
Execution Strategies for Compute Intensive Queries in
Particle Physics

Maximilian Berens
TU Dortmund University

maximilian.berens@tu-dortmund.de

ABSTRACT
Data analysis in many scientific domains, such as high en-
ergy physics, pushes the available resources of even big re-
search collaborations to their limit, because it not only re-
quires huge amounts of data but also compute intensive cal-
culations. Current approaches require increased storage and
computing resources, lack sufficient flexibility and are still
far away from interactivity. In this paper we present ideas
to cope with challenges posed by compute-intensive analyses
of high-volume data in a many-user- and resource-restricted
environment. Extreme selectivity of user queries (that is
inherent in high energy physics analyses, for instance) per-
mits us to reduce the computational effort to a small por-
tion, when irrelevant data can be discarded by more efficient
means. Our focus lies on providing execution strategies for
analysis queries, guided by the expertise of the user and
executed as a scalable, scan-based preselection (introduced
in DeLorean [8]). Future research will encompass the de-
velopment of a compact data summary that facilitates fast,
columnar scan queries, as well as a domain specific language
that provides us with the required information to generate
them.

Keywords
Approximate Query Processing, Expensive Predicates, Big
Data, Resource-Constrained Data Analysis, Domain Specific
Language, High Energy Physics

1. INTRODUCTION
The ability to accumulate and use increasing amounts of

data in many science domains opens enticing prospects of
answering open questions of humanity. High energy phys-
ics presents itself as a prominent example of such a domain,
where scientific conclusions are drawn from statistical evid-
ence that is gained by analysing huge quantities of data.
Analysis tools at this scale have to cope not only with the
sheer volume of data, but also with the complexity of in-
volved computations, the limited availabilty of resources,

31st GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 11.06.2019 - 14.06.2019, Saarburg, Germany.
Copyright is held by the author/owner(s).

as well as the number and variety of user requests. The
CERN corporation’s Large Hadron Collider (LHC), close to
Geneva, Switzerland, houses multiple experiments, each one
dedicated to different questions in particle physics. One is
the LHC beauty experiment (LHCb), where various aspects
of the differences between matter and antimatter are stud-
ied. A common LHCb physics analysis concerns itself with
a particular (type of) decay or particle. In order to ob-
serve them, protons are accelerated to very high energies
and brought to collision. Over the course of a year, up to
40 million collisions are measured every seconds, prefiltered
and stored. Before performing the actual analysis, specific
recordings of these collisions, termed events, have to be selec-
ted from a global event store. Decays of interest are usually
very rare. For example B0

s → µ+µ− was found only 3 times
in 10 billion events [7]. A significant portion of a physics
analysis consists of isolating particular types of events by
carefully defining query predicates.

Detector measurements, in their initial, raw state, are not
immediately useful and require computationally expensive
and decay-specific reconstruction into physically meaningful
entities. Filtering events for user analyses is done by enfor-
cing predicates on these high level features.

The overall productivity of many scientific projects is lim-
ited by the amount of data that can be processed and stored.
At the LHCb, this is because the measurements can not
be retained at the same rate as they are taken [12]. Still,
around 20 petabyte of “raw event” data goes to a tape stor-
age every year. Also adding the long reconstruction time
per event into the equation, naive on-the-fly computations
over all available events for individual user requests are in-
tractable. Offering tools to quickly query the available data
without qualitative drawbacks and optimal utilization of the
(limited available) resources is essential for the success of a
collaboration, such as the LHCb, and impacts the pace of
scientific discovery in general.

A major upgrade of the detector will start recording new
data in 2021, increasing the data volume (both rate and size
of events [12]) even further and signifying the necessity of
new ideas.

The remainder of this paper is structured as follows. First,
we give a brief overview of the concepts currently in place at
the LHCb, its drawbacks and consequent, general directions
of our research. Preliminary and other related work are
covered in section 4. Section 5 discusses open challenges
that we are going to address in the upcoming years. Finally,
section 6 summarizes these ideas in a roadmap.



