
Hybrid Federations

Connecting Web APIs and Linked Data Knowledge Bases

Tobias Zeimetz Trier University
54286 Trier, Germany

zeimetz@uni-trier.de

ABSTRACT
The research plan described in this article is intended to
develope a system which can help data curators, data sci-
entists, and other users in the domain of Linked Data to
identify important data sources, understand their structure,
and their schema. In addition, the system should be easy to
use for non-expert users so that they can quickly and eas-
ily formulate more complex queries, e.g by using a visual
interface. Furthermore, Linked Data Federations will be ex-
tended to include Web APIs as knowledge bases, denoted
as Hybrid Federations. By using Web APIs it should be
made possible to integrate so-called user defined functions
(e.g. similarity search) into SPARQL.

Keywords
Record Linkage, Schema Inference, Hybrid Federations

1. INTRODUCTION
The possibility to link different sorts of knowledge bases

(e.g., dblp [3], WikiData [10] or DBpedia [4]) is one of the
main strengths of Linked Open Data. Also, the usage of
different ontologies (e.g., FOAF [5]) to give semantics (i.e.
meaning) to the data is a great advantage. However, Linked
Open Data also has drawbacks that go along with the advan-
tages. The wide selection of ontologies can tempt to define
own properties or predicates because developers first need
to understand the structure of the various ontologies. Es-
pecially if an ontology is not as granular as the used data
structure (i.e. if the ontology is very detailed, but data is
rather high-level or the other way around), developers often
tend to create their own properties. For these reasons it
can sometimes be a hard task to get an overview of a new
knowledge base.

With relational databases, a user can display the schema
to get an overview of the data set. However, since Linked
Open Data is a graph database there is no schema needed.
Linked Data is stored in RDF [7] format, which is a stan-
dard model for data interchange on the Web. In order to

31st GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 11.06.2019 - 14.06.2019, Saarburg, Germany.
Copyright is held by the author/owner(s).

discover the schema of a (RDF) database, a user has to for-
mulate multiple queries. The query language for RDF is
called SPARQL [8]. A SPARQL query consists of triple pat-
terns, conjunctions, disjunctions and so on. The triples are
composed of subject (start node), property (directed edge)
and an object (target node).

Several systems [19, 12, 11, 13, 14, 15, 6, 20, 22] have
been developed to help extract the schema from a knowledge
base and graphically display it to a non-expert user. Most
approaches are so-called offline approaches, where the user
needs to download a data dump and extract the schema
of the downloaded RDF files offline. Such approaches have
some disadvantages, such as that the provided data dumps
are not up-to-date or that not every data provider provides
downloadable data dumps.

Only few systems extract the schema using the SPARQL
Endpoint of the knowledge base. This approach has the
benefits that we do not need to process data dumps and that
the information is as up-to-date as possible. However, such
approaches have disadvantages that we need to overcome.
Typical problems for example are the response time of the
SPARQL endpoints or the fact that sometimes no response
(depending on the complexity of the query) is delivered at
all. For this reason a goal of our research is to overcome these
limitations and find a way to extract the schema even for big
knowledge bases such as WikiData [10] or DBpedia [4].

Furthermore, we connect Linked Open Data in form of
SPARQL endpoints with Web APIs, e.g. CrossRef [2] or
Springer SciGraph [9]. By connecting knowledge bases and
Web APIs it is possible to create a so called Hybrid Feder-
ation. A federation is a combination of several knowledge
bases, which can then be queried like a homogeneous system.

As described in [24, 23] knowledge base management use
cases often require addressing hybrid information needs that
involve multiple different data sources, data modalities (e.g.
similarity, topic or keyword search) and the availability of
computation services (e.g. graph analytics algorithms). In
SPARQL however, the support for hybrid information needs
is very limited. Therefore, we extend the SPARQL query
language by user defined functions, e.g. keyword or similar-
ity search. To realize this step, we use again Web APIs, so
that a user can develop a (local) Web API and then embed
it in SPARQL as a service. By calling this service, the func-
tion implemented by the Web API is to be processed in the
SPARQL Query Language.

