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ABSTRACT

The ability to process data in real time has gained more
and more importance in the last years through the rise of
IoT and Industry 4.0. Stream processing engines were deve-
loped to handle huge amounts of data with high throughput
under tight latency constrains. Trends in modern hardware
have led to further specializations to efficiently utilize their
chances and opportunities, like parallelization to multiple
cores, vectorization, or awareness of NUMA.

In this paper, we present the stream processing engine
PipeFabric, which is under ongoing development at our de-
partment. We will describe internal concepts and stream se-
mantics along with decisions taken in the design space. In
addition, we will show challenges posed by modern hardwa-
re that we are considering to improve performance and usa-
bility of our engine. Finally, we underline the potential of
PipeFabric by running parallelized queries on a single Xeon
Phi processor, resulting in about 1.3 billion tuples processed
per second.
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1. INTRODUCTION

Various applications require processing and analysis of da-
ta continously with short response times. To point an exam-
ple, smart manufacturing machines of Industry 4.0 use sen-
sors to stream their status information, allowing to detect
and correct anomalies in their behavior as fast as possible.

In the early 2000s, the first stream processing engines (of-
ten referred to as SPEs) were published, clearly outperfor-
ming relational DBMS for this task [1|. The one-tuple-at-
a-time concept (also known as Volcano style from Graefe
[2]) for data streaming allowed SPEs to keep individual tu-
ple latencies low. To increase throughput in terms of tuples
processed per second, micro-batching strategies as well as
data parallelization by partitioning were applied and refined
over time.
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Recent work focuses on exploitation of modern hardware,
since memory as well as processors tend to become more and
more specialized to better solve different requirements of ap-
plications. GPUs, Multi- and Manycore CPUs, FPGAs, or
even Vector Engines on processor side, HBM, NVM, HDD,
or SSD on memory side show massively different behavi-
or under different tasks and come with various configura-
tions and challenges to utilize them efficiently. To combine
high throughput as well as low latency data processing with
opportunities given by modern hardware, we introduce our
SPE PipeFabm'cE] in this paper, along with its concepts and
design decisions.

2. RELATED WORK

There are many SPEs published in the past, some being
frameworks developed by research groups, others being com-
mercially used engines in industry. In this section, we give a
short overview of selected SPEs, classified into the scale-up
(single node) and scale-out (distributed) principle.

Aurora [3] was one of the first general purpose SPEs that
specialized on answering queries on data streams in real-
time. Queries are described by directed graphs, connecting
different operators together and thus forming the data flow.
Since Aurora was designed to run on a single node, the Bo-
realis |[4] SPE added fault-tolerance and consistency to run
in a distributed setting.

Other recent distributed SPEs are Apache Flink [5] (for-
ked from the Stratosphere engine), Apache Storm [6], and
Apache Spark Streaming [7]. All of them can be com-
monly found in various companies, having a large user base.
Their main goal in addition to low latency and high through-
put is scalability, along with fault tolerance within a distri-
buted setting. Processing Big Data under real-time cons-
traints requires the distribution of computation to multiple
machines in a cluster eventually, since scale-up is limited.

Nevertheless, scale-up solutions can also come very far for
a fraction of monetary cost of a distributed solution. SA-
BER [8] and StreamBox [9] are two SPEs that are optimi-
zed to run on a single node. While SABER can be executed
on heterogeneous processing units like GPUs, StreamBox
can run on Manycore CPUs supporting out of order tuple
processing.

Finally, our SPE PipeFabric can be classified into the
field of scale-up SPEs, focused on efficient execution of que-
ries on Multicore and Manycore CPUs.

L Open Source, https://github.com/dbis-ilm/pipefabric
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3. STREAM PROCESSING PARADIGM

With the goal of low latency in mind, the general strea-
ming workflow follows the one-tuple-at-a-time strategy. Ho-
wever, if latency requirements can be relaxed, gathering tup-
les together into batches for less communication efforts (like
function calls) and vectorized processing can greatly increase
throughput.

PipeFabric provides a query structure called Topology (li-
ke Apache Flink), which contains one or more streaming
sources, operators applied on them, and optional stream
sinks. Topologies can be conceptually seen as directed acy-
clic graphs routing tuples through different operators (see
Figure [1]).

