scaled between 0.9 to 1.1 of its original size, and flipped with
a chance of 50% both horizontally and vertically. m1 trained
for around 35k iterations.

Next, we tried to experiment with how the classification
and regression loss were combined to yield the overall loss.
By either increasing the weight of classification or regression
loss we aimed to shift the focus between both losses. Dou-
bling the weight of the classification loss provided a good bal-
ance between high performance and dissimilarity and hence
this weighting was introduced form2. This model was trained
for 81k iterations.

For the third model m3 we chosen a different γ in the
focal loss. We wanted this model to focus more on harder
examples and set γ = 3.5 to achieve this. If one box was
classified with a confidence score of 0.9, this means this box
would contribute 100 times less to the loss in m3 than in m1.
The model was trained for 58k iterations.

In the dataset we observed that the endoscopic frames
were exposed to different illumination modes leading to dif-



ferent colorings of the images. Hence, we added a data aug-
mentation step that randomly adds values to the RGB chan-
nels for model m4. This was done in addition to the random
geometric transformation applied in training all our models.
For each epoch, there is a 1/9 chance for each image that a
value between 50 and 200 was added to either of the RGB
image channels. Training batch size was set to 4 and con-
ducted for 10k iterations.

Modelm5 was trained with a 101-layer ResNet backbone.
While this model performed worse than ResNet-50 models,
we added it to the ensemble under the assumption that deeper
CNNs will discover more advanced features and therefore add
to the diversity of the ensemble. The model was trained for
45k iterations.

Analogously to m5, we also added a model m6 with a
152-layer ResNet as the feature extractor. m6 was trained for
69k iterations.

The last model m7 was trained on a subsampled trainset.
For this model we added Gaussian noise at a scale of 127.5
(note 8-bit image intensity values of 0-255). Analogous to
m4, this augmentation step was added on top of the random
geometric transformation and was applied to 1/9 of the im-
ages at each epoch. The model was trained using a batch size
of 4 for 11k iterations.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

Our dataset consists of the 2,193 endoscopic frames that were
released by the EAD2019 challenge [3, 4]. A significant num-
ber of the frames in this dataset appear to be from the same
video sequences. Further, these videos differed by tissue type,
illumination mode and procedure type. In order to make sure
that our train-validation split led to representative results, we
had to make sure to split the dataset in a video-wise manner,
meaning that one video was either entirely in the train set or
entirely in the validation set based on manual assignment of
the the frames to videos. Initial experiments conducted on a
random train-validation split that did not respect a video-wise
split resulted in validation scores up to 50% greater than the
actual test scores submitted online. Our final validation set
approximately correspond to 20% of the total EAD released
training data.

3.2. Training

Models were trained with the Adam optimization algo-
rithm [8]. We used a learning rate of 10−5 that was reduced
by a factor of 10 whenever performance plateaued. Best
performance were obtained for a training batch size of 1.
Training was performed on a single GPU (Tesla K80) using
Google Colab. Most runs were trained for 10 to 30 epochs
(equal to 18k to 54k iterations) and took less 12 hours.

IoU Threshold Validation Scores
0.25 0.2188
0.35 0.2402

0.4-0.5 0.2861
0.5 0.2669
0.6 0.2132
0.7 0.2531
0.8 0.1725

Table 1: Comparison of different IoU threshold for anchor
assignment. All models trained for 12 epochs.

Backbone Validation Score
VGG16 0.1181
VGG19 0.1305

ResNet50 0.3165
ResNet101 0.2879

Table 2: Comparison of backbone networks. VGG16 and
VGG19 trained for less than 10 epochs as they stop improving
before that.

3.3. Evaluation

Scores were calculated using a weighted sum of average IoU
and mAP. IoU was weighted by 0.4 and mAP by 0.6. In order
to avoid overly rewarding high IoU, the IoU value was addi-
tionally not allowed to exceed a multiple of 1.3 of the mAP.
Otherwise it would have been possible for example to reach
an overall score of 0.4 by having only one detection in the
whole test set that overlapped perfectly with a ground-truth
annotation.

3.4. Results

3.4.1. IoU Threshold

During training of the RetinaNet framework, anchors were
considered a true positive based on the correctness of the pre-
dicted class and their IoU with the corresponding ground-
truth annotation. We experimented with using different IoU
thresholds to consider an anchor as true or false, Table. 1. We
found that a negative threshold of 0.4 and a positive threshold
of 0.5 worked best. This means that anchors with IoU below
0.4 were considered as false, above 0.5 were considered true,
and those in between were ignored.