The remaining part of the article is structured as follows:
Section 2 shows some use cases in which a hybrid federation
or the visualization of a schema can be helpful. Afterwards



we present our research plan in Section 4. There we explain
which problems need to be solved and go deeper into the
details of Hybrid Federations. In Section 5 we present our
evaluation plan and some data sets we want to use. The
last section gives a brief overview of related work such as
LODeX [12, 11, 6, 13, 14, 15] or FacetGraphs [18].

2. USE CASES
In this part we present several use cases in detail. The

first use case tackles the problem of non-experts or non-
tech users, i.e. it should be possible for a user (without
knowledge about SPARQL) to understand the structure of
a knowledge base in a fast way. Furthermore, the extraction
of a schema should make it possible to identify important
(new) knowledge bases. In addition, it should be easy for
such a user to connect data from a knowledge base with the
data of a Web API. For this reason we motivate the use of
a visual query interface, like presented by FacetGraphs [18]
or LODeX [13, 14].

The second use case deals with the integration of data.
In this case, information from a Web API (e.g. Springer
SciGraph [9] or CrossRef [2]) is to be added to an existing
knowledge base (e.g. dblp[3]). The enrichment of (espe-
cially) meta data for publications and authors is very inter-
esting from a data curator’s point of view, because it can be
used to provide more data about publications to the users,
to disambiguate authors and to find erroneous data in used
knowledge bases.

The last use case, namely the data processing use case,
tackles the problem of domain oriented functions, e.g. sim-
ilarity search, topic analysis and more. For example, until
today it is not possible to execute a SPARQL query like
”Give me all articles that are similar to the article with the
DOI d”. SPARQL does not understand the concept of sim-
ilarity and therefore a user has to implement a program to
solve this task. This use case illustrates the need to imple-
ment user defined functions within SPARQL.

2.1 Non-Expert Use Case
A common use case for data curators is finding new and

relevant data sets. The curator has to look at the data in
the new data set and find out whether these data fit to his
database (federation) at all. If, for example, the underlying
database is of bibliographic nature, it makes little sense to
search for more information in a sport’s database. A curator
therefore needs to be able to quickly determine the domain
of a data set (SPARQL endpoint).

Unlike relational databases, graph databases like Linked
Data knowledge bases do not necessarily require a schema.
A curator has to formulate multiple queries to discover the
structure of the schema and knowledge base. Depending
on the complexity and size of the explored knowledge base,
this can require several complex SPARQL queries and can
be a time-consuming task. Furthermore, the curator needs
to know how to formulate SPARQL queries (expert user).

Most data curators, are non-expert users and even if they
were experts, it would still take some time to figure out the
structure and domain of the database.For this reason, this
use case focuses on extracting and visualizing the structures
of a Linked Data knowledge base. Further, we consider the
problem that non-expert users may still have to formulate
their own queries in order to obtain detailed information.
However, since the concepts of a query language must be

understood by the curator, an alternative query method is
needed in this use case. Here the curator should have the
possibility to formulate complex queries with a few clicks via
a graphical user interface.

2.2 Data Integration Use Case
The dblp computer science bibliography [3] is a collec-

tion of bibliographic meta data on major computer science
publications. To extend and improve the information stored
in dblp it is important to collect data from different data
repositories such as Springer SciGraph [9], CrossRef [2] and
more. The new gained (meta) data can be used for several
tasks such as identifying erroneous data in current knowl-
edge bases or to disambiguate authors.

The usual process is to download (not up-to-date) data
dumps and to integrate the downloaded data into the dblp
data repository by using self coded scripts or programs. The
main problems in this approach are (1) that the used data is
not up-to-date and (2) that data providers often change the
structure of the data dumps (new tags, different structures,
etc.) such that the used programs and crawler needs to be
changed.