2. DATA PROCESSING AT THE LHCB
In order to prevent analysts to query and reconstruct the

whole set of available data for every query, a centrally sched-
uled reconstruction-and-preselection procedure, called strip-
ping, is performed. Several hundred ”stripping lines”, pre-
defined filter queries, reduce the volume of data to an ac-
ceptable size by materializing their results in separate sub-
sets.1 A stripping line typically tries to reconstruct a certain
decay and filters events in the process. The criteria to se-
lect events tend to be “vague” (in their predicates), because
multiple analyses are supposed to be done on the result of a
single line or small subset thereof. The stripping is initially
applied during data acquisition and has to be redone later,
when changes in the reconstruction software or overall user
demand requires it.2 Generally, this approach is problematic
for multiple reasons:

• In addition to the raw-event data necessary for recon-
struction, materialized results occupy scarce disc ca-
pacity.

• Results have to conform with user requirements, which
are generally more specific/strict. This usually re-
quires users to “restrip“ a selected subset with a cus-
tomized configuration.

• Stripping line predicates are designed with respect to
strict limits on available resources. This can conflict
with physically motivated predicate parametrization
and negatively impact the quality of conclusions, as
important data might be kept out of the analysts reach.
Even small changes in predicates (i.e., “loosening” of
inequalities or “shifting” of ranges) are not directly im-
plementable, because the stripping is rarely redone.

• Predefined selections are unlikely to cover unforeseen
analysis use cases and thus require the definition of a
completely new stripping line.

Approaches that restrict the queryable data set by pre-
defined criteria are bound to lack flexibility, because as-
sumptions can change and individual users have different
requirements. In addition, the stripping still requires long
job waiting periods and additional resources.

3. OUR OBJECTIVES
The computationally expensive reconstruction is trivially

parallelizable, because events are completely independent
and small in size (∼hundreds of kilobytes). However, relying
on data parallelism alone does not guarantee neither general
scalability nor sufficient resource utilization. New solutions
need to scale up by leveraging available hardware features.
In addition, they need to scale out in order to avoid bottle-
necks caused by resource contention in large-scale multi-user
environments.

For the purpose of pushing analytics closer towards inter-
activity, we identify the following goals:

• A significant reduction of the data volume, that is in-
volved in individual user queries.

1All lines combined drop 95% of all event data; a single line
must not have more then 0.05% of the overall data volume
(on average).
2Waiting times of several months for a new stripping version
are not unusual.

• Limit the execution of expensive computations to the
result set and thus minimize the overall compute load.

• Enable efficient usage of modern hardware features
(i.e, deep cache hierarchies, advanced processor in-
structions and multi-core architectures).

• Reuse of information by caching results and interme-
diate computations for upcoming queries.

A scan intensive preselection, based on a columnar, com-
pacted representation of data entities (i.e., particle-collision
events) will enable us to implement these objectives (see 4
for preliminary work). Given a small expected result cardin-
ality of individual requests, incorporating users and their
domain expertise closer into the process potentially offers
significant advantages. However, precisely translating the
user’s intent into selective preselection queries requires a
suitable interface. In contrast to more general query lan-
guages, such as SQL, a specialized domain specific language
(DSL) offers the required expressivity and easier incorpora-
tion of domain specific optimizations. Furthermore, a DSL
can support efficient distributed caching strategies, as pre-
vious results might be used to answer (a potentially wide)
range of upcoming queries [10]. Caching increases data loc-
ality and spreads the workload in non-uniform data access
scenarios. We will further elaborate on this topic in the
related works section. To this end, the development of a
suitable query interface for physics analytics will be a major
topic in our upcoming research.

Another important aspect of our approach will be the con-
struction of a compacted representation or synopsis. As-
suming that we are able to filter data just based on this rep-
resentation, large portions can be discarded efficiently (via
scanning) and without involving expensive computations on
irrelevant data. Executing the computationally expensive
(reconstruction) pipeline only on the pre-filtered, interme-
diate result gives the same (final) result as applying the
pipeline to the whole data set directly. Of course, this re-
quirement prohibits the synopsis-based preselection to reject
any true result tuple. We provide more details on synopsis
requirements in section 5.1.

4. RELATED WORKS
A first approach to address the problem via preselection,

named DeLorean [8], was developed at our group and is
going to be the entry point of this work. For details and a
preliminary evaluation of a proof of concept, see Kußmann
et al. [8]. In the following, we give a brief description.