Figure 1: Example of a Stream Query

This query example consist of two input data streams,
two operators applied on each of them (specifying the key
attribute and window semantics), combined together by a
join with a final grouping on a certain attribute.

Operators (called Pipes) are connected via channels, fol-
lowing the publish/subscribe pattern. They can connect to
any operator upstream by subscribing, publishing their own
results to other operators downstream. To reduce overhead,
only tuple pointers are passed between them. The following
subsections briefly describe the different sources, operators,
and sinks in our SPE.

3.1 Stream Sources

Stream sources produce tuples for individual queries, thus
being the necessary query starting points. The main sources
of streaming are tuples provided via different network pro-
tocols, files (or tables), other streams, or specialized sources.

Network protocols. The most common source for tuples
are servers or sensors that deliver data being processed conti-
nuously. PipeFabric can connect via REST API, RabbitMQ),
Apache Kafka, MQTT, and ZeroMQ. Protocol logic for the
connection is internally realized within the parametrizable
source operators, hidden from the user.

Files/Tables. Data streams can also subscribe to different
files like CSVs or binaries, as well as relational tables. The-
refore, a query can also run different benchmarks provided
as files on the file system. A special use case are tables e.g.
from RocksDB, allowing also to use transactional semantics
on operations under ACID guarantees.

Streams. Another source is the subscription on already de-
fined PipeFabric streams. This allows queries to send their
results conceptually as a new data stream on which other
queries can subscribe to.

Specialized sources. In addition, PipeFabric provides va-
rious specialized source operators for different use cases. To
run the Linear Road benchmark [1], a synchronized source is
provided, publishing tuples from a file in real-time according
to its timestamp. Another specialized source is the data ge-
nerator, which will continuously generate tuples according
to a format specified by the user. One last example is the
matrix source, sending lines, columns, or even full matrices
represented as tuples.

3.2 Operators

PipeFabric supports various operator types being applied
on incoming tuples. The most common single source ope-
rators are the projection of attributes, applied predicates
(selections), aggregations, or groupings. Each of them has
its own operator which can also be configured, e.g. to choo-
se an aggregation type (count, sum, etc.). To join multiple
sources, PipeFabric uses the non-blocking symmetric hash
join in addition to the recently published ScaleJoin algo-
rithm [10]. With a customizable operator called notify, it
is also possible to apply any UDFs on incoming tuples via
lambda functions.

3.3 Stream Sinks

Sinks are operators which logically terminate a stream or
query. It is possible to write query results on the fly into files,
tables, or a new data stream. Results can also be returned
as a general output, e.g. for visualization in a GUIL. However,
PipeFabric currently does not have an own visualization tool
like e.g. Aurora has.

4. STREAMING CONCEPTS

In this section, we further describe streaming concepts of
SPEs which are also realized in PipeFabric.

Partitioning/Merging. To utilize intra-query parallelism,
it is possible to create multiple instances of the same ope-
rator, splitting tuples with a partitioning function and mer-
ging results of partitions afterwards. This concept is shown
in Figure [2}

Data Stream

Figure 2: Partitioning and Merge Schema

Each partition is run by a separate thread, exchanging
tuples with a synchronized queue. This allows the utilization
of all cores on a Multicore or even Manycore CPU, increasing
throughput massively if the computational requirements wi-
thin a partition are high enough to justify synchronization
efforts.

Batching/Unbatching. As previously mentioned, batching
tuples together reduces communication efforts (especially
between threads) and enables vectorized execution of opera-
tions. In PipeFabric, a batch as well as unbatch operator is
provided. The batch operator stores incoming tuple pointers



internally until a given batch size is reached, forwarding the
batch at once by creating and passing a batch pointer to
the next operator. The unbatch operator does the opposite,
extracting tuple pointers from a batch and forwarding them
again one after another.

Window. A window operator tracks incoming tuples for
marking them as outdated after a while. Outdated tuples
do not participate in stateful operations like aggregates or
joins, being removed from those states for further calculati-
ons. Long running queries can therefore discard tuples after a
while, keeping the memory footprint low and also managea-
ble. Most common window algorithms are the tumbling and
sliding window. The former drops all tuples at once when
its size is reached while the latter slowly fades out tuples
individually. Figure [3| visualizes the concept for the sliding
window calculating an aggregate.
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Figure 3: Sliding Window Semantics

Both window types can discard tuples based on time or
tuple count. PipeFabric uses a list data structure for the
window state internally to allow efficient appending and re-
moving at both ends of the list.