Especially the last task is very bothersome, because it
is not uncommon that programs and crawler have to be
changed completely in order to work again correctly. For
this reason it is desirable to query a Linked Data repository
and combine it with the data provided via other endpoints
e.g. Web APIs. Because also the schema of endpoints can
change it is important that the algorithms, to combine the
data of endpoints with APIs, can automatically detect link-
age points. Furthermore, the user should not notice that
some data providers do not provide a SPARQL endpoints.
The goal is, that the user has the feeling of a homogeneous
database while querying but in reality using different data
formats, data modalities and different kinds of endpoints
(denoted as hybrid federation). It should also be possible to
extend the used data sources quickly and use different kinds
of endpoints such as SciGraph [9] or CrossRef [2].

2.3 Data Processing Use Case
In the previous use case we wanted to integrate data into

an existing knowledge base by using multiple heterogeneous
data repositories and formats (called a hybrid federation).
The next step is to work with this information and process
the data, e.g. by using data mining or data analysis tech-
niques. One example is a query that filters all publications
similar to a previously specified publication: “Select all pub-
lications that are similar to the publication with DOI d”.

SPARQL provides some basic functions such as filter the
minimum, maximum or a count function. But more ad-
vanced and domain oriented tasks like a similarity search
based on abstracts are not included in the SPARQL Query
Language. For this reason it is desirable to add user de-
fined functions to the toolbox of SPARQL which can be
defined/implemented by a developer (expert user) and in
addition, can be fast and easy adopted into SPARQL.

3. RELATED WORK
Some work has already been done in the area of Schema

Inference. Also, the user defined functions were already in-
troduced in [24, 23]. In the following we take a closer look
at the previous work.



3.1 Schema Inference
As already mentioned, Schema Inference can be divided

into two groups. The first group of algorithms works on
data dumps and can therefore ignore server problems (offline
approach). However, the problem with this approach is that
the data dumps are usually not up-to-date. The second
group tries to extract the schema via the SPARQL endpoints
(online approach) and can therefore work on current data.

SchemEx [20] is a system that processes data dumps and
extracts the schema from them. However, this approach is
not able to retrieve the properties among classes because it
does not consider class instances.

In contrast, LODeX [12, 11, 6, 15] proposes an approach
that creates a set of indexes that enhance the description of
the knowledge base. As Benedetti et al. state, these indexes
collect statistical information regarding the size and com-
plexity of the knowledge base (e.g. number of instances),
but also present all the instantiated classes and the prop-
erties among them. The main problem in the approach of
LODeX is that it does not work on large endpoints such as
Wikidata [10] or DBpedia [4].

Since not all classes of an endpoint are needed in or-
der to determine the domain of the knowledge base, LD-
VOWL [22] extracts only the top k classes. It provides in
addition a visualization of the top k classes and properties
in a knowledge base. A big advantage of this approach is
that only the most used schema information is extracted and
the user is not flooded with information. The major disad-
vantage of this approach is that operators like ORDER BY
must be used. Especially weak servers or servers with large
amounts of data are quickly brought to their limits.

Kellou-Menouer and Kedad present in SchemaDecrypt [19]
an approach, for discovering a versioned schema for SPARQL
Endpoints. SchemaDecrypt enables the discovery of the dif-
ferent structures of the existing classes in a knowledge base.
This is an interesting approach because it shows which ver-
sions of classes and types exist. These are characterized
above all by the fact that a version of a class is created by
combining different properties.

Approaches as described in [12, 11, 6, 15, 19, 22] still
suffer in scalability or soundness, e.g. it is not possible to
extract the schema of large knowledge bases or the extracted
schema is missing important connections and/or adds addi-
tional connections that do not exist.

3.2 (Hybrid) Federations
The idea of federations has been around for a long time

and several systems like FedX [27, 26], SPLENDID [17] or
SCRY [28] have been developed. All these systems only
work on SPARQL endpoints and do not integrate other data
sources such as Web APIs. The step to hybrid federations
is introduced by Koutraki et al. in [21]. They present a sys-
tem that combines data across different Web APIs and can
automatically infer the view definition in a global schema.
Koutraki et al. state that the system can automatically in-
fer the schema with precision of 81%-100%. However, the
problem of manually configuring the input types of a Web
API still remains.