The idea is to separate a query into a compute- and a
data intensive part. In queries commonly-used and select-
ive attributes (i.e., attributes that are expected to involve
selective predicates) are precalculated during data acquisi-
tion and collected as columns in a single table, resulting in a
much smaller representation (see fig. 1a). In order to avoid
evaluations of the expensive reconstruction, a fast scan of
this compact synopsis is supposed to discard a large num-
ber of tuples (events), reducing the (query specific) compu-
tational efforts to a sufficiently small superset of the true
result (fig. 1b).

The synopsis lookup itself is efficiently expressed in rela-
tional terms, replacing reconstruction operations with scan
intensive ”SQL“ operators.



data-
taking

extract

raw event store
columnar
synopsis

(a) Preprocessing.

pre-
selection 1⃝ synopsis

access

2⃝ scan
user

analysis

3⃝ fetch
relevant

(b) Query processing.

Figure 1: The DeLorean storage layer. At data acquisition time, DeLorean extracts a compact synopsis of the events. At
analysis time, the synopsis is scanned and only a relevant subset is fetched and reconstructed for user analyses.

In a second step, surviving events are retrieved3 and fed
into the stripping software, specifically configured for indi-
vidual requests, yielding the final result.

The new synopsis lookup can be implemented by modern
cloud execution platforms, such as Apache Drill [1], making
use of their scalability and scan-beneficial columnar stor-
age layout [8]. Constructing a synopsis in a columnar layout
provides benefits such as reduced data volume, because only
relevant attributes have to be loaded and scanned. Further-
more, columns offer improved compressibility and thus also
a tradeoff between processor load and bandwidth [8].

Geometric data summarization techniques in general are
an essential tool in many domains, having applications in
large scale maschine learning and databases, for instance.
These summaries can be roughly classified into two types,
coresets and sketches [9]. Similar to DeLorean, a summary
acts as a ”proxy“ for the complete data set and algorithms
executed on this smaller set give an approximation of the
result. However, these summaries pursue a reduction of the
number of tuples, via density estimation or clustering, for
instance. In contrast, DeLorean, as it is now, applies a di-
mensionality reduction, where less relevant attributes are
simply projected out. We conjecture that both fields, di-
mensionality reduction as well as data summaries, can have
interesting applications in our research.

A related and to DeLorean similarly motivated concept
is that of vector approximation files (or VA files) by Weber
et al. [13]. VA files partition the data space into rectangular
cells and enumerate them with unique bit-strings, offering
scan based preselection on a compact representation. Some
cases of nearest neighbor search, for instance, can be decided
on this compacted representation alone.

The scale up vs scale out topic is discussed by Essertel
et al. [3]. The Flare project, an extension of the distrib-
uted data analysis platform Apache Spark, tries to maxim-
ize the potential of individual machines by means of nat-
ive code compilation. However, the existing LHCb software
stack, implemented in C++, is not reasonably migratable to
another platform, given the extensiveness of the code base
alone. To this end, any approach, that wants to commit
to at least some practical applicability on the LHCb event
retrieval problem, has to make the integration of existing
software stacks possible.

Generally, this can be done by providing efficient eval-
uation strategies. Stepping outside of the stripping per-
spective and positioning the “retrieval” problem into a data-

3The LHCb data format allows tree-based seeking of single
raw-events via identifier [8].

base context, the general schema to obtain events from the
global (raw-) event store E can be illustrated in terms of SQL
by involving a conjunction of expensive predicates (or “user
defined functions”) pi:

SELECT * FROM E WHERE
∧

i pi

Actual physics analyses involve various types of predic-
ates. They are defined in terms of properties of reconstruc-
ted decays or particles, instead of plain (raw-event) attrib-
utes that are typically expected in database queries.

Clearly, most of the effort arises within those functions,
that reach outside of the scope of relational algebra (SQL).
These “black boxes” are inherently hard al with by means of
“traditional” database technology.