Transaction Support. Transactions are a common concept
in relational database systems. They wrap operations on ta-
bles together, providing ACID guarantees to always ensu-
re consistency of the database. Since PipeFabric can also
stream data from or to tables, it contains basic transaction
support for recovery and consistency [11]. To point an exam-
ple, a query writing to a table executes the changes through
running transactions, while multiple queries reading and wri-
ting need isolation to guarantee correctness additionally.

S. MODERN HARDWARE CHALLENGES

In this section, we give an overview of our ongoing work
with PipeFabric regarding modern hardware, mainly focu-
sing on Manycore CPU utilization and support for upcoming
NVM technology. Manycore CPUs provide high core num-
bers and thus high thread counts, resulting in challenges
in terms of synchronization and thread contention. It is al-
so important to notice that intra-query parallelism through
multithreading usually leads to tuples arriving out of order
after partitioning which can be a problem for queries detec-
ting patterns over time.

On the memory layer, NVM and also high-bandwidth me-
mory (HBM) pose new challenges for stream processing.
NVM offers persistence with latencies comparable to main
memory (with a read/write asymmetry), which is interesting
to explore especially for transactional operations on tables.
HBM on the other hand offers great performance for appli-
cations being memory bound at the cost of small capacity,
leading to optimization problems where to use it for the
greatest performance benefit.

5.1 Adaptive Partitioning

Data stream behavior can change during runtime. This
means that the amount of tuples arriving per second can
change, leading to different amounts of partitions that would
be ideal to solve that moment of the query. If the degree of
partitioning is too high, computing resources are wasted,
which is also a common problem for cloud providers. On
the other hand, if the workload is underestimated, too less
partitions cannot catch up with tuple arrival rates leading
to wrong results because of tuples being discarded due to
full buffers.

Dynamic partitioning approaches address this problem by
using a partitioning function that can be changed over time.
This allows to counter skewed streams by dynamically chan-
ging the tuple routes to underutilized partitions. Neverthe-
less, one step further is the adaptive partitioning strategy
where not only the function is variable but also the num-
ber of partitions can change. Figure [] shows recent work for
an adaptive partitioning strategy within PipeFabric, where
the y-axis describes the number of tuples arriving per se-
cond. The partitions are directly converted into throughput
to allow a better comparison.
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Figure 4: Adaptive Partitioning Behavior

Such an approach, scaling the number of partitions up and
down, raises mainly two problems:

e State migration when a partition is removed.

e Decision for scaling, i.e. when to add or to remove
a partition.

The migration problem can be solved by stopping the que-
ry, performing the state migration, and resuming. However,
this can break latency constraints since during a stop the
processing cannot continue. A better proposed solution is to
create a parallel state which gets duplicates of new tuples
until both states are equal. Then, the original state can be
dropped safely.

PipeFabric currently uses a static partitioning concept
where the number of partitions as well as the partitioning
function does not change. At the moment we are investiga-
ting possibilities and options to apply an adaptive approach
to fully utilize a Manycore CPU under skewed data stream
behavior.



5.2 Order-Preserved Merging

As mentioned in the last section, partitioning can lead to
out of order tuples afterwards, e.g. when a predicate within a
partition drops more or less tuples or a hash table for joining
tuples has a chain of cache misses on probing. Ordering the
output without blocking results can be difficult.

A solution for this problem is to store incoming tuples
in different queues per partition. Then, the merge operation
can check and compare the first elements in all of the queues,
forwarding the oldest tuple among them (see Figurefor the
general idea).
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Figure 5: Order-Preserved Merging

For the special case that one partition is not producing
any outputs, it is possible to add a dummy element after a
certain time to guarantee ordered execution only within a
certain time frame. This strategy is also named as k-slack
algorithm [12].

Regarding PipeFabric, we would like to combine an order-
preserved merge with an adaptive partitioning approach.
This means that on a change on the partition number the
sorted merge operation has additional overhead on synchro-
nization with the adaptive partitioner, since it has to know
which partition will be removed soon.