Preda et al. introduced with ANGIE [25] a system that
can answer queries by combining local knowledge bases and
Web APIs. If a query cannot be answered by querying
the used knowledge base, the system calls the correspond-
ing Web API in order to retrieve the missing information.

The presented system is a hybrid federation of various data
sources where some information is stored locally and other
is mapped into the local knowledge base on demand. Preda
et al. call this approach an active knowledge base.

Web APIs are viewed as functions in ANGIE which are
modeled as an RDF graph that contains variables like a
query. This means that, similiar as in the System of Koutraki
et al., a user needs to configure the Web API manually.

3.3 User Defined Functions
Most approaches that are focused on hybrid query pro-

cessing share the assumption that federation members pro-
vide their data in Linked Data formats such as RDF. Domain
oriented functions such as similarity search are supported by
using special indices and predefined properties (e.g., full-text
search in Virtuoso). This is not a general/sufficient solution,
because not every knowledge base provides these indices.

Some work in this domain is done by Nikolov et al. intro-
ducing the Ephedra system [24, 23]. It is a SPARQL feder-
ation engine that provides the possibility to process hybrid
queries using the SERVICE and BIND keywords. With this
approach Nikolov et al. make it possible to connect SPARQL
endpoints and RESTful web services. Furthermore, it pro-
vides a mechanism to include hybrid services into SPARQL
federations. In addition, they implement various query op-
timization techniques, thereby the focus is on two types of
improvements: Join order optimization and assigning ap-
propriate executors for JOIN and UNION operators.

4. RESEARCH PLAN
In the following section we describe in more detail what

we want to implement and what we want to improve. First,
our research aims to develop a scalable, efficient and sound
algorithm to derive the schema of a SPARQL endpoint. We
then present a basic procedure for linking the data from
Web APIs to the data of SPARQL endpoints. Furthermore,
we implement (as an intermediate) step a graphical query
interface, so that non-expert user can formulate complex
queries. In addition, we present a basic idea, how to combine
Web APIs and SPARQL service calls to realize user defined
functions.

4.1 Online Schema Inference
This section explains what information needs to be ex-

tracted from a knowledge base and what problems are en-
countered. In a first step we need to find all classes and
entity types. After that we need to find all connections
between classes and the corresponding properties. Further-
more, it is desirable to find out how much the classes and
properties of the knowledge base are used. Using this infor-
mation we display the most used classes and properties to
the user and make it easier to gain an insight into the focus
of the knowledge base.

Query Group 1: Type Queries
SELECT DISTINCT ?c WHERE { ? s a ? c . }
SELECT DISTINCT ?c WHERE {? s <p> ?o . ? s a ? c . }
SELECT DISTINCT ?c WHERE {? s <p> ?o . ?o a ? c . }

Query Group 2: Property Queries
SELECT DISTINCT ?p WHERE { ? s ?p ?o . }
SELECT DISTINCT ?p WHERE { <c> ?p ?o . }



A logical first step is to request all used classes or prop-
erties in a knowledge base (using the first queries in Query
Group 1 and 2). Note that in order to classifiy also SPARQL
1.0 endpoints, we did not use the EXISTS filters. A SPARQL
endpoint will possibly not answer to these queries, depend-
ing on the size and complexity of the knowledge base. For
example, if we request BNF [1] using the first query from
Query Group 2 it results in a server error. The reason for
this is the performance of the underlying server and the size
and complexity of the knowledge base. To further analyze
such problems we define four types of knowledge bases: light,
type-heavy, property-heavy and heavy knowledge bases

A light knowledge base is a light data set that can an-
swer all queries from query group 1 and 2. Note that <c>
and <p> represent classes or properties, contained in the
knowledge base. It is important, that the endpoint can an-
swer for all values for <c> and <p> in order to yield as
a light knowledge base. We did not use the EXIST filter
because we wanted to include SPARQL 1.0 endpoints in our
definition/classification.

The reason that the endpoint is able to answer the queries,
may be due to the power of the server, an index optimized for
such queries, or a data set with few properties and classes.