Hellerstein and Stonebraker [5] try to correctly take into
account the cost of expensive predicates when optimizing
query plans via operator reordering. User defined functions
as well as sub-query predicates are sometimes incorrectly
assessed as “zero-time operations“ by database optimizers.
Due to the simplistic relational structure of the above men-
tioned expression, general purpose query plan optimization
techniques are unlikely to offer improvements. In contrast,
our approach is going to reduce the total number of evalu-
ations when answering user queries.

Joglekar et al. [6] try to reduce the number of explicit
evaluations of expensive predicate functions. In exchange
for a decrease in query accuracy, correlations of a function’s
result and the value of a variable can be abused to decide,
if the evaluation of the predicate is required or skippable.
However, the required correlation estimation is only feasible
for low cardinality attributes that rarely occur in the physics
context.

Declarative languages, such as SQL or XQuery, were de-
veloped to offer enhanced expressivity, enable specific op-
timizations and enjoy widespread usage. The importance
of the declarative property of big data analytics-centric lan-
guages is supported by the works of Fegaras [4] (MRQL) and
Alexandrov et al. [2] (Emma).

As SQL has roots in linear algebra (and tuple relational
calculus), MRQL and Emma have monoid homomorphisms
and monad comprehensions (respectively) as their formal
foundation. However, these languages address a (still) very
broad domain of queries and databases, omitting possible
optimization potential that can not be detected in a more
general context. In our work, we are going to identify query
patterns that are specific to the domain of interest (LHCb
event analysis, in this case). Utilizing formal systems, such
as the ones used by SQL, MRQL or Emma, provides the



associated tools and insights as well as an evironment to
reason about queries and specify transformation rules for
optimization.

Given that every user has different requirements and is
interested in different types of data, a specialized execution
strategy can optimize individual requests and thereby fur-
ther improve overall performance.

Building a new and customized DSL is costly and requires
knowledge both in the application domain and programming
language design [11]. DSL-compiler frameworks, such as De-
lite [11], improve the creation of new languages by providing
abstract means to integrate domain specific optimizations,
implicit parallelism and (native) code generation. The in-
sights and tools provided by this type of framework can
prove useful to retrieve information from user requests, gen-
erate synopsis queries and improve the overall productivity
of analysts. We suggest additional ideas in this direction in
section 5.3.

In [10], the authors provide a formal definition and query
processing strategies for semantic caching. Semantic cach-
ing, in contrast to page-based caching, utilizes a semantic
representation of the cache content in order to find items
that can totally (or partially) answer a given query. We
believe that this idea can be advantageous in our setting,
as queries in the LHCb context share considerable ”over-
lap”. This stems from the fact that certain (sub-)decays
are “contained” in multiple decays, requiring the same com-
putations. In fact, the concept of shared computations is
already (manually) implemented in the current LHCb soft-
ware stack. Detecting and abusing this overlap automatic-
ally will therefore be beneficial.

5. ADDRESSING OPEN CHALLENGES
The precise requirements on the synopsis content are yet

to be defined. So far, predicates were handpicked according
to their selectivity for a selected sample query. Involved
attributes were included into the synopsis and all values
determined by an initial stripping pass. First benchmarks
are promising [8], but we need to generalize the findings
to provide performance indications for a range of (unseen)
queries. Also, inherent challenges of distributed many-user,
high-volume data processing need to be addressed.

5.1 Creating the synopsis
To offer performance and correctness, even for new quer-

ies, some general qualities of the synopsis can be declared:

• Applicability - The synopsis has to contain attributes
that are relevant for upcoming user query, otherwise
we do not gain any advantage.

• Correctness - To prevent “false-negatives”, no event
that is actualy relevant for a user request should be
rejected by the synopsis scan.

• Selectivity - To more-then-amortize the additional cost
of a synopsis scan, a sufficiently large number of events
needs to be rejected, preventing their expensive recon-
struction.

Note that events, that are selected but in fact uninteresting
(“false-positives”), are permissible although undesired. They
are expected to be rejected by the second step and just de-
teriorate selectivity and therefore performance, which is less
crucial then correctness.