5.3 Real-time Query Modification

Even if not directly hardware-related, it would be a quality
of life feature to be able to change the query (which possibly
runs for weeks or months) without restarting it [13]. Over a
longer period, the query states can become huge, especially
when the query has a lot of operators, not even to mention
the time lost when the state is migrated into a new query. To
add real-time query modification, we would like to address
the following use cases:

e Add or remove a new operator within the query da-
taflow.

e Change the function (UDF) of a single operator.

For our SPE PipeFabric, these features need an additional
controller thread that can be invoked by the user to trigger
a query modification. To add or remove a new operator, the
previous as well as next operator within the query need a
notification to not exchange tuples anymore. After that noti-
fication, the new operator must be created and connected to

others with publish/subscribe channels. When the connecti-
on is finished, new notifications must be sent to again allow
tuple exchange.

When the UDF of an operator is changed, only this opera-
tor is involved in modification. This means that the function
cannot be executed while it is changing, leading to notifica-
tions being necessary again.

For both modifications, tuples have to be buffered while
the query is changed. Ideally, the modification is done du-
ring a delay in tuple arrival of the data stream, else a short
blocking is inevitable.

5.4 HBM Allocation on States

One of our previous works [14] investigated HBM impact
on different query states. We concluded that for operations
with small states like aggregates it is not useful at all, while
windows can benefit a little from more bandwidth. Stream
sources on the other hand greatly benefit from HBM.

In a followup work, we will integrate HBM detection wi-
thin our SPE along with the provision of custom HBM state
allocators. In addition to that, we would like to add a cost
model for HBM to allow a query optimizer to choose bet-
ween the different memory types. Finally, since the symme-
tric hash join only marginally improves with more band-
width (being mostly latency bound), we are investigating
different stream join algorithms to improve bandwidth uti-
lization especially on a Xeon Phi processor.

5.5 Lockfree Data Structures

With Manycore CPUs, the degree of contention on shared
data structures can nullify any advantage of parallelizati-
on. The usage of fine grained locks or latches along with
optimistic concurrency protocols can improve scalability a
lot. Recent work on PipeFabric investigated lockfree data
structures for states that are accessed by multiple threads
concurrently.

Queues between threads are a prominent example, whe-
re specialized lockfree queues (the so-called Single Producer
Single Consumer (SPSC) queues) realized as ring buffers
greatly enhance performance. Hash tables for joins are ano-
ther common structure to benefit from the lockfree para-
digm, which is not only restricted to stream processing but
also for joins on relational tables.

Lockfree programming usually has a huge disadvantage
when it comes to debugging or guaranteeing thread safe-
ty. However, there are high level abstractions in libraries
like BoostEI or Intel TBBP| which hide lockfree operations
behind a user-friendly interface. Currently PipeFabric still
uses locks and latches, but to improve throughput, we plan
to add lockfree pendants in the near future.

5.6 Multiway-Stream Join

The symmetric hash join within PipeFabric is a binary
hash join, which means that it can only join two connected
input streams. To join a higher number of stream sources,
the current solution leads to a binary tree of symmetric hash
join operators with the following problems:

e Individual tuple latency can become extremely bad if
it has to be repeatedly joined from bottom up within
the tree.

2https://www.boost.org/doc/libs/l_66_0/doc/html/lockfree.html
3https://software.intel,com/en—us/node/506169
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e Since intermediate join results are fully materialized in
each join operator, the memory footprint can become
very large for intermediate hash tables inevitably.

Multiway join operators that can connect to any number of
streams on the other hand look very promising, since a single
join instance has a lot of opportunities to optimize tuple
storage and probe sequences. Figure [§] shows the concept of
a binary join tree compared to a multiway join.
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Figure 6: Binary vs. Multiway Join

To efficiently join many concurrent data streams, the join
operator has to minimize probe misses to reduce contention
(e.g. by only probing when matches can be found in all hash
tables). In addition to that, different parallelization strate-
gies (like data parallelism or fully sharing states) are possible
which we like to investigate in future work.

6. EXPERIMENTAL EVALUATION

With this section, we will prove the statement in the title
of this paper experimentally. First, we will list our experi-
mental setup, followed by the results and discussion after-
wards.