A type-heavy knowledge base is a data set that cannot
respond to all queries presented in Query Group 1. This
may be because the server has too few resources, the index
is not optimized for such a query, too many types are used
in the data set or simply because the data set is very huge.

Similar to type-heavy, a property-heavy knowledge base
cannot respond to the queries shown in Query Group 2.

Knowledge bases that are both, type-heavy and property-
heavy, are denoted as heavy knowledge bases.

Schema of the first three types can still be derived rather
easily, because in the case of type-heavy we can simply query
all properties and then query the source and object classes
for each property. This reduces the amount of results and
the server is not stressed as much. In the case of property-
heavy, the procedure is exactly the other way around. First
all classes or types are queried and then the properties for
each class in the knowledge base are queried. In a last step
we have to test which classes are connected to each other.

In principle, we can use approaches as presented by the
LODeX System [12, 11, 6, 15] to derive a schema. How-
ever, with heavy knowledge bases we encounter the problem
that we can not use any of the procedures described above.
Both procedures result in a server error even when using the
LODeX algorithms.

Therefore, our goal is to find a way, to infer the schema of
heavy knowledge bases like DBpedia [4] or WikiData [10].

4.2 Connecting Linked Data and Web APIs
If a user wants to use multiple heterogeneous data repos-

itories with heterogeneous data modalities (e.g. SPARQL
endpoints and Web APIs), it is important to have some in-
formation of these data endpoints. For example, if we want
to integrate the SciGraph Web API [9], it is necessary to
know the URL to address the API and which parameter the
API requires. In case of the previous mentioned Web API we
can use three different parameters to create a valid HTTP
request[9]: these parameters are used to request informa-
tion about a publication by using (1) the DOI of a paper,
(2) the ISBN of a book (3) or the ISSN of a journal. The
goal of this part is to learn the appropriate input types to

the corresponding Web API, e.g. DOIs, ISBNs or ISSNs.
Therefore, we need to learn the configuration of a data

endpoint, i.e. to learn what kind of values the parameters
of the Web API expect. Consider the example of Springers
SciGraph Web API, it requires a parameter called “doi”. It
is a big overhead, if the user of a federated system has to
test every value of a knowledge base in order to determine
the correct configuration for a Web API. For this reason,
an automatic interface detection for SPARQL is designed
and implemented. This detection algorithm uses different
techniques to match the parameters with the corresponding
data types it can process, e.g. DOIs.

Similar as in ANGIE, Web APIs are modeled as RDF
graph and describe which input parameters are required or
are optional. The difference to ANGIE is that in our ap-
proach a user do not have to specify which data types belong
to what parameters (e.g. ?id takes DOIs as input values).
Only the parameters need to be specified and afterwards the
system determines the appropriate data types itself. Fur-
thermore, the graph stores the linkage points between the
Web API and the knowledge base. Using this information,
we can later determine what API needs to be requested to
fill the knowledge base with missing information. To realize
this detection algorithm we perform the following steps:

In a first step we match the parameter names with the
property names of our knowledge bases, e.g. doi and dblp:doi.
We do this so that we do not have to test all properties
from our knowledge base with the Web API parameters,
e.g. dblp:title and doi or dblp:isbn and doi. This is only
a small improvement, since most Web API parameters do
not have a clear meaning like q or id. We can not simply
match parameters like q with the properties in our database,
because this labeling is too general.

If we can match the API parameter names with properties
from our knowledge base, we send in the next step some
requests to the Web API in order to check if we get results.
Therefore, we select from the found properties a number of
α randomly selected entities and send these values with the
corresponding parameters to the Web API. For example,
in case of SciGraph [9] we can get α = 25 DOIs from our
knowledge base and send them to the Web API using the
corresponding parameter doi.

If we can not match the API parameter names with prop-
erties from our knowledge base, we need to do the above de-
scribed procedure for all properties in our knowledge bases.
If we consider WikiData[10] as knowledge base, we have sev-
eral hundreds of properties that need to be checked. There-
fore, the first step reduces the search space considerably and
excludes some properties from the beginning.