To serve an adequate amount of user request topics, a suf-
ficiently broad selection of synopsis attributes has to cover
most frequent analyses. As a first approach, the stripping
line formulations, even though being inherently “vague“, in-
volve many commonly used attributes, because the complete
set is designed to cover a wide range of analysis subjects at
the LHCb. A stripping line is formulated in multiple con-
secutive steps that define specific reconstruction procedures.
Those steps also include filter statements on properties de-
termined during this procedure. Also, there is a consider-
able overlap between the lines, as several steps are frequently
shared. Many particles and even some decays are involved
in multiple analyses and usually involve the same or just
slightly different predicates. Currently, investigating criteria
to assess attributes and their (combined) selective power for
upcoming queries is important, as it represents the next logic
step towards a systematic creation of an event synopsis.

A successful preselection strategy has to offer a selectiv-
ity comparable to stripping lines. Given such a selective
synopsis, the overall number of events can be reduced to a
manageable portion and enables the user to perform the re-
construction in a reasonable amount of time. Note that a
”local restripping” is already done by analysts in practice on
manually selected stripping line results in order to refine the
event selection according to individual user requirements.

5.2 Result Caching
Depending on the size of the synopsis, distributing re-

dundant copies (or only relevant columns to cover a single
topic) enables the execution of the preselection independ-
ently for different work groups, possibly even single users.
This way, we are able to shift the “expensive query predic-
ate” problem further towards a data serving problem, where
only actually interesting (but unprocessed) events have to
be efficiently handed over to many users.

However, the selected data might be resident in differ-
ent sites that are geographically dispersed (as it is the case
for CERN/LHCb) and/or busy, introducing latencies. Non-
uniform data access (over the data-sites) increases conten-
tion in both network and local resources. Note that this
issues also arises in settings, where queries do not involve
(network-)communication-intensive algorithms, such as the
LHCb data analysis.

Adequate caching mechanisms can greatly improve the
ability to serve data by adaptively holding frequently reques-
ted (sets of) events, greatly reducing data transfer volumes
and serving latencies. Also, with knowledge about the data
(-dependencies), events could be cached speculatively. For
example: Decays that appear to be very similar to the de-
sired decay are sometimes explicitly fetched to exclude them
properly from the analysis.

5.3 Query Specification Interface for Physics
Analyses

Developing a dedicated interface for LHCb physics ana-
lysis queries, such as a DSL, offers several benefits for this
project. In addition to the general advantage of improved
ease-of-use for analysts, such a language can have perform-
ance critical implications by guiding query plan optimiza-
tion:

• Declarative formulation in higher-level semantics en-
ables the user to specify his intent while relieving him
from being familiar with implementation details.



• Automatic generation of preselection queries, that can
be evaluated on the synopsis. This enables the user to
specify queries without knowing the synopsis schema.

• Identification of new synopsis attributes by determin-
ing overlap or ”similarity“ between queries. This in-
formation could serve as a foundation to adaptively
add or remove synopsis attributes, based on common
query ”topics“. Performance/selectivity of upcoming
query could be improved by iteratively replacing or
adding information to the synopsis.

• Selectivity approximation of user requests with precal-
culated statistics, such as value distributions and cor-
relations of synopsis attributes. Offering a mechanism
to estimate the reduction rate of a query beforehand
allows quick rejection of infeasible queries, solely based
on statistics and more importantly: without starting
actual computations or data transfer requests.

• Improve (opportunistic) caching. Events that only
closely fail to match predicates (and other ”similar-
ities”, such as the ones mentioned above) could be-
come relevant and therefore proof beneficial to have in
a cache, especially in an interactive test-and-see query
refinement scenario. Also, result sets, that superset
other results and are contained in a cache, can be used
to answer particular (upcoming) queries (see cache-
answerability [10]).

Multiple of these aspects rely on the ability to analyse the
structure of queries. Automatic, non-trivial optimizations,
such as filter push downs, require the system to reason about
(possibly higher order) operations and their arguments, which
is hard to do with application programming interfaces (APIs).
Having a well-defined DSL, backed by a suitable, formal
foundation, allows the definition of abstract transformation
rules and eases cost-based optimization [4]. Also, answering
formally motivated questions, such as cache-answerability,
requires the means to infer implication- and satisfiability
properties of queries [10]. Furthermore, disconnecting the
interface from the execution platform offers the ability to
keep the same interface, if the backend gets replaced. This
is particularly useful for large projects that are expected to
operate over many years.