3.4.2. Backbone Network

As previously stated, we tried out different CNNs to use as the
feature extractor in our RetinaNet framework. Even without
pre-training on MS COCO, ResNet50 was the most effective
and outperformed deeper ResNet models.



γ Validation Score
1.00 0.2832
1.25 0.2915
1.50 0.3235
1.75 0.2905
2.00 0.3028
2.50 0.2780

Table 3: Validation scores for different γ values of our base-
line model after 15 epochs. For values of γ below 1 RetinaNet
failed to converge.

Pre-training Validation Score
ImageNet1k 0.3108
MS COCO 0.3435

Table 4: Validation scores for different pre-trained weights of
a ResNet-50 backbone network.

3.4.3. Focal Loss Parameters

Tuning the focal loss parameters had the greatest effect on our
single model performance. Indeed, increasing or decreasing
γ enabled us to decide to what extent we wanted the model to
focus on hard examples. This was especially useful in our use
case as the data was both unbalanced and some of the classes
were much easier to detect than others. Using a γ value of 1.5
yielded the best performance for us. In the original paper [2]
γ = 2 was used.

3.4.4. Pre-training

As previously mentioned, using a ResNet-50 model pre-
trained on MS COCO improved our performance substan-
tially compared to models pre-trained on Image1kNet.

3.4.5. Single Model Summary and Ensemble Method

The single model performance is summarised in Table. 5. We
initially used 3 models in our ensemble method. By con-
tinuously adding models to the ensemble, our score kept on

Model Test Score
m1 0.3056
m2 0.3033
m3 0.2901
m4 0.2856
m5 0.2789
m6 0.2750
m7 0.2601

Table 5: The single model performances of the seven models
used in our ensemble method.

Action Test Score
Initial 3 Models 30.51

4 Models 31.93
5 Models 32.63
6 Models 32.95
7 Models 33.03

+Optimized Combination Strategy 33.88
+Post-Processing 33.96

+Parameter Optimization 34.51

Table 6: Summary of how different refinement steps led to
score improvements towards our final ensemble method.

improving until we reached 7 models. Thereafter the score
decreased again. Our performance was partly increased by
an optimized combination strategy. This was largely thanks
to the introduction of the overlap score, which handled the
way boxes were assigned to each other, and to the frequency
factor used to compute a weighted average of bounding box
positions. The post-processing step of removing boxes that
encompass boxes of the same class provided an additional
performance boost. Finally, through testing and optimizing
various parameters of our ensemble method we reached our
final, highest score. These parameters include the following:
overlap score threshold, the weighting between IoU and aver-
age score in the overlap score, frequency factor, score thresh-
old of each individual model, and the overall voting thresh-
old for each detection stack. Table. 6 summarise the describe
stepwise improvement in test score. Our proposed ensemble
method achieved a final score of 0.3451 on the EAD2019 test
set. Our mAP was 0.3087 and IoU was 0.3997. For this sub-
mission, mAP on the EAD2019 generalization set was 0.2848
with a deviation score of 0.0696. In a previous submission,
with slightly different ensemble parameters and the introduc-
tion of class-specific voting thresholds, we scored 33.45 on
the test set and a mAP of 0.3508 on the generalization set
with a deviation score of 0.0556.

3.4.6. Visualization

Fig. 4-7 depict outputs from our ensemble method and mod-
els m1, m4 and m5, respectively, on the same example image
from the EAD2019 test set. The figures illustrate how dif-
ferent RetinaNet models are combined to produce a superior
output.

4. DISCUSSION AND FUTURE WORK

Our approach tackles the novel issue of multi-class artefact
detection in endoscopy by proposing the application of the
one-stage detection method RetinaNet. RetinaNet matches
the speed of other one-stage methods and its focal loss ad-
dresses the imbalance between easy and difficult examples.



Fig. 4: Example output of combined ensemble method.

Fig. 5: Example output of our baseline model m1.

By intelligently combining multiple models that were trained
according to the specific nature of endoscopic video frames,
our score improved substantially and resulted in a EAD2019
object detection score of 0.3451.

Future exploration could include the implementation of
more advanced backbone networks and/or more advanced
transfer learning approaches, such as pre-training on medical
images.

Fig. 6: Example output of color augmentation model m4.

Fig. 7: Example output of ResNet-101 model m5.
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