In the next step we need to check, whether the Web API
responses with meaningful data. Some Web APIs have a
fuzzy search and, in doubt, return any or the best matching
result before they return none. For this reason we define
a meaningful response in the following way: A meaningful
response consists of an amount of data in which we already
know a minimum amount of information. This means, that
the information returned needs to overlap with the informa-
tion in our knowledge base, in order to measure that the
Web API returned a valid response and not just the best
matching result.

But before we can determine whether the responses we
receive are meaningful, we need to send requests to the Web
API again. This time we only send property data to the



Web API for which we got a response. In the previous step,
we only sent a small number (denoted by α) of requests to
the Web API to see if we get an answer. This time we need
more data/responses in order to evaluate correctly if we get
meaningful answers. For this reason we send a number of β
requests per property to the Web API.

To test whether some information in the response matches
our data, we need to use record linkage algorithms and met-
rics. Since most Web APIs send JSON or XML as response,
we first need to transform this response in a Linked Data for-
mat. Because both, JSON and XML, represent tree struc-
tures, we can in a first step flatten the tree. The URL, in
which the query for the Web API is encoded, is used in RDF
format as subject. The path of the flattened JSON/XML
response to the actual values are used as properties and the
values are used as objects in the created RDF format.

Afterwards we can evaluate, rather the created RDF re-
sponse is meaningful. Only when a minimum amount (de-
noted by γ) of information overlaps we can be sure that we
have received a meaningful response.

As it should be clear, the choice of the thresholds α, β and
γ is critical when it comes to the quality of the matching
and the run time. In addition, there is a new combination
of these three values for each selected pair of knowledge base
and Web API. In order to get the best results we need to
identify the optimal combination of these three values.

It is also possible to change the focus of the matching by
varying the threshold values. For example, you can achieve
an exact matching by using high threshold values and also
reduce the number of requests by using low threshold values
and few requests and thus it is possible to find matches even
for paid Web services.

To present linkage points between the knowledge base and
the Web API to the user, we provide a visual representation
of the derived schema and its linkage points to the corre-
sponding Web API.

In order to prevent the visualization from becoming clut-
tered, we combine for large knowledge bases, e.g. WikiData,
all classes in their super classes and provide in addition the
possibility to only show the most used classes and connec-
tions in the knowledge base. This allows a non-expert user
to quickly see which information can be added to the knowl-
edge base. Accordingly, a schema of the Web API must also
be created on record level.

4.3 Future Prospects
In this section, we describe briefly planned work that we

have not yet been able to devote ourselves to.

User Defined Functions
As already explained, we want to extend SPARQL and give
an expert user the possibility to implement domain specific
functions such as a similarity search and use it in SPARQL.
We use Web APIs again, because they are very flexible and
easy to program. In addition, developers are not limited to
the choice of a single programming language and can make
Web APIs easily accessible to a community.

By using the SERVICE and BIND keywords from SPARQL
we want to call this user defined functions and bind the out-
put to variables. This approach is also used by the Ephedra
system [24, 23] and the Authors stated that the adaption
effort is a complex task and needs to be minimized. To do
so, we want to store the Web API as a function graph in

a triple store. The graph should provide information about
what kind of parameters the function has, whether they are
optional, and what kind of output is provided.

Our goal is that a user can call this custom functions using
the data from our Hybrid knowledge base. This includes the
data from Web APIs, e.g. SciGraph [9] or CrossRef [2].

Visual Query Interface
In the future, we want to develop a visual query interface (as
already proposed in LODeX [13, 14], FacetGraphs [18] and
many others). Our goal is to create an interface, which is
easy to use for non-expert users but also has powerful func-
tions from SPARQL such as filters, groupings, orderings and
so on. Furthermore, we want to integrate the previous de-
scribed user defined functions into the visual query interface,
so that non-experts can use domain specific functions shared
by developers. This part is not particular novel, but serves
as an intermediate step to determine the difficulty of inte-
grating Web APIS with SPARQL Endpoints. In addition,
we will use this interface to evaluate how well non-expert
users can work on hybrid federations and which issues arise
and need to be fixed.