6. ROADMAP
A synopsis that supports efficient, scan based event selec-

tion for new queries promises major performance benefits.
But many open challenges exist. Currently, it is not obvi-
ous what kind of information should form the synopsis and
how the choice will impact performance in a more general
sense. Therefore, we first need to confirm the ideas intro-
duced in [8] by developing means to systematically extract
“frequent” synopsis attributes. Getting a better understand-
ing on the implications of attribute choice and their impact
on performance and applicability is necessary to support a
sufficiently wide range of accurate queries. Also, alternat-
ives to “carefully selected reconstruction attributes” as the
synopsis’s constituents should be explored.

The idea to incorporate domain specific knowledge for op-
timization lends itself to interesting concepts in data pro-
cessing, where general purpose techniques fail to offer signi-
ficant gains. Developing new and universal schemes of ap-
plying domain knowledge for performance allows the transfer

of our findings to other situations. Extracting information
from user queries in order to derive a execution strategy is
our first step into this direction.

After having a precise and selective mechanism in place,
the “data serving” aspect of the problem will offer multiple
incentives for future research.

7. ACKNOWLEDGMENTS
This work has been supported by the German Ministry of

Education and Research (BMBF), project Industrial Data
Science, and by Deutsche Forschungsgemeinschaft (DFG),
Collaborative Research Center SFB 876, project C5.

8. REFERENCES
[1] Apache Drill - Schema-free SQL for Hadoop, NoSQL

and Cloud Storage. https://drill.apache.org/.
Accessed: 2019-03-03.

[2] A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler,
L. Thamsen, O. Kao, T. Herb, and V. Markl. Implicit
parallelism through deep language embedding. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15,
pages 47–61, New York, NY, USA, 2015. ACM.

[3] G. M. Essertel, R. Y. Tahboub, J. M. Decker, K. J.
Brown, K. Olukotun, and T. Rompf. Flare: Native
compilation for heterogeneous workloads in apache
spark. CoRR, abs/1703.08219, 2017.

[4] L. Fegaras. An algebra for distributed big data
analytics. 2017.

[5] J. M. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates. pages 267–276, 1993.

[6] M. Joglekar, H. Garcia-Molina, A. Parameswaran, and
C. Re. Exploiting correlations for expensive predicate
evaluation. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 1183–1198, New York, NY, USA,
2015. ACM.

[7] V. Khachatryan et al. Observation of the rare
B0

s → µ+µ− decay from the combined analysis of
CMS and LHCb data. Nature, 522:68–72, 2015.

[8] M. Kußmann, M. Berens, U. Eitschberger, A. Kilic,
T. Lindemann, F. Meier, R. Niet, M. Schellenberg,
H. Stevens, J. Wishahi, B. Spaan, and J. Teubner.
Delorean: A storage layer to analyze physical data at
scale. In B. Mitschang, D. Nicklas, F. Leymann,
H. Schöning, M. Herschel, J. Teubner, T. Härder,
O. Kopp, and M. Wieland, editors, Datenbanksysteme
für Business, Technologie und Web (BTW 2017),
pages 413–422. Gesellschaft für Informatik, Bonn,
2017.

[9] J. M. Phillips. Coresets and sketches. CoRR,
abs/1601.00617, 2016.

[10] Q. Ren, M. H. Dunham, and V. Kumar. Semantic
caching and query processing. IEEE Trans. on Knowl.
and Data Eng., 15(1):192–210, Jan. 2003.

[11] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf,
H. Chafi, M. Odersky, and K. Olukotun. Delite: A
compiler architecture for performance-oriented
embedded domain-specific languages. ACM Trans.
Embed. Comput. Syst., 13(4s):134:1–134:25, Apr. 2014.



[12] C. The LHCb Collaboration. Upgrade Software and
Computing. Technical Report CERN-LHCC-2018-007.
LHCB-TDR-017, CERN, Geneva, Mar 2018.

[13] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proceedings of
the 24rd International Conference on Very Large Data
Bases, VLDB ’98, pages 194–205, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc.