6.1 Setup

On the hardware side, we used a Xeon Phi Knights Lan-
ding Manycore CPU (KNL 7210) with 64 cores & 1.3GHz,
supporting up to 4 threads each due to hyperthreading. It
runs in SNC4 mode, which means that the cores are distri-
buted into four distinct regions classified as NUMA nodes.
Along with the CPU comes 16GB HBM on chip, the so-
called Multi-Channel DRAM (MCDRAM). This MCDRAM
provides over 420GB/s memory bandwidth and is configu-
red in Flat mode, therefore it can be manually addressed via
Numactﬂ or Memkind AP]EI, else it is not used at all.

We built our SPE PipeFabric with the Intel compiler versi-
on 17.0.6. The operating system is CentOS version 7 running
Linux kernel 3.10. The most important compilation flags are
code optimization with -O3 and -xMIC_AVX512 for auto-
vectorization with AVX512 instruction set.

4https ://wuw.systutorials.com/docs/linux/man/8-numactl/
5h1:tp ://memkind.github.io/memkind/

6.2 How to become a Billionaire

A query that is able to process a billion tuples per se-
cond needs some tuning along with simplifications, obvious-
ly. First, all input streams are fully allocated within the
MCDRAM first, there is no regular DDR4 RAM involved,
not to speak of disks like SSDs. The stream query only ap-
plies a selection predicate on each input tuple, forwarding
those tuples that satisfy the predicate to an empty UDF ope-
rator. More computations lead to more work for the threads,
reducing overall throughput. The different predicates as well
as their measured impact on performance are summarized
in Table 1

| Predicate [ Selectivity | tp/s (256 threads) |

true 100% 720M
key mod(2) 50% 937M
key mod(10) 10% 1.16B
false 0% 1.39B

Table 1: Selection Operator

Next, the query is realized as inter-query parallelism which
means that all 256 threads of the KNL run a local query ver-
sion subscribed to an replicated input stream without con-
tention between them, to overcome the low clock frequency.
We ran the query with a different degree of inter-query par-
allelism. The selection predicate is false, however, the query
would also allow more than a billion tuples per second with
10% selectivity, as shown in Table [I] The results can be
found in Figure[7]
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Figure 7: Stream Query Results

The scaling of throughput is close to ideal, where doubling
the number of threads doubles the overall throughput. Ho-
wever, including concurrent actions like synchronized access
to data structures reduces the scalability the more threads
are added. When using DDR4 memory that has only around
80GB/s bandwidth, the highest throughput is reached at 64
threads with approximately 200 million tuples per second
(not shown in the plot). More than 64 threads degrade per-
formance on DDR4, since the threads exceed the bandwidth
and thus are idling while the memory controllers finish their
requests.
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7. CONCLUSION

In this paper, we presented PipeFabric, a SPE developed
at our department with focus on scale-up performance. First,
we gave an overview of other well-known SPEs, classified by
their decision on scaling up or scaling out. After that, we
briefly described stream processing characteristics on the
base of PipeFabric. In addition to the basic concepts, we
extended the section by discussing various streaming para-
digms to better utilize given hardware, like partitioning of
the data flow or batching tuples.

Then, we came to our current research heavily influenced
by modern hardware. We explained the challenges posed
mainly by Manycore CPUs as well as HBM, followed by our
recommendations and ideas to improve our SPE. Adaptive
partitioning will allow queries to scale with data stream be-
havior, which is even more important on a Manycore CPU
that can provide hundreds of partitions easily. In combina-
tion with an order-preserved merge step, results from the
partitioning can be reordered again, allowing further analy-
sis downstream (like pattern matching). With long-running
queries, we plan to add query modifications in real time,
where operators can be added as well as removed without
restarting the query as well as online changeable UDFs. To
better utilize HBM, we will add allocators accordingly, lea-
ding to a cost model for an optimizer being able to decide on
which memory type states should be placed. To further im-
prove throughput under high contention, lockfree pendants
to our used data structures will be added. And finally, since
a binary join tree badly utilizes bandwidth and hurts indi-
vidual latency, we plan to investigate multiway stream joins
in the future.

After the discussion on modern hardware challenges, we
described our experiments on which we were able to crea-
te a stream query written in PipeFabric, running on the
Xeon Phi processor, leading to more than a billion tuples
processed per second finally. Although the query is more a
synthetical one, it underlines the potential of our SPE, ne-
vertheless.
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