5. EVALUATION PLAN
Our goal is that we can extract the schema of a heavy

knowledge base (see Section 4.1) as precisely as possible.
Furthermore, we want to link information from Linked Data
knowledge bases to the data from Web APIs. In order to
show the soundness of our approach, we will describe in the
following our evaluation plan.

5.1 Evaluating Schemas
To determine whether the extraction of the schema worked

correctly, we need to create two types of data sets. The first
type of data set is intended to test and train the schema
extraction algorithm. The second type of data set is used
to evaluate the correctness of the algorithm. To prevent us
from falsifying the evaluation, we decided to use two types
of data sets.

The first step to evaluate the schema inference algorithm
is to extract the schema of an endpoint by hand (this will
be the used gold standard). This implies that the data is
searched manually and the schema of the endpoint is ex-
tracted accordingly. The Schema Inference algorithm is then
applied to the endpoint. The final step is to compare the two
derived schemas and measure how similar they are. There-
fore, we will store both schemas in a triple store, using RDF,
and count how many triples are common or missing. In case
of heavy endpoints, it is hardly possible to derive the schema
manually, which is why this type of evaluation is not suitable
here. Instead, we will test the correctness of our procedures
on light and property-heavy endpoints and, for heavy end-
points, only test them in random samples. This means that
we will check whether the connections derived in the schema
exist or not. This will not help to find missing connection
but additional connections that erroneously are derived and
actual do not exist in the knowledge base.

5.2 Evaluating Automatic Datatype Detection
When it comes to connecting Web APIs to Linked Data

endpoints and forming a hybrid federation, two different
parts need to be evaluated.



First, we need to check which data types were recognized
for the Web APIs, whether they were the correct ones, and
whether all matching data types were found. On the other
hand we have to check if the record linkage worked correctly.
Here, too, we want to divide Web APIs into two groups, as
we did previously with the evaluation of the schema. The
first group of Web APIs is used again to test and adapt the
algorithms used. The second group of Web APIs is again
used to evaluate and verify the algorithms used.

5.2.1 Data Type Detection
The first step in evaluating the data type detection al-

gorithm is to find all data types from the knowledge base
that should be classified as correct parameters for a speci-
fied Web API. As in the case of the evaluation of the Schema
Inference algorithm, this step must be performed manually
for the first time and serves as the gold standard. The data
types of the gold standard can then be compared with the
found data types of the Data Type Detection Algorithms to
evaluate the used algorithm.

5.2.2 Record Linkage
As already mentioned, it must also be evaluated how good

the results of the record linkage is. An overview of data
linkage is presented in [16]. The authors recommend to use
precision-recall or F-measure graphs rather than single nu-
merical values to measure the quality of linkage algorithms.
Data pairs that should not be matched because they are not
identical are called true negatives. Quality measure that in-
clude the number of true negative matches should not be
used due their large number in the space of record pair com-
parisons, otherwise they would falsify the evaluation.

6. ACKNOWLEDGEMENT
A special thanks goes to my supervisor Ralf Schenkel for

his invaluable support.

7. REFERENCES
[1] BNF Bibliothèque nationale de France.

http://www.bnf.fr/.

[2] CrossRef. https://www.crossref.org/services/
metadata-delivery/rest-api/.

[3] dblp computer science bibliography.
https://dblp.uni-trier.de.

[4] DBpedia. https://wiki.dbpedia.org.

[5] FOAF vocabulary specification 0.99.
http://xmlns.com/foaf/spec/.

[6] LODeX Model.
http://dbgroup.unimo.it/lodex_model/lodex.
Accessed: 27.02.2019.

[7] RDF Schema 1.1.
https://www.w3.org/TR/rdf-schema/. Accessed:
27.02.2019.

[8] SPARQL query language for rdf.
https://www.w3.org/TR/rdf-sparql-query/.
Accessed: 27.02.2019.

[9] Springer SciGraph Web API. https:
//scigraph.springernature.com/explorer/api/.

[10] WikiData. https://www.wikidata.

[11] F. Benedetti, S. Bergamaschi, and L. Po. A visual
summary for linked open data sources. CEUR
Workshop Proceedings, 1272:173–176, 2014.

[12] F. Benedetti, S. Bergamaschi, and L. Po. Online index
extraction from linked open data sources. CEUR
Workshop Proceedings, 1267(January):9–20, 2014.

[13] F. Benedetti, S. Bergamaschi, and L. Po. LODeX: A
tool for visual querying linked open data. CEUR
Workshop Proceedings, 1486:2–5, 2015.

[14] F. Benedetti, S. Bergamaschi, and L. Po. Visual
Querying LOD sources with LODeX. pages 1–8, 2015.

[15] F. Benedetti, S. Bergamaschi, and L. Po. Exposing the
underlying schema of LOD sources. Proceedings - 2015
IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology,
WI-IAT 2015, 1:301–304, 2016.

[16] P. Christen and K. Goiser. Quality and complexity
measures for data linkage and deduplication. pages
127–151, 2007.

[17] O. Görlitz and S. Staab. SPLENDID: SPARQL
endpoint federation exploiting VOID descriptions.
2011.

[18] P. Heim, T. Ertl, and J. Ziegler. Facet graphs:
Complex semantic querying made easy. pages 288–302,
2010.

[19] K. Kellou-Menouer and Z. Kedad. On-line Versioned
Schema Inference for Large Semantic Web Data
Sources. Proceedings of the 29th International
Conference on Scientific and Statistical Database
Management - SSDBM ’17, 2017.

[20] M. Konrath, T. Gottron, S. Staab, and A. Scherp.
Schemex - efficient construction of a data catalogue by
stream-based indexing of linked data. J. Web Semant.,
16:52–58, 2012.

[21] M. Koutraki, D. Vodislav, and N. Preda. Deriving
intensional descriptions for web services. pages
971–980, 2015.

[22] F. H. M. Weise, S. Lohmann. LD-VOWL: extracting
and visualizing schema information for linked data
endpoints. 2016.

[23] A. Nikolov, P. Haase, J. Trame, and A. Kozlov.
Ephedra: Efficiently combining RDF data and services
using SPARQL federation. 786:246–262, 2017.

[24] A. Nikolov, P. Haase, J. Trame, and A. Kozlov.
Ephedra: SPARQL federation over RDF data and
services. 2017.

[25] N. Preda, F. M. Suchanek, G. Kasneci, T. Neumann,
M. Ramanath, and G. Weikum. ANGIE: active
knowledge for interactive exploration. PVLDB,
2(2):1570–1573, 2009.

[26] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and
M. Schmidt. Fedx: A federation layer for distributed
query processing on linked open data. pages 481–486,
2011.

[27] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and
M. Schmidt. Fedx: Optimization techniques for
federated query processing on linked data. pages
601–616, 2011.

[28] B. Stringer, A. Meroño-Peñuela, S. Abeln, F. van
Harmelen, and J. Heringa. SCRY: extending SPARQL
with custom data processing methods for the life
sciences. 2016.

http://www.bnf.fr/
https://www.crossref.org/services/metadata-delivery/rest-api/
https://www.crossref.org/services/metadata-delivery/rest-api/
https://dblp.uni-trier.de
https://wiki.dbpedia.org
http://xmlns.com/foaf/spec/
http://dbgroup.unimo.it/lodex_model/lodex
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-sparql-query/
https://scigraph.springernature.com/explorer/api/
https://scigraph.springernature.com/explorer/api/
https://www.wikidata.

	Introduction
	Use Cases
	Non-Expert Use Case
	Data Integration Use Case
	Data Processing Use Case

	Related Work
	Schema Inference
	(Hybrid) Federations
	User Defined Functions

	Research Plan
	Online Schema Inference
	Connecting Linked Data and Web APIs
	Future Prospects

	Evaluation Plan
	Evaluating Schemas
	Evaluating Automatic Datatype Detection
	Data Type Detection
	Record Linkage


	Acknowledgement
	